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A B S T R A C T

Images have been repeatedly used as the perfect environment to hide information through the use of
steganography techniques. Whether messages, documents or even other images, the bitmap of an digital
picture provides a place where hidden data can be embedded without human notice. So far, a plethora of
steganography methods can be found in the state-of-the-art literature, together with steganalysis techniques,
devoted to detect the presence of hidden information in files. Recent steganography techniques rely on
Convolutional Neural Networks, trying to embed as information as possible while minimising visual changes in
the image. Following this trend, this article tries to demonstrate that a Generative Adversarial Network (GAN)
can be used to improve the ability of a spatial domain steganalysis method and to insert secret information
with minimal image alteration. Through a training process, the GAN learns how to adapt an image to later
introduce a message using the Least Significant Bit steganography algorithm. The results evidence that the
approach is successful at avoiding detection by a state-of-the-art Deep Learning steganalysis architecture.
1. Introduction

Over the years, numerous methods have been proposed to hide
information and maintain secure communication channels (Amirthara-
jan & Rayappan, 2013). With the invention of computers and digital
resources, a new scenario started where almost any file can be used to
hide information visible to human eyes. Images, audio files, a PDF or
even the control-flow diagram of a programme after editing its binary
code can be used to embed messages or files through steganography
techniques (El-Khalil & Keromytis, 2004). In contrast to cryptogra-
phy, which refers to techniques and algorithms where the message
is changed in order to make it unintelligible for unwanted readers,
steganography is the art of making information invisible to avoid
being detected by a third party (Kadhim, Premaratne, Vial, & Halloran,
2019). To achieve maximum protection of a given information piece,
both techniques can be used in conjunction, embedding an encrypted
messaged into an image through a steganographic algorithm.

In parallel, researchers and companies have also developed ste-
ganalysis techniques (Karampidis, Kavallieratou, & Papadourakis,
2018), aiming to detect the presence of hidden messages within another
document. Over the years, a large number of steganalysis techniques
has been proposed, analysing different elements of the cover medium
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where the hidden message is embedded. However, the adoption of
Deep Learning architectures by the majority of recent approaches for
steganography has led researchers to also leverage these architectures
to build steganalysis tools and to reveal signs of manipulation. These
architectures are trained with the goal of minimising the changes
required in the cover medium to include new hidden information while
minimising the visual change (Kodovsky, Fridrich, & Holub, 2011; Xu,
Wu, & Shi, 2016).

One of the most preferred cover mediums for embedding hid-
den messages are images. A high-resolution picture provides a perfect
place to introduce new information, altering the image without human
notice.

In contrast to other types of files, it is easy to apply modifications
(changing the value of a pixel of one specific channel), which hampers
the application of manipulation detection methods. Thus, images are
widely used in steganography tools. In this scenario, Convolutional
Neural Networks (CNNs) have become the leading approach given their
possibilities to deal with images. However, these models are vulnerable
to adversarial attacks, which weaken their robustness (Finlayson et al.,
2019). In image classification models, this can be done by adding
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small changes to the input image in order to provoke an error in the
classification model.

This work proposes a new Generative Adversarial Network (GAN)
model able to perform adversarial attacks against a steganalysis model
of the state of the art. This GAN model involves a discriminator, a
steganalysis model based on a CNN architecture from the state of the
art literature, and a generator, which is also composed of convolutional
layers and has been designed and presented in this work with the goal
of preparing an image (i.e. it applies a series of small changes into
the input image) for robust steganography and hampering the use of
steganalysis models.

In order to address the definition of a generator architecture capable
of performing such adaptation of the image before the steganographic
message is embedded, this work explores different techniques based on
evolutionary computation to find the most adequate topology. The final
implementation involves a genetic algorithm which evolves a popula-
tion of generators following a multi-objective scheme: one objective
involves finding a generator able to maximise the error rate in the
discriminator while a second objective involves minimising the changes
introduced in the original image.

This work is structured as follows: Section 2 reviews the existing
work; Section 3 describes the designed GAN architecture; Section 4
describes the genetic algorithm implemented for evolving the GAN
architecture; Section 5 describes the experiments performed and the
results; Section 6 provides a discussion of the results and, finally,
Section 7 shows the conclusions extracted and future work.

2. Background and related work

In this section, a review of existing work on image steganography,
steganalysis, generative adversarial networks and deep learning based
approaches is provided.

2.1. Image steganography techniques

Image steganography refers to techniques able of introducing secret
information (the steganographic message) within an image in a way
that it cannot be discovered by a third party. In contrast to cryp-
tography, which performs operations on the information to make it
unreadable, steganography tries to make it invisible. Steganography
methods can be classified into 2 different embedding domains: spatial
and transformation (Cheddad, Condell, Curran, & Mc Kevitt, 2010).

2.1.1. Spatial domain
These algorithms manipulate the image pixels’ bits to embed the

steganographic message. The simplest method is the Least Significant
Bit (LSB) algorithm (Neeta, Snehal, & Jacobs, 2006), which modifies
the less significant bit of a certain number of pixels of the image in
order to embed the message. The first LSB based methods were called
LSB replacement (LSB-r) and operated by replacing the less significant
bit of subset of the image pixels with the steganographic message. Other
methods are LSB matching (LSB-m), which modify certain pixels by
increasing or decreasing the value of the LSB in order to make the bits
in the image and the steganographic message match.

