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Abstract: Microwave sensors have attracted interest as non-destructive metal crack detection (MCD)
devices due to their low cost, simple fabrication, potential miniaturization, noncontact nature, and
capability for remote detection. However, the development of multi-crack sensors of a suitable size
and quality factor (Q-factor) remains a challenge. In the present study, we propose a multi-MCD
sensor that combines a higher-mode substrate-integrated waveguide (SIW) and complementary
split-ring resonators (CSRRs). In order to increase the Q-factor, the device is miniaturized; the MCD
is facilitated; and two independent CSRRs are loaded onto the SIW, where the electromagnetic field
is concentrated. The concentrated electromagnetic field of the SIW improves the Q-factor of the
CSRRs, and each CSRR creates its own resonance and produces a miniaturizing effect by activating
the sensor below the cut-off frequency of the SIW. The proposed multi-MCD sensor is numerically
and experimentally demonstrated for cracks with different widths and depths. The fabricated sensor
with a TE20-mode SIW and CSRRs is able to efficiently detect two sub-millimeter metal cracks
simultaneously with a high Q-factor of 281.

Keywords: complementary split ring resonator; metamaterial-based sensor; quality factor; multi-crack
detection; higher-mode substrate-integrated waveguide

1. Introduction

Surface cracks in the metal caused by fatigue and corrosion, which can lead to signifi-
cant problems in both small metallic objects and large structures, are difficult to detect and
repair. Recently, various metal crack detection (MCD) techniques have been developed,
including destructive tests such as acid corrosion, sulfur printing, and pinhole tests. How-
ever, non-destructive testing (NDT) has received significant attention because destructive
tests can cause undesired damage and are limited in detecting cracks under coatings, such
as rust, paint, corrosion protection, and composite laminate [1–3]. NDT techniques include
advanced ultrasound, acoustic emissions, eddy currents, and optical fiber techniques, all of
which offer high-resolution crack detection. However, they have disadvantages such as
high complexity, high cost, large-sized equipment, and manufacturing difficulties [4–12].
In contrast, microwave-based NDT employing microstrips, waveguides, meta-resonators,
radio-frequency (RF) identification, and antennas are low-cost, have a smaller sensor size,
and allow for easier fabrication [13–20]. Despite these advantages, microwave-based NDT
is limited in its ability to detect a variety of crack shapes and multiple cracks simultaneously
and generally requires an increase in sensitivity.

The quality factor (Q-factor) is a key parameter for sensitivity; thus, various RF sensor
studies have sought to develop sensor systems with a high Q-factor [21–23]. High Q-factor
RF sensors can be realized using active or passive feedback systems. Assisting an active
feedback loop using an active microwave device can dynamically increase the Q-factor;
however, DC adjustment and calibration are important issues for this setup that need to
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be solved. Another problem associated with active microwave sensors is their limited
operating temperature range [24–29]. On the other hand, passive structures with high
Q-factor are generally implemented using reduced capacitance or increased inductance,
complicating the structure. As a result, it is difficult to simultaneously detect multiple
cracks and produce a high Q-factor because multi-crack detection sensors that requires
independently operating resonances have unique structures such as multiband filters or
multiband antennas [30–34]. Sensors that can detect two materials simultaneously and
independently have gained significant research attention because they can significantly
increase the sensing accuracy and reduce the scanning time for large areas while reducing
power consumption [35–46]. In this paper, we propose a novel method that can increase
the number of cracks that can be detected and produce a high Q-factor by integrating
complementary split-ring resonators (CSRRs) with a higher-mode substrate-integrated
waveguide (SIW).