Methods based on the Pixel Value Difference (PVD) have also strong
relevance. These methods were proposed for the first time by Wu and
Tsai (2003) and use an analysis of the difference between adjacent
pixels to decide how much information can be embedded in each pixel.
PVD based methods allows higher payload capacities but are easier to
detect with histogram analysis approaches. Variations of these methods
try to minimise this issue, combining LSB and PVD (Wu, Wu, Tsai,
& Hwang, 2005), or applying PVD to different image blocks (Yang,
Weng, Tso, & Wang, 2011), among others. In addition to these methods,
another important approach is Exploit Modification Direction (EMD),
presented for the first time by Zhang and Wang (2006). This ap-
proach sacrifices payload capacity to obtain better image fidelity. This
work focuses on spatial domain methods due to its strong presence in
2

state-of-the-art literature related to steganography techniques.
2.1.2. Frequency or transformation domain
Frequency domain methods are based on the idea of transforming

the image to the frequency domain, to embed the secret message and
to transform the image again to the spatial domain. These methods
are robust and hard to be detected. In the literature, it is possible to
find methods based on different transformations, such as the Discrete
Cosine Transformation (DCT) (Watson et al., 1994), Discrete Wavelet
Transformation (DWT) (Stanković & Falkowski, 2003), and those based
on the Discrete Fourier Transformation (DFT) (Paulson, 2006).

2.2. Steganography evaluation methods

The previous section summarises the two main categories of
steganography methods. Within these two main categories, there are
varied algorithms with different pros and cons. In order to evaluate
the quality of an steganographic method, different methods have been
proposed in the literature. According to the classification raised by Hus-
sain, Wahab, Idris, Ho, and Jung (2018), the following categories can
be defined:

• Visual methods: There are different metrics to asses if the im-
age quality is not reduced once the steganographic message is
introduced. The simplest one involves computing the Euclidean
Distance between every pixel of both images. Other metrics ex-
plored in the state-of-the-art literature are Mean Quadratic Error,
the Image Quality Index, Structural Similarity Image Quality
Assessment, Image Fidelity or the Mean Difference (see Table 1).

• Payload capacity: measures the size of the message that can be
embedded. It is computed as shown in Eq. (1).

𝑃𝑎𝑦𝑙𝑜𝑎𝑑𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 =
𝑁𝑜.𝑜𝑓𝐸𝑚𝑏𝑒𝑑𝑑𝑒𝑑𝐵𝑖𝑡𝑠

𝐻𝑒𝑖𝑔ℎ ×𝑊 𝑖𝑑𝑡ℎ
(1)

• Security: measures the ability to avoid a detection attack, consist-
ing on extracting information from the image that helps to infer if
it contains hidden information. These include statistical features
based attacks (Dumitrescu, Wu, & Wang, 2002; Lee, Westfeld,
& Lee, 2007), and non-structural based attacks (Pevny, Bas, &
Fridrich, 2010).

• Robustness: this is an evaluation method specially important in
transformation-based domain methods. It measures the method’s
capacity to keep the message unaffected after some processing
techniques are applied to the image, such as noise addition,
rotation, etc.

• Computational complexity: measures the execution time and the
number of operations to embed and extract the steganographic
message. It is preferable to choose methods requiring low execu-
tion time.

2.3. Image steganalysis

Steganalysis refers to those methods dedicated to detect the pres-
ence of steganographic messages inside an image. There are many
different steganalysis methods, and many different taxonomies. One
of the most extended taxonomies was presented by Karampidis et al.
(2018), which distinguishes between visual, statistical, non structural,
spread spectrum, transformation domain methods and blind or universal
methods. The following describes each of these categories:

2.3.1. Visual steganalysis
This is the simplest approach, and consists on detecting the stegano-

graphic message relying only on the human eye. Any steganographic
method whose embedded messages are detected using this method can
considered useless. As explained in previous section, to measure the
visual quality of stego images there exist different metrics available
(Table 1).
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Table 1
Metrics for the visual analysis of the images. In the table, H is the image height, W is
the image width, X and Y are the pixel values, X′ and Y′ are the pixels mean and N
is the number of measures.

Metric Equation

Mean quadratic error 𝑀𝑆𝐸(𝑋, 𝑌 ) = 1
𝐻×𝑊

∑𝐻×𝑊
𝑖=1 (𝑋𝑖 − 𝑌𝑖)2

Image quality
Index (Index Q)
(Wang & Bovik, 2002)

𝑄 = 4×(𝜃𝑋𝑌 )×𝑋′′ × 𝑌 ′′

((𝜃𝑋 )2+(𝜃𝑌 )2 )[(𝑋′′ )2+(𝑌 ′′ )2 ]

𝑋′′ = 1
𝑁

∑𝑁
𝐽=1𝑋𝐽

𝑌 ′′ = 1
𝑁

∑𝑁
𝐽=1𝑌𝐽

(𝜃𝑋 )2 =
1

𝑁−1

∑𝑁
𝐽=1(𝑋𝐽 −𝑋′′)2

(𝜃𝑌 )2 =
1

𝑁−1

∑𝑁
𝐽=1(𝑌𝐽 − 𝑌 ′′)2

𝜃𝑋𝑌 = 1
𝑁−1

∑𝑁
𝐽=1(𝑋𝐽 −𝑋′′)(𝑌𝐽 − 𝑌 ′′)

Structural similarity
Image quality
Assessment (Wang, Bovik, Sheikh, &
Simoncelli, 2004)

𝑆𝑆𝐼𝑀(𝑋, 𝑌 ) = ( (2×𝑋′ × 𝑌 ′+𝐾1 )(2×𝑀𝑋𝑌 +𝐾2 )
(𝑀2

𝑋+𝑀2
𝑌 +𝐾2 )×(𝑋′ )2+(𝑌 ′ )2+𝐾1

)