A CSRR is a metamaterial structure that has an etched SRR on the opposite side of the
signal line. Metamaterials (MM) are materials with the negative property of permeability
and were first shown experimentally in 1999 as split ring resonators (SRR). The SRR and
CSRR have been used for various RF applications such as antennas, sensors, filters, and
transmission lines [46–48]. In CSRR, we can control the inductance and capacitance by
the slots and line of CSRR. For example, when a voltage difference is excited in the CSRR,
capacitance is induced in the slot by the electric field (E-field), and inductance is induced in
the metal strip and conducting island by the magnetic field (H-field). For example, when a
voltage difference is excited in the CSRR, capacitance is induced in the slot by the electric
field (E-field), and inductance is induced in the metal strip and conducting island by the
magnetic field (H-field) [49–51]. CSRRs can be used for multiple sensing because, when
independently patterned CSRRs are employed, each pattern generates its own resonance
frequency. In [42], sixteen CSRRs were loaded on four signal lines for multi-sensing, and
in [45], coupled CSRRs were used for a dual- and triple-notch filter, and three CSRRs
with a cavity were used in [52]. Additionally, the external field and Q-factor (~100) of
CSRRs are helpful for MCD. Despite the already high Q-factor for CSRRs, various studies
proposed new CSRR structures to increase the frequency-shifting sensitivity or the Q-factor
further [52–63]. In [56,59,64], increasing the capacitance or inductance of the CSRR was
used to increase the frequency-tuning sensitivity, and a higher Q-factor was realized by
increasing the number of CSRRs [54,62,63] and using a T-shaped resonator [64–67].

In this paper, we produce a high Q-factor (~200) for a multi-crack sensor by integrat-
ing CSRRs with a higher-mode SIW. A SIW is a planar structure that offers additional
functionalities over traditional waveguides, and attempts have been made to combine
meta-material structures with a SIW to increase the Q-factor and sensitivity or reduce the
sensor size [68–74]. However, combining CSRRs with a higher-mode SIW to separate and
concentrate E-fields is proposed for the first time in the present study to enable multi-crack
detection with a high Q-factor. When the independent CSRRs are loaded onto the SIW, each
CSRR develops a stronger E-field distribution exterior to the SIW plane at each resonance
frequency. To demonstrate our approach, we fabricated a dual-crack sensor using two
CSRRs on a TE20-mode SIW. We loaded one CSRR at each hotspot to enhance the individ-
ual E-fields and simultaneously detected two metal cracks. The observed results for the
proposed crack sensor confirmed that the sensor could detect different crack widths and
depths simultaneously and independently.

2. Proposed Sensor Design

Figure 1 summarizes the principles underlying the proposed multi-crack detection
sensor with a high Q-factor. First, we used a higher-mode SIW to form a separated E-field
distribution, and the SIW subsequently enhanced the Q-factor of the CSRRs (Figure 1a).
Next, independent CSRRs were positioned in the separated and concentrated E-fields on
the TE20-mode SIW. Each CSRR produces an independent resonance, and the resonance
frequency strengthens the E-field of the SIW (Figure 1b,c). As a result, changes in the metal
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surface, such as cracks or slots, sensitively affect the reflective coefficient due to the stronger
external field for each CSRR (Figure 1d).
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Figure 1. Proposed multi-crack detecting sensor with a high Q-factor: (a) TE20 mode SIW only E-field
vector distribution. E-field vector distribution after the integration of the CSRRs (b) at 4.69 GHz and
(c) 5.49 GHz. The E-field intensity range of (a–c) is the same. Concept illustration of (d) independent
multi-crack detection and (e) the reflective coefficients before and after CSRR loading.

For example, when a crack is near CSRR1, the field near this CSRR changes, affecting
the reflective coefficient for its resonance frequency. On the other hand, when a crack is
near CSRR2, the crack only affects the reflective coefficient for the resonance frequency
of CSRR2. When cracks are near both CSRRs, the reflective coefficients both change. In
particular, loading the CSRR onto a higher-mode SIW has some advantages. Firstly, a
higher-mode SIW enhances the Q-factor of the CSRR by strengthening the electromagnetic
field; thus, the proposed sensor has a sub-millimeter sensing resolution and can distinguish
between various crack shapes. Secondly, the use of CSRRs reduces the physical size of the
SIW while maintaining its advantages because the higher capacitance and inductance of
the CSRR decrease the operating frequency of the SIW (Figure 1e).

Table 1 compares the performance of the proposed crack sensor with that of con-
ventional multi-detection RF sensors and crack detection sensors using CSRRs. These
approaches have received significant attention because multi-detection capability signifi-
cantly reduces the scanning time over wide areas and reduces power consumption. In [44],
a power divider was used to produce independent frequencies and increase the Q-factor,
leading to the fabrication of a sensor with high accuracy for liquid material permittivity
measurements. In [16], a substrate highly sensitive to temperature was used to combine
temperature and crack sensing. In [18], metal crack and strain sensing were achieved using
a dual-mode passive and active antenna.

For MCD, many researchers have focused on increasing the Q-factor or the number of
cracks that can be detected, for which antennas and CSRRs are widely used. We previously
demonstrated an increase in the Q-factor by integrating a CSRR with the dominant mode
of a SIW [35]. In [36], four SRRs were used to increase the detectable number of cracks,
exhibiting high sensitivity at 38 GHz. However, SRRs create E-fields on the surface, and
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some exhibit unstable detection performance with a sensing resolution that varies from
0.1 mm to 0.5 mm, depending on the crack position. In [14,41], higher-mode antennas were
introduced to produce independent frequencies and detect the tilting angle of metal cracks.
In [44], a spoof surface plasmon polariton sensor was used for multiple crack detection
by incorporating liquid channels. The sensor had high accuracy, sensing resolution, and
sensitivity, but liquid switches have a slow switching speed and require an additional
system for movement and storage. Although the sensor in [13] had the capability to detect
12 cracks simultaneously and independently, it had a low Q-factor and resolution. In
contrast, the highly sensitive sensor proposed in the present study has a high Q-factor and
sensing resolution in terms of both width and depth. In particular, the sensor can detect
crack depths at a resolution of 0.2 mm due to the stronger external E-field.

Table 1. Summary of the proposed and previously reported multi-crack detection sensors.

[Ref]
Year

No. of
Cracks

Detected

Sensing
Target Sensing Techniques

Crack Sensing
Resolution (mm)

Sensitivity
(MHz/mm) Measured

Q-Factor
Width Depth Width Depth

[39]
2020 2 Liquid material

permittivity Power divider + SRRs N/A N/A N/A N/A 280

[16]
2021 2

Temperature
and metal

cracks

Antenna + temperature-
sensitive substrate 0.10 N/A 16.6 N/A 17

[18]
2020 2 Metal cracks

and strain Passive and active mode antenna 0.25 N/A 50 N/A N/A

[35]
2012 1 Metal cracks CSRR 0.10 N/A 200 N/A 25

[50]
2017 1 Metal cracks SIW + CSRR 0.20 500 50 1 224*

[36]
2021 4 Metal cracks Four SRRs 0.10−0.50 N/A 1300 N/A N/A

[40]
2018 2 Metal cracks Higher-mode patch antenna 1.00 N/A 140 N/A N/A

[14]
2019 2 Metal cracks Higher-mode patch antenna 0.20 N/A 45 N/A N/A

[44]
2022 4 Metal cracks Spoof surface plasmon polariton

sensor + liquid switch 0.10 N/A 200 N/A N/A

[42]
2021 12 Metal cracks CSRRs 0.40 0.2 N/A

(magnitude) 17

This
work 2 Metal cracks CSRRs + higher-mode SIW 0.10 0.2 200 * 130 * 281 *

* Highest value when the minimum crack is loaded.

2.1. Design of the Proposed Dual-Crack Detection Sensor

Figure 2 presents the proposed dual-crack sensor design. It consists of a three-layered
bottom conductive element with a signal line, a top conductive layer with two etched
CSRRs on the ground plane, and a substrate with a via that connects the top and bottom
plane to produce SIW cavities. We used a 1.27 mm thick Rogers Duroid 6010 substrate with
a dielectric constant (εr) of 10.2 and a loss tangent (tan δ) of 0.0023. Additionally, the final
sensor design included an uncracked metal sheet (Figure 1c). In this paper, aluminum with
a thickness of 5 mm was used by a metal sheet.
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The geometrical parameters for the SIW and CSRRs were determined using
Equations (1)–(8). First, we designed the TE20-mode SIW structure using Equations (1)–(3).
The resonance frequency of the TE20-mode SIW was calculated as

fmn0 =
1

2
√

µε

√√√√( m
We f f

)2

+

(
n

Le f f

)2

, (1)

where ε, µ, m, n, We f f , and Le f f are the substrate permittivity, permeability, mode
m index, mode n index, and effective width and length, respectively. The effective width
and length were calculated as