X′ e Y′ are the pixels mean, 𝑀𝑋 and 𝑀𝑌 are
the variance arrays; 𝑀𝑋𝑌 are the co-variance
arrays and 𝐾1 y 𝐾2 are constants

Image fidelity 𝐹𝐼 = 1 − (
∑𝐻×𝑊

𝑖=1 (𝑋𝑖×𝑌𝑖 )2
∑𝐻×𝑊

𝑖=1 𝑋2
𝑖

)

Mean difference (Kumar & Rattan,
2012)

𝐷𝑀(𝑋, 𝑌 ) = 1
𝐻×𝑊

∑𝐻×𝑊
𝑖=1 (𝑋𝑖 − 𝑌𝑖)

2.3.2. Statistical steganalysis
This category refers to a wide number of different methods, where

the main idea is to inspect some statistical features extracted from
the suspicious image. These methods are mainly based on histogram
analysis (Ker, 2005), which seeks for the difference in the histogram
between cover and stego images; other approaches are based on chi-
square attacks (Westfeld & Pfitzmann, 1999), initially developed to
detect LSB steganography.

2.3.3. Non structural steganalysis
These methods extract features from the image and use them to

feed a machine learning classifier, i.e. a support vector machine (SVM).
The most representative model from this family is the Pixel Adjacency
Matrix (SPAM) (Zhang, Ping, Xu, & Wang, 2014) and the Spatial Rich
Model (SRM) (Fridrich & Kodovsky, 2012).

2.3.4. Spread spectrum and transformation domains
These two categories seek to find messages embedded applying

methods which modify the image spreading it as a signal to introduce
small variations. Methods propose using this type of method allow to
retrieve hidden data using a key (Marvel, Boncelet, & Retter, 1999).

2.3.5. Universal methods
These algorithms are designed to find stenographic messages em-

bedded using an unknown steganographic method, making them es-
pecially interesting. These methods are usually non structural, and
nvolve machine learning techniques to classify between cover and
tego images. Some works employ other techniques such as dimensional
eduction (Lu, Liu, & Luo, 2014) or coefficients correlation (Zong, Liu,

Luo, 2012). Nowadays, the most employed methods in (universal)
teganalysis are based on deep learning, specially those based on
onvolutional neural networks (CNN).

.4. Convolutional neural networks

Convolutional Neural Networks (CNN) are a specific type of neural
etwork based on convolutional operations. They were first presented
n 1990 by LeCun et al. (1990). Two decades later, on 2012, Krizhevsky,
utskever, and Hinton (2012) presented the model AlexNet, which out-
erforms any other model in all categories of the imagenet competition.
ts success was not only related to its architecture but to 2 factors: the
3

data pre-processing that was performed before the training process to
increase the training set size. The second one is the training strategy,
which consists on splitting the training process on 2 different flows
and executing each one in a different GPU. Furthermore, CNNs can
be stacked through an ensemble approach, improving the results of
isolated models (Huertas-Tato, Martín, Fierrez, & Camacho, 2022).

CNNs have become the most widely used algorithm for image
analysis tasks, such as image classification and image segmentation,
among others. Image steganalysis is not an exception and most of the
actual image steganalysis methods are based on CNNs. In 2015, Qian,
Dong, Wang, and Tan (2015) presented the first model based on Deep
Learning, achieving as good results as other state of the art models
relying on classical methods, such as Spatial Rich Model (SRM) (Fridrich
& Kodovsky, 2012). In 2017, Wu, Zhong, and Liu (2019) presented a
new type of normalisation layer called shared normalisation specifically
designed for steganalysis models. In the same year, Ye, Ni, and Yi
(2017) presented the yenet model, with a new activation function called
Truncated Linear Unit (TLU). This is the steganalysis model that was
chosen for this research due to its good results in several benchmark
datasets of the state-of-the-art literature, including BOSSBase. Other
steganalysis methods based on CNNs are the one presented by Ke, Ming,
and Daxing (2018), that employs a multi-column CNN (MCCNN) to
allow different input size and resolution, or the one presented by Zhang,
Zhu, Liu and Liu (2019), which uses small filters and a special type of
pooling (He, Zhang, Ren, & Sun, 2015).

2.5. GANs

Generative Adversarial Networks (GANs) were presented by Good-
fellow et al. (2020). They are composed of 2 different networks, a
generator which generates samples from a noise vector and a discrimina-
tor which is a classification model. This type of model is based on game
theory where both networks compete with each other. The generator
tries to fool the discriminator while this one try to discern fake samples
(generated by the generator) from real ones. In 2015, Radford, Metz,
and Chintala (2015) presented a model called Deep Convolutional Gen-
erative Adversarial Network (DCGAN), which replaces dense layers with
transpose convolutional layers to make a model capable of creating
realistic images.

After that, several variants of GAN models have been proposed.
These variants are valid for standard GANS and for convolutional GANs,
and among them it is possible to find the Conditional GAN (CGAN),
presented by Mirza & Osindero (Mirza & Osindero, 2014), which takes
as input a batch of noise and a label to generate a sample from the
desired class. Other variant was presented by Chen et al. (2016). It
is called InfoGAN and it employs 2 discriminators to improve CGAN
results. Other improvement of CGAN models is the one called Auxiliary
Classifier GAN (ACGAN), that also gives the probability of the sample
of belonging to each class but uses a single discriminator network.

In steganography and steganalysis there are some works that employ
GANs. The model SSGAN, presented by Shi, Dong, Wang, Qian, and
Zhang (2017), was one of the first models of this kind and it creates
cover images using the generator and evaluates them using the discrimi-
nator. Tang, Tan, Li, and Huang (2017) designed the ASDL-GAN, which
apply distortions to cover images to, once the message is embedded, its
undetectability is maximised.

In 2018, Yang, Liu, Kang, Wong, and Shi (2018) used a GAN to find
the pixels where is more secure to hide the message. Wang, Gao, Wang,
Qu, and Li (2018) designed the model SSTeGAN which can generate
a stego image using a steganographic message as seed. Zhang, Dong
and Liu (2019) designed the ISGAN that can minimise the divergence
between cover and stego images, and Zhang, Cuesta-Infante, Xu and
Veeramachaneni (2019) presented the StegoGAN, which can embed a
message in an image and recover it. Naito and Zhao (2019) propose the
use of GANs to maximise the naturalness of the cover medium where

the message is embedded.
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Volkhonskiy, Nazarov, and Burnaev (2020) focus on deceiving a
steganography technique through the modification of the cover image.
The authors use the term container for this purpose. Similarly, other
researchers have proposed a steganography without embedding method
where the message is embedded through a noise vector and a genera-
tor (Hu, Wang, Jiang, Zheng, & Li, 2018). AdvGAN is another approach
where the GAN is used to learn a steganography scheme involving a
steganographic encoder and a steganographic decoder (Li, Fan, & Liu,
2021). Finally, a coverless method which proposes a GAN to encode
messages into the cover image was proposed by Qin et al. (2020). In
contrast to all these works, our research implements an evolutionary
scheme to increase diversity of the population of generators and pre-
pares the cover image to embed the message, minimising the possibility
of being detected.

2.5.1. Evolving deep learning models
In the state-of-the-art literature, several authors have proposed var-

ious methods to automatically decide the most appropriate topology
and hyperparameters of deep learning architectures. One possibility
is to use evolutionary computation techniques, such as genetic al-
gorithms. There are several algorithms of this kind that have been
used to create and/or optimise different neural networks. The first
approach of this kind was presented by Yao (1999). After that, evo-
lutionary computation techniques have been employed to design dif-
ferent aspects of neural networks, such as the number of neurons at
each layer (Leung, Lam, Ling, & Tam, 2003) or the number of layers
and the number of neurons per layer (Gascón-Moreno, Salcedo-Sanz,
Saavedra-Moreno, Carro-Calvo, & Portilla-Figueras, 2013), among oth-
ers. Evolutionary computation methods have been also used to train the
network (Abdalla, 2014).

2.5.2. Evolutionary computation in steganography and steganalysis
In steganography and steganalysis, only a few works use evolu-

tionary computation techniques. Tseng, Chan, Ho, and Chu (2008)
proposed a genetic algorithm to find the most adequate pixels to embed
the steganography message, and Ghasemi, Shanbehzadeh, and Fassihi
(2010) proposed a similar method but dividing the images in pieces of
8 × 8 pixels. In 2014, Kanan and Nazeri (2014a) proposed a genetic
algorithm that looks for the best direction to embed the message
and that achieved a high number of optima solutions. There are also
methods for the transformation domain, such as the one proposed in
2006 by Fard, Akbarzadeh-T, and Varasteh-A (2006), which embeds
the message using the DWT, the one presented in 2017 by Miri and
Faez (2017) which modifies the coefficients while minimising visual
changes or a method based on integer wavelet transform using genetic
algorithm (Sabeti, Sobhani, & Hasheminejad, 2022).

Most of the methods based on evolutionary computation techniques
are used as feature extractors previous to a supervised classification
model, such as the work of Geetha and Kamaraj (2010) and Ramezani
and Ghaemmaghami (2010). Other work, presented by Visavalia and
Ganatra (2014), uses a genetic algorithm to create a set of decision
rules to classify the images between cover and stego.

3. A GAN architecture for steganography

A Generative Adversarial Network integrates two components called
generator and discriminator. The generator is trained with the objective
of creating new examples to deceive the discriminator. Simultaneously,
the discriminator learns how to not being deceived by the generator,
that is to say, a classification task to distinguish between real and fake
inputs. In this research, a GAN architecture to improve steganography
is proposed, where the learning process pursues a set of modifications
that once applied to the bitmap lead to a more robust stenographic
method. In other words, through a series of specific small modifications
in the bitmap, the GAN prepares an input image to later introduce
a steganographic message which will deceive the steganalysis model,
4

represented by the discriminator. In addition, the image should be
modified as less as possible, being indistinguishable to the naked eye.

In this section it is described the architecture of the generator,
the discriminator, the training strategy and the module to embed the
steganographic message into the generated images.

3.1. Generator

The generator consists of a convolutional neural network (CNN)
which takes a fixed-size image as input and returns an image with the
same dimensions. This network receives a cover image as input (i.e, an
image without a steganographic message). To add some random factor
to the image modification, another channel composed of Gaussian noise
with mean 0 and variance 1 is included. The CNN input therefore will
be composed of 2 channels and will return 1 channel representing an
imagen preserving the same dimensions as the input image.

Given that the goal is to return an image as similar as possible to
the one used as input, an scheme that enlarges and reduces the size of
the input image is used. First the input image dimensions are increased
using transpose convolutions. Then, once the image has been enlarged,
a mirror architecture is used to reduce it to its original size. This avoids
data loss while it requires more computational resources.

As one can see in Fig. 1 the proposed architecture has 5 transpose
convolutional layers which increase the input size from 256 × 256 to
528 × 528. In addition, the number of filters increase from 2 to 16 in
the first layer and to 32 in the third layer. After this, there are six convo-
lutional layers which decrease the image size to 256 × 256, its original
size. Leaky Relu is used as activation function in all layers except in
the last one, which use tanh activation function, as recommended in
the literature (Radford et al., 2015). Finally, while layers 6 and 7 have
kernel size 5, the others have kernel size 3.