We f f = Wc − 1.08
D2

Vp
+ 0.1

D2

WC
(2)

Le f f = Lc − 1.08
D2

Vp
+ 0.1

D2

Lc
(3)

where Wc and Lc are the width and length of the SIW, respectively, from the center of the
vias, and D is the diameter of the vias [47,74]. Based on the SIW, the TE20-mode resonant
frequency for the SIW loaded with CSRRs can be expressed as

fCSRR =
1

2π
√

LrCr
(4)

where Lr and Cr are the inductance and capacitance of the CSRR as shown in Figure 2b [74,75],
which are determined by Equations (5) and (6), respectively:

Lr =
4.86µ0

2
(c1 − c4 − c5)

[
ln
(

0.98
ρ

+ 1.84ρ

)]
(5)

Cr = (c1 − 1.5(c4 + c5))Cpul (6)

where ρ = c4+c5
c1−c4−c5

and Cpul is the capacitance per unit length between the rings [76–80].
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In addition, the proposed sensor employs CSRRs to reduce the evanescent wave effects
and obtain a higher Q-factor compared with SIW-only approaches. The Q-factor at each
resonant frequency can be expressed as

Q = R

√
Cr

Lr
(7)

where Cr and Lr are defined in Equations (5) and (6), respectively. A higher Q-factor
increases the sensitivity, i.e., sharper resonance E-field concentrations and perturbations [77].
A large D and Vp can occur due to E-field leakage in the SIW, thus we limit these to reduce
radiation losses as follows:

D <
λg

5
, Vp ≤ 2D, (8)

where λg is the guided wavelength.
Finally, the SIW cavities within the substrate have a width W of 25 mm, a length L

of 11.1 mm, a via diameter D of 1 mm, and a center-to-center separation Vp of 1.8 mm
(Figure 1d). The two CSRRs etched on the bottom of the sensor have a gap g of 0.5 mm and
an external and internal ring width and ring spacing (c3, c4, and c5, respectively) of 0.2 mm
each. The external square width and length (c1 and c2) are both 2.7 mm for CSRR1 (left side,
Figure 2a) and both 3.1 mm for CSRR2 (right side, Figure 2a), with the other parameters the
same for the two CSRRs. The cavities are connected to a 50-Ω microstrip line with a width
of 1 mm and a length of 10 mm that links to the subminiature version A (SMA) connector.
The cavity inserts were designed to match the impedance with the aluminum sheet used
as the CSRR loading plane, with a width IW of 6 mm and a length IL of 2 mm. The total
substrate size is SX = 36 mm and SY = 26 mm.

2.2. Sensing Method

Figure 3 presents simulated S11 results for the proposed crack sensor. The resonant
frequency of the sensor changes from 4.626 and 5.436 GHz to 4.053 and 5.208 GHz after
loading the Al sheet because the addition of material that has a different dielectric constant
affects the resonant frequency (Figure 3a). In this paper, we optimized the sensor via the
loading material to increase its sensitivity for surface cracks. Figure 3b−d show that the
proposed sensor can detect the position of multiple cracks with a width, depth, and length
of 0.5 × 0.5 × 6.1 mm3. For example, when cracks are above both CSRRs, the resonance
frequencies change from 4.053 and 5.208 GHz to 4.020 and 5.145 GHz for CSRR1 and CSRR2,
respectively. On the other hand, when a crack is only above CSRR1, only the resonance
frequency for CSRR1 changes, while the same is true for CSRR2. This is because the E-field
near the CSRR is disturbed by the material, affecting the resonant frequency of the CSRR.

In addition, when a crack is present in the CSRR region, the capacitance is affected.
The concentrated E-field near the CSRR flows along the crack, which operates as a capacitor.
The shorter side of the crack is considered the crack width, and it can be considered the
distance between capacitors. The crack depth can be considered the area of the capacitor.
When the crack width increases, the capacitance decreases, and the resonant frequency
increases. In addition, as the crack depth increases, the capacitance rises, and the resonant
frequency falls. The resonant frequency of a CSRR in the presence of a crack is represented
by Equation (9):

fCSRR =
1

2π
√

Lr(Cr + (Ccrack)
, (9)

where Ccrack is the capacitance included by the crack. Thus, the proposed sensor detects a
crack using the change in the resonant frequency. The proposed multi-crack sensor has a
low fabrication cost and small waveguide cavities, and the independent sensing area can be
extended because multi-E-fields in TEmn mode do not affect other sensing results [81–83].

Figures 4–7 are numerical analyses to check the sensing capability. Figure 4a–e show
the sensing resolution for different crack width when the crack is positioned in the center
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of each CSRR. The proposed sensor offers multi-crack sensing at a high sensing resolution
based on the stronger Q-factor. As a result, the sensor has a detection resolution of 0.1 mm
for width and 0.2 mm for depth in both positions.
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Figure 3. Simulation results for the proposed crack sensor: (a) S11 without an Al sheet and with an
uncracked Al sheet, (b) S11 for different crack numbers and positions (two cracks, single crack at
CSRR1, single crack at CSRR2, no crack), S11 results (c) in the CSRR2 resonance frequency band, and
(d) in the CSRR1 resonance frequency band (crack width, depth, and length of 0.5 × 0.5 × 6.1 mm).
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Figure 4. Simulated S11 results for the proposed dual-crack sensor for different crack widths above
(a) CSRR1 and (b) CSRR2. (c) Fundamental metal sheet structure with two cracks with a width,
depth, and length of 0.5 × 0.9 × 6.1 mm. S11 results for different crack depths above (d) CSRR1 and
(e) CSRR2. (f) S11 results for the rotation of a straight crack above CSRR1. (g) S11 results for five
crack shapes above CSRR2.
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crack; (b–e) S11 when the crack moves x-axis; (b) from (−9, 0) to (-2, 0), (c) from (−1, 0) to (8, 0),
(d) from (−9, 3) to (8, 3), and (e) from (−9, 4) to (8, 4); (f) S11 when the crack move y-axis from (4, −6)
to (4, 6).

Figure 4a,b display the simulated frequency responses for various straight crack
widths, with a consistent length of 6.1 mm for all cracks. Figure 4a presents the simulated
S11 results as the width of a single straight crack above CSRR1 increases from 0.3 to 0.7 mm
at intervals of 0.1 mm with a fixed depth of 0.5 mm. The resonant frequency for CSRR1
increases from 5.126 to 5.229 GHz as the crack width increases, and the average change in
frequency is 257.5 MHz/mm (Figure 4a). On the other hand, when the width of a single
straight crack above CSRR2 increases from 0.3 to 0.7 mm at intervals of 0.1 mm with a
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fixed depth of 0.5 mm, the resonant frequency for CSRR2 increases from 3.988 to 4.083 GHz
and the average frequency shift is 237.5 MHz/mm. Figure 4d,e present the simulated S11
results when the depth of a single straight crack above CSRR1 and CSRR2 increases from
0.1 to 0.9 mm at intervals of 0.2 mm. The resonant frequency of CSRR1 decreases from 5.269
to 5.145 GHz, and the average change in frequency is 142.5 MHz/mm when the crack depth
is changed above CSRR1. In contrast, when the crack depths above CSRR2 increase, the
resonant frequency of CSRR2 decreases from 4.103 to 4.011 GHz, and the average change
in frequency is 132.5 MHz/mm. The simulation results thus demonstrate the sensitivity
of the proposed sensor for the detection of straight cracks, with the ability to distinguish
differences of 0.1 and 0.2 mm in width and depth, respectively.