3.2. Discriminator

For the discriminator, a steganalysis model based on a CNN archi-
tecture from the state of the art was selected. The chosen model is
yenet (Ye et al., 2017). This CNN model will be pre-trained using the
same dataset that in all the experiments performed in this work. This
will allow to extend this work to other steganalysis models.

3.3. Steganographic module

Once the generator has modified the input image, the stegano-
graphic message can be embedded. For that purpose, it is necessary to
integrate a new module between the generator and the discriminator
running in the same GPU computing environment. The GAN model
was implemented using Tensorflow, so the module will implement the
steganographic algorithm using Tensors.

3.4. Training strategy

The GAN architecture together with the training process flow is
displayed in Fig. 3. It must be noted that the generator is trained
pursuing 2 different objectives. The first one is to keep the modified
image as similar to the original image as possible. To that end, cosine
similarity measure is used as loss value. The cosine similarity was chosen
since, in contrast to other metrics, its provides a reliable metric based
on orientations, and that can be safely applied where magnitudes are
not an issue (Xia, Zhang, & Li, 2015). In the scenario proposed in this
research, the comparison is performed between images where features
(i.e. a pixel) is defined by a bounded range of values. Besides, cosine
similarity has already been successfully integrated in GAN architectures
due to its flexibility and efficiency (Zhan et al., 2022), but also in other
tasks such as contrastive learning (Chen et al., 2022). This function is
shown in Eq. (2). The original image is considered as the label while the
modified image is used as the predicted class. The loss value consists of
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Fig. 1. Diagram showing the layers composing the generator and discriminator modules of the Generative Adversarial Network designed.
Fig. 2. General overview of the GAN modules and training process.
a matrix with the same dimensions that the output (and input) matrix.
This loss propagates through the generator updating the weights.

𝑆𝐼𝑀(𝑋, 𝑌 ) =
⟨𝑋, 𝑌 ⟩

‖𝑋‖ ∗ ‖𝑌 ‖
(2)

The second stage consists on training the generator to deceive the
discriminator. Starting from the modified image, the first step involves
embedding the steganographic message using the module explained
above. Our goal is to generate images that, once the steganographic
message is embedded, they are classified by the discriminator as cover.
Once this classification is performed by the discriminator, the loss
is computed. Then both networks, generator and discriminator, are
concatenated and the loss propagates through the combined network
as a standard CNN using the back-propagation algorithm and updating
5

the network weights. However, discriminator weights are frozen so only
the generator weights are updated. (see Fig. 2).

4. Evolving GAN architectures for steganography

The second phase of this work consists on designing an algorithm
based on evolutionary computation to find the best GAN architecture.
There are some articles in the literature which take a similar approach,
such as Evodeep (Martín, Fuentes-Hurtado, Naranjo, & Camacho, 2017;
Martín, Lara-Cabrera, Fuentes-Hurtado, Naranjo, & Camacho, 2018),
which implements a genetic algorithm to find the best architecture and
hyper-parameters for CNNs. It evolves a population of networks modi-
fying the number and hyper-parameter of layers in each individual. In
this research, the designed method is a genetic algorithm which evolves
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Fig. 3. Diagram describing the GAN model. The model steps are indicated by the
umbers in the image. Images goes through 2 different ways: the path 1-2-6-7, which
pdates the generator using the cosine similarity loss; and the path 1-2-3-4-5-8, which
pdates the generator based on the discriminator loss. Steps 1–2 are shared and only
erformed once. The steps are: (1) the generator input is a 2 channel image consisting
f a cover image and Gaussian noise, (2) the generator modifies the input image, (3)
he steganographic module that embeds the steganographic message and label them as
over, (4) the stego images labelled as cover are classified by the discriminator, (5) the
iscriminator loss is computed using Adam optimiser, (6) the similarity loss is computed
sing the cosine similarity function between the modified and original images, (7) the
enerator weights are updated using the similarity loss, (8) the generator weights are
pdated using the discriminator loss.

population of generators. Coral Reef-based optimisation has also be
sed to optimise the parameters of CNNs (Martín, Lara-Cabrera et al.,
020; Martín, Vargas, Gutiérrez, Camacho and Hervás-Martínez, 2020).

In this section, the different components and operators of the pro-
osed genetic algorithm are proposed, defining the population cod-
fication, the crossover and mutation operators and the evaluation
trategy.

.1. Codification

The codification defines the architecture that can be generated by
he algorithm. Its main goal is to find the architectures that best fit
he problem (modify images to deceive the discriminator keeping the
imilarity to the original one as high as possible). However, the design
f the population codification must be accomplished trying to keep
he computational resources required as low as possible due to the
omputational complexity of the algorithm.
6

i

The codification will define CNNs with a similar structure to the
generator proposed in the previous section. As shown in Fig. 4, the
individuals are composed by 3 different groups. The first one consists
on a group of transpose convolutional layers which enlarge the size of
the image, then a group of convolutional layers that keep the same di-
mensions at the input and the output (called intermediate convolutions
from now on), and finally a group of convolutional layers that decrease
its size to its original size (named final convolutions in this work).

The generation of new individuals is guided by a very simple
state machine (see Fig. 5). It is composed of only 2 states, the first
one corresponds to the group of transpose convolutional layers and
the second one to the intermediate group of convolutions. The final
convolutional layers will be computed as a mirror of the transpose
convolutional layers group, considering both the number of layers and
their hyper-parameters.