The proposed dual sensor can detect various shapes at each CSRR due to its high
sensitivity. Figure 4f,g present the simulated S11 results for five crack shapes commonly
found on metal surfaces: tilted, cross, zigzag, star, and pinhole. Figure 4f presents the S11
results for different tilting angles above CSRR1. A ±45◦ rotation of the crack increases
the resonant frequency to 5.228 GHz compared with a resonant frequency of 5.174 GHz
at 0◦. Similarly, a 90◦ horizontally oriented straight crack has a resonant frequency of
5.283 GHz. Figure 4g displays the S11 results for the straight, cross, zigzag, star, and
pinhole cracks above CSRR2. Because the difference in the crack distribution affects Ccrack
in Equation (9), and small differences can have a significant effect due to the concentrated E-
field, the different crack patterns lead to differences in the change in the resonant frequency.
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Figure 5 is the simulated result for checking the effect of the crack location deviation.
In conclusion, since CSRR forms an electric field around the center of the ring, the frequency
range varies depending on the location of the crack. First, Figure 5c,d show the simulated
S11 of the proposed sensor for the x-direction position deviation of the crack. The original
point (0, 0) is the intermediate position from the side of each CSRR. As shown in Figure 5b,
when the crack moves from (−1, 0) to (8, 0) around CSRR2, the further away from (4, 0),
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the center of the CSRR, the smaller the range of frequency variation. In the same way, in
Figure 5c, when the crack moves from (−9, 0) to (−2, 0) around CSRR1, the further away
from (−5, 0), the center of the CSRR, the smaller the range of frequency variation. However,
when the crack positions outside the CSRR where the electric field is weak, there is little
change in frequency from the x-axis movement of the crack, as shown in Figure 5d,e. In
addition, we checked the effect of the y-direction position deviation of the crack (Figure 5f).
Similar to the change in the x-axis, it was shown that the closer the center of the CSRR, the
greater the frequency change in the position deviation of the y-axis. For example, when
the crack is in (4, 0), the frequency moves from 4.82 GHz to 5.18 GHz; when the crack is in
(4, −1) or (4, 1), the frequency moves from 4.82 GHz to 5.1 GHz; and when the crack is in
(4, −3) or (4, 3), the frequencies move from 4.82 GHz to 5 GHz. However, when the crack is
outside the CSRR, there is little change in frequency from the y-axis movement of the crack.
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Figure 7. Simulation results of the proposed sensor for (a) different Al sheet thicknesses and
(b,c) crack lengths.

Next, Figure 6 shows the detection capability of the crack under the metal surface.
Generally, non-destructive testing can be used for detecting cracks under the surfaces. In
the simulation, the crack of 0.5 × 2 × 0.3 mm3 is used, and the crack is positioned in the
center of CSRR1, as shown in Figure 6a. Then, the crack is moved from the metal surface
(Dud = 0 mm) to the interior of the metal (Dud = 2.5 mm). As a result, when Dud changes
from 0.1 mm to 0.4 mm, the frequency is changed from 3.82 GHz to 3.88 GHz, and when
Dud is bigger than 0.4 mm, the resonance frequency of the sensor generates at 3.94 GHz. In
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summary, the proposed sensor can detect whether a crack is on a metal surface or inside
the metal, but it is difficult to distinguish how deep the crack penetrates accurately.

Finally, Figure 7 shows the effect of the thickness of the Al sheet for the proposed
sensor and the detection capability for the crack length. First, the thickness of the Al sheet
has little effect on the RF sensor because the metal material reflects almost all the waves on
the surface, as shown in Figure 7a. Next, the length of the crack has a different effect on
the RF sensor depending on the direction of the crack. Figure 7b shows that a change in
frequency occurs when the crack is lengthened toward the gap of the ring since the electric
field is strongly formed in the center of the CSRR and near the gap of the ring. Conversely,
little frequency change appears when the crack is lengthened in a direction unrelated to the
ring’s gap, as shown in Figure 7c.

3. Fabrication of a Prototype Sensor and Measurement
3.1. Fabrication and Sensor Measurement Results

We fabricated a prototype SIW-based dual-crack sensor with various Al sheets in
accordance with the proposed design. Figure 8a,b show top and bottom views of the
fabricated sensor, and Figure 8c shows a side view of the fabricated sensor with the Al
sheet. We employed four representative Al sheets with different straight crack widths and
depths (Table 2); more complex shapes were not tested due to the difficulty of fabrication.
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Table 2. Crack sizes on the Al sheets.

Sheet Crack Width (mm) Crack Depth (mm)

1 0.85 0.3/0.5
2 0.95/1.05 0.1
3 0.95/1.05 0.3
4 0.95/1.05 0.5

The Al sheets were the same size as the detector (36 mm × 23 mm width and length)
and were 5 mm thick. Because the cracks were positioned symmetrically, we measured
eight situations using the four samples. The width and depth were changed, while the
distance between the cracks was 10.8 mm, and the crack length was 6.1 mm. The fabricated
cracks are located at the center of the CSRRs.

Figure 8c,d compares the simulation and measured sensor results for the sensor only
and for the sensor with an uncracked aluminum sheet. The S-parameter of the fabricated
sample is measured using a Keysight N5227B (Keysight, Santa Rosa, CA, USA) vector
network analyzer. Figure 8c shows that the measurement results for the sensor without an
Al sheet are consistent with the simulation results. However, although the sensor with an
uncracked Al sheet exhibits a similar trend, there is some inconsistency with the simulation
results, especially in terms of the magnitude of S11. This is ascribed to the presence of
a small air gap between the prototype sensor and the Al sheet (Figure 8e). When we
employed a 0.025 mm air gap between the sensor and Al sheet in the simulation, the results
became consistent.

3.2. Crack Sensing Performance

Figure 9a presents the change in the resonant frequency due to the eight types of
crack for each CSRR. In the absence of any cracks, the resonance frequency of the sensor
is 5.20 GHz for CSRR1 and 4.12 GHz for CSRR2. In the presence of a crack with a width
of 0.85 mm and a depth of 0.5 mm, the frequency increases to 4.32 GHz for CSRR2 and
5.34 GHz for CSRR1. In addition, as the width of the crack increases, the resonance
frequency increases. On the other hand, when a crack has the same width, the resonance
frequency increases as the depth of the crack reduces. Figure 9b,c present a more detailed
plot of the measurement results for each CSRR, and the resonant frequency for each crack
is summarized in Table 3.

Table 3. Proposed sensor performance for each CSRR.

Crack Width × Depth (mm)

0.85 × 0.5 0.85 × 0.3 0.95 × 0.5 1.05 × 0.5 0.95 × 0.3 1.05 × 0.3 0.95 × 0.1 1.05 × 0.1

CSRR1 * 5.34 5.368 5.413 5.426 5.434 5.463 5.469 5.489

CSRR2 * 4.32 4.341 4.403 4.425 4.449 4.462 4.507 4.527

* Unit is GHz.

Figure 9b displays the measured S11 plotted against the CSRR2 resonant frequency for
the different cracks. The resonant frequency ranges from 4.320 GHz for the 0.85 × 0.5 mm
crack to 4.527 GHz for the 1.05 × 0.1 mm 2 crack. This demonstrates that the proposed
sensor can detect cracks above CSRR2 at a resolution of 0.1 mm for the crack width and
0.2 mm for the crack depth. Figure 9c presents the measured S11 plotted against the CSRR1
resonant frequency for the different cracks. The resonant frequency ranges from 5.340 GHz
for the 0.85 × 0.5 mm2 crack to 5.489 GHz for the 1.05 × 0.1 mm2 crack; thus, CSRR1 has
the same sending resolution as CSRR2.