Each state has a set of hyper-parameters that also evolve during
the algorithm execution. Each one of the transpose convolutional layers
(and the final convolutional layers) has the following hyper-parameters:
kernel size, which can be 3 or 5; stride, which can be 1 or 2; the activation
function, which can be reLU or Leaky ReLU ; number of filters, which
ndicates the factor used to increase the number of filters by; and batch
ormalisation, which indicates if there is a batch normalisation layer
fter it. On the other side, the intermediate convolutional layers have
he same hyper-parameters except for the stride which is always 1. The
yper-parameters of the final convolutional layers are the same that
heir corresponding mirror transpose convolutional layer.

In addition, the hyper-parameters are limited to prevent the indi-
iduals to growth in excess. The stride can only be 2 in one of the
ranspose convolutional layers, setting it to 1 in all the layers posterior
o the first one with stride 2. This will prevent the individuals to achieve
oo high dimensions. The number of filters can be 1, 2 or 3, and the
umber of filters of the layer is computed multiplying the previous
ayer number of filters by this factor. However, it cannot exceed a
ertain value defined as a parameter of the genetic algorithm. All the
ayers that would exceed this limit will be set to it. Finally, the last layer
f the network always has a single filter and its activation function is
he tanh function, as its recommended in the literature (Radford et al.,
015).

.2. Operators

The genetic algorithm has 2 operators: the crossover operator,
hich generates 2 descendants from 2 parents; and the mutation op-
rator, which can modify the generated descendants.

.2.1. Crossover
The crossover operator combines 2 individuals to generate 2 new

escendants. It is composed of 2 different stages. The first one is the
xternal crossover, which performs a 1-point crossover between the
ayers of both parents. First, the number of layers of the new descendant
s selected from the range of possible values (set as genetic algorithm
arameter). Then the first point is randomly selected from the first
arent from those who allow to generate valid individuals, i.e, those
ho allow to generate an individual from the selected number of layers.
hen the cross point in the second parent is generated from those who
enerate validate individuals, i.e, from those which keep the selected
umber of layers and from the same group than in the first parent
transpose convolution or intermediate convolution).

The second stage is the internal crossover. It performs an uniform
rossover between the hyper-parameters of all layers. The individ-
al codification for which the final convolutions are computed from
he group of transpose convolutions allow to generate always valid

ndividuals.
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Fig. 5. State machine that rules the individuals generation. It is composed by 2 states:
transpose convolutional layers (T) and intermediate convolutional layers (C); plus the
mirror layers (𝐶𝑡).

.2.2. Mutation
The mutation operator is performed after crossover and it is also

omposed of 2 stages. In the first one there is a probability called new
layer probability, which is set as parameter of the genetic algorithm, of
adding a new layer in a random location of the network. The location
where the layer is added is selected from those which do not increase
the individual size above the layer limit. It must be considered that if
a transpose convolutional layer is added, then a convolutional layer is
added in the group of final convolutions (the mirror layer).

The second stage consists on a random mutation of each one of the
hyper-parameters of each one of the layers of the network. The muta-
tion probability is set as a hyper-parameter of the genetic algorithm,
and it is called from now on mutation probability.

.3. Evaluation

The last component of the genetic algorithm is the individual eval-
ation. To evaluate an individual, a GAN where the generators corre-
ponds to its codification must be implemented. Then, the GAN model
s trained during a predefined number of epochs, set as a parameter of
he genetic algorithm. The GAN is trained using the training set, and
valuated with the validation set. The discriminator loss and similarity
oss obtained with the validation set are used as fitness value of the
ndividual, which allow to select the best individuals between the old
nd new population.

.4. Selection

The selection algorithm must choose between the individuals of the
urrent population and their descendants. According to its criterion, a
umber of individuals equal to the population size must be selected.
he selection algorithm used in this work is called NSGA-II or Non
7

ominated sorting genetic algorithm (Deb, Pratap, Agarwal, & Meyarivan,
002). This algorithm selects the individuals of the Pareto Front and
hoose between them using a crowding function, i.e, it penalises closer
olutions. If there are not enough solutions in this first selection, the
rocess is repeated with elements that do not belong to the First Pareto
ront.

. Experiments

A set of experiments was run in order to assess the performance of
he method proposed. With this purpose, 3 different experiments have
een carried out using a well known steganography dataset. The first
ne measures the manually designed GAN model capacity to generate
mages which can deceive the discriminator. The second experiment
s focused on the analysis of the quality of the genetic algorithm and
ompares the solutions obtained with the GAN designed in the previous
xperiment. Finally, in the third experiment, the discriminator trained
gain with the images generated with the genetic GAN model.

.1. Dataset

In this work the BOSSBase v1.0.1 dataset (Bas, Filler, & Pevnỳ, 2011)
was used. It is composed of 10 000 grey and white images, i.e, each
one is formed by a single canal with pixel values between 0 and 255
and image size of 256 × 256 pixels. These images represent the cover
images. Then, the LSBr algorithm of the library Aletheia was used to
create a stego version for each of the cover images, generating a dataset
of 10 000 cover and 10 000 stego images. (see Fig. 6).

Once the dataset has been generated, it was divided into random
training, validation and test sets. Each of these sets is formed by a set
of cover images and their related stego images. The training, validation
and testing set include 50%, 10% and 40% of the images respectively.

5.2. Experiment 1: stand-alone GAN

In order to evaluate the stand-alone GAN model, several tests were
performed with the architecture shown in Section 3. The discriminator
has been pre-trained using the BOSSBasev1.0.1 dataset, and the results
chieved can be seen in Table 2. The training process was executed for
0 epochs.

The pre-trained YeNet model is used as discriminator in the GAN
odel, which is trained during another 40 epochs, using an Adam
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Fig. 6. Partitions created in the BOSSBase v1.0.1 dataset. For each of the partitions, training, validation and test, the LSBr algorithm is used to create the stego version of each
image. Thus each partition contains a set of cover images together with their respective stego version.
Table 2
Accuracy results of the discriminator (YeNet model Ye et al. (2017)) pre-training.

Accuracy True positive rate True negative rate

Training set 0.967 0.962 0.972
Validation set 0.932 0.936 0.928
Test set 0.918 0.916 0.92

optimiser with learning rate 0.0002 and beta1 0.9. For every epoch
2 measures are obtained, the similitude mean between the generated
images and the training set, and the discriminator loss, which is the loss
obtained with the discriminator using only the fake or generated images
with the generator and with a steganaographic message embedded.

These 2 measures will be used to train the model in a multi-objective
scenario, including to maximise similitude and the miss-classifications
generated by the discriminator of fake images. The goal of this approach
is to find the best weights for the generator with the goal of producing
miss-classifications in the steganalysis model (discriminator). For this
purpose and to choose the best result, the mean similitude between
the generated images and the original ones and the loss value obtained
when classifying fake stego images with the discriminator. At the end
of each epoch, these 2 measures are computed using the validation set
to guide the training process.

At the end of the training, both metrics are calculated for all the
models generated, which form a Pareto Front. In Table 3, one can see
the 10 solutions that belong to this Pareto Front, i.e, those which are
not improved in both measures by any other solution. The discriminator
loss achieves its best results in the fourth epoch, minimising loss and
accuracy. However, the similitude loss decreases in later training epochs.
Both measures of every solution keep low values during the complete
training process, being the miss-classifications of fake images higher
than 99% in most of the cases. The similitude loss, although it decrease
in the last epochs, it keeps acceptable values during the whole training.

The chosen model is the one trained during 35 epochs, which is the
one showing the best balance the similitude loss and the discriminator
loss. In Table 4 it is possible to observe the results of this model in the
test set.
8

Table 3
Solutions obtained with the stand-alone GAN located at the Pareto Front. Values
indicate performance in the validation set.

Accuracy Discriminator loss Similitude loss Epoch

1 0.007398 0.00548 0.01 4
2 0.002 0.0138 0.003 13
3 0.002 0.0137 0.0037 19
4 0.001 0.0056 0.00417 26
5 0.003 0.0139 0.00186 29
6 0.007 0.024 0.0018 31
7 0.007 0.0252 0.00171 32
8 0.008 0.0296 0.00169 35
9 0.011 0.0344 0.0015 36
10 0.009 0.0298 0.00166 38

Table 4
Final GAN evaluated using the test set.

Accuracy Discriminator loss Similitude loss

0.008 0.03075876 0.00167084

The similitude loss is very close to the best result of the Pareto
Front, and the miss-classifications are higher than 99% with stego fake
images. Thus, it is possible to confirm that the final model achieves the
desired goals. As shown in Fig. 7, the visual difference between the orig-
inal image and the same one after being modified are indistinguishable.
(see Fig. 8).

5.3. Experiment 2: Evolutionary GAN

As explained in Section 4, the goal of the genetic GAN is to find
the best generator architecture and hyper-parameters. The genetic al-
gorithm will be executed 5 times to assess its performance. The training
set has been employed to train each individual of the population, and
the validation set has been used to evaluate each individual and obtain
the fitness values (similitude loss and discriminator loss).

The parameters used for the algorithm execution are the following:
population size (𝜇), which represents the number of generators that
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Fig. 7. Original and modified stego images. (Left) Original image with secret message
embedded. (Right) Same image modified with the GAN’s generator.

compose the population at each generation; lambda (𝜆), which is the
number of crossovers (and mutations) performed at each epoch, so at
each generation 2 ⋅ 𝜆 individuals are generated; crossover probability,
mutation probability and new layer probability, which regulates the de-
scendant generation as explained in Section 4.2; max depth, which is
the maximum number of kernels that any generator layer can possess;
and epochs per individual, which is the number of epochs during each
generator is evaluated. Each execution of the genetic algorithm last 10
generations. The specific values are described in Table 5.

To evaluate the individuals performance, both the discriminator
loss and the similitude between original and modified images were
considered, but also the execution time. The genetic algorithm’s exe-
cution time is the highest disadvantage it has, so smaller generators
are favoured.

Table 6 shows the results in the test set of the best individual of each
one of the 5 executions. The results are comparable to those obtained
with the manually designed generator, but they are more efficient,
given that they were train over 2 epochs.

On the other side, Fig. 11 displays the evolution in terms of simil-
itude loss and accuracy of the best individual at each generation. As
can be observed, it is only required 3 generations to find a generator
9

Table 5
Hyper-parameters employed during the genetic algorithm execution.

Hyperparameter Value Hyperparameter Value

Generations 10 Max depth 32
𝜇 10 𝜆 5
New layer probability 0.3 Crossover probability 0.5
Mutation probability 0.25 Epochs per individual 2

Table 6
Performance of the best individual obtained in each execution of the genetic
algorithm.

Execution Stego
accuracy

Discriminator
loss

Similitude Training
time (s)

1 0.0005 0.0084 0.0032 191
2 0.01 0.022 0.004 191
3 0.0001 0.00867 0.0032 123
4 0.00075 0.0101 0.0032 78
5 0.00275 0.0106 0.0032 68

with a similitude and accuracy close to the minimum. In addition, the
similitude loss presents small variations during the whole training.

Finally, the best individual of each execution has been trained under
the same conditions, described in Section 5.2, i.e, during 40 epochs
using only the training set. Results are provided in Figs. 9 and 10.