Figure 9d,e show the relationship between the resonant frequency and crack width
and depth. Figure 9d presents the effect of the depth on the sensing of a crack with a fixed
width of 0.95 and 1.05 mm at each CSRR. The average change in the resonant frequency
is 20.7 and 18.3 MHz for CSRR1 and CSRR2, respectively, with a change of 0.1 mm in
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width. The fabricated sensor exhibits a linear reduction in the resonant frequency at both
CSRRs with an increasing crack depth. Figure 6e presents the effect of the width on crack
detection with a fixed depth of 0.3 and 0.5 mm at each CSRR. The average change in the
resonant frequency is 28.0 and 33.7 MHz for CSRR1 and CSRR2, respectively, with a change
of 0.2 mm in depth. The fabricated sensor thus exhibits a linear increase in the resonant
frequency with an increase in the crack width.

Micromachines 2023, 14, x FOR PEER REVIEW 14 of 19 
 

 

 
Figure 9. Measured S-parameters for the proposed dual-crack sensor (a) with various slot widths 
and depths at (b) CSRR 2 and (c) CSRR 1. Measured relationship between the frequency and various 
crack sizes: (d) depth and (e) width. 

Table 3. Proposed sensor performance for each CSRR. 

Crack Width × Depth (mm) 
 0.85 × 0.5 0.85 × 0.3 0.95 × 0.5 1.05 × 0.5 0.95 × 0.3 1.05 × 0.3 0.95 × 0.1 1.05 × 0.1 

CSRR1 * 5.34 5.368 5.413 5.426 5.434 5.463 5.469 5.489 
CSRR2 * 4.32 4.341 4.403 4.425 4.449 4.462 4.507 4.527 

* Unit is GHz. 

Figure 9. Measured S-parameters for the proposed dual-crack sensor (a) with various slot widths
and depths at (b) CSRR 2 and (c) CSRR 1. Measured relationship between the frequency and various
crack sizes: (d) depth and (e) width.



Micromachines 2023, 14, 578 15 of 18

The proposed sensor experiences a decrease in the resonant frequency of 30.8 MHz
when the crack width increases by 0.1 mm and an increase of 19.5 MHz when the crack
depth increases by 0.2 mm. Thus, the proposed crack sensor can detect differences in crack
width down to 0.1 mm and crack depth down to 0.2 mm.

The measured changes in the resonance due to changes in the crack dimension are
generally linear, and the sensor can successfully simultaneously detect two different crack
widths or depths, with each CSRR independent of the other. Cracks can thus be detected in
situations where one crack is located near CSRR1, and another crack is located near CSRR2.
In this respect, the measurement results exhibit the same trend as the simulation results and
electromagnetic theory. The simulation results confirm that the effective capacitance falls
with an increasing crack width; hence, the resonant frequency increases. In contrast, the
effective capacitance increases with increasing crack depth, reducing the resonant frequency.

4. Conclusions

This study proposed a non-destructive multi-crack detection sensor consisting of
differently sized CSRRs in a higher-mode SIW cavity to provide multi-resonant frequen-
cies. Each CSRR on the SIW creates its own resonance, and the higher-mode SIW offers
separated and concentrated E-fields for each CSRR. As a result, the proposed sensor has
a high Q-factor and can simultaneously and independently detect multi-cracks. The re-
flective coefficient of the sensor is affected by the metal surface due to the strong external
E-field from the CSRRs and SIW. When the metal has cracks, the efficient capacitance
changes, which alters the resonant frequency of the nearby CSRR. Additionally, due to the
high Q-factor, the proposed sensor can detect the metal crack at a high resolution. The
effective capacitance of the sensor falls as the crack width increases, raising the resonant
frequency, with the capacitance increasing as the crack depth becomes shallower, thus
reducing the resonant frequency. The relationship between the resonance and the crack
width or depth is almost linear. To demonstrate our proposed design, we designed and
fabricated a dual-crack detection sensor using two independent CSRRs and a TE20-mode
SIW. The fabricated crack sensor distinguishes crack width differences down to 0.1 mm
and crack depth differences to 0.2 mm and is able to two detect two differently sized
cracks independently and simultaneously with significantly lower power consumption and
scanning time. The proposed dual-crack detection sensor also exhibits a higher Q-factor
than previously reported multi-detection sensors.
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