The similitude loss has the same distribution than the generator de-
signed in Experiment 1. The main difference lies in the evolution of loss
in the discriminator which, although in 3 of the five executions achieves
quasi-optimal values in the first 5 epochs, there are 2 executions (3 and
5) that take around 15 epochs. This is due to the weights initialisation,
a fact highly correlated to the time required to find the best possible
solutions.

5.4. Experiment 3: Re-training discriminator

The last experiment performed in this work consists on retraining
the discriminator with the results obtained with the generator. The
goal is to take advantage of the fact that the best individuals achieve
high quality results in a small number of epochs, and that different
generators, with similar performance measures, modify images in a
different way each.

For this reason, a new training strategy was proposed, considering
2 new parameters called 𝜃0 and 𝜃1, which control the quality of each
new generated individual. At the end of each individual evaluation, its
performance is measured comparing the accuracy of the discriminator
using the generated stego images (from the validation set) with the
𝜃0 value, which has been set to 0.5. Thus, if more than 50% of the
fake stego images are miss-classified by the discriminator, then the
individual is qualified to re-train the discriminator. The 𝜃 parameter
1
Fig. 8. Difference between the original image and the image including stenography. Lighter pixels show where changes have been made. As can be seen, the differences are
minimal, practically impossible for the human eye to distinguish.
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Fig. 9. Evaluation of the similitude loss of the best individual across executions.
Fig. 10. Evaluation of the Fake Stego Images accuracy using the discriminator for the best individual across executions.
as a similar goal, but focused on the similarity loss. If both conditions
re met, a new fake stego image is generated and stored for each cover
ample in the training set.

Finally, at the end of each generation, the discriminator is retrained
uring a fixed number of epochs (also set as a hyper-parameter).
his hyper-parameter was set to 5. For the training, both the original
raining set and the images generated during the individuals evaluation
ere evaluated. The performance of the re-trained discriminator is
easured using the test set and the same metrics than in previous

xperiments. The population of each generation is evaluated using the
iscriminator retrained in the previous one.

Table 7 shows the results of the ten executions of the genetic
lgorithm retraining the discriminator and the results of the pre-trained
eNet model. In all the executions the final discriminator classifies
10
the original test set better than the discriminator at the experiment
beginning.

Finally, considering the results during the execution (Fig. 12), they
are very unstable. This fact evidences how the algorithm pursues a
balance between cover and stego accuracy, which causes high drops
at some points. This is due to the over-fitting of one class, causing a
high number of miss-classifications in the other.

6. Discussion

The previous experiments have demonstrated how the GAN archi-
tecture proposed in this work allows to deceive a steganalysis model.
This involves a population of generators that evolve aiming to maximise
the error rate of a steganalysis model, implemented by the discrim-
inator, while minimising the number of changes required to embed
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Fig. 11. The top figure displays the best Similitude Loss value at the end of each generation. The bottom plot shows the best Discriminator Loss value at the end of each generation.

Fig. 12. Performance measurement using the test set of the discriminator during the genetic algorithm execution.
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Table 7
Best results for the re-trained discriminator measured using the test set.

Execution Global accuracy Cover accuracy Stego accuracy

Pre-Trained YeNet 0.918 0.92 0.916

1 0.923750 0.89675 0.95075
2 0.928750 0.94700 0.91050
3 0.931375 0.91350 0.94925
4 0.928375 0.93875 0.91800
5 0.929625 0.91750 0.94175
6 0.925125 0.91675 0.93350
7 0.931125 0.90275 0.95950
8 0.930875 0.93050 0.93125
9 0.923250 0.93725 0.90925
10 0.925000 0.93450 0.91550

the secret message into the cover image. The evaluation of the GAN
architecture in Experiment 1 has evidenced that this architecture is
able to successfully reduce the ability of the discriminator to distinguish
between cover and stego images, decreasing the accuracy from 90% to
10%.

The second experiment showed how a genetic algorithm can be
used to generate valid composition of layers to build a generator.
With a small number of epochs, the algorithm is able to produce
individuals which define a sequence of layers that allows to apply a
series of changes to prepare the image to later embed a messages.
The third experiment has demonstrated that the combination of the
stand-alone GAN with the genetic algorithm can be used to success-
fully deceive the discriminator while introducing a high number of
variations, which hampers the capacity of the discriminator to detect
manipulated images.

To the best of our knowledge, no other research has leveraged
the benefits of a GAN architecture in conjunction with a genetic al-
gorithm to prepare images before the message is embedded into the
cover medium. As showed throughout the experiments, the approach
is compared against a state-of-the-art CNN architecture employed for
image steganalysis. This architecture, the YeNet model (Ye et al., 2017),
has been trained over the same dataset for a fair comparison. While the
YeNet model is able to detect the presence of steganographic techniques
with 91.8% accuracy in the original dataset, the application of the GAN
and the best individual provided by the genetic algorithm allows to re-
duce this number to 0.8%. This is a large reduction which evidences the
limitations of standard CNN-based architectures for image steganalysis,
while proving that GAN schemes are successful at building stego images
undetectable.

Other researchers have proposed the use of genetic algorithms to
define a strategy to embed messages into images (Kanan & Nazeri,
2014a) or to find the most adequate pixels to embed the message (Tseng
et al., 2008). However, these approaches do not consider the use of
Convolutional Neural Networks used as steganalysis methods, which
can be continuously trained to improve. The combination of genetic
algorithms and steganography has been studied in the literature (Man-
dal, Mukherjee, Paul, & Chatterji, 2022), and researches have proposed
different approaches with different goals. Notwithstanding, the use of
an evolutionary strategy to prepare an image by applying modifications
in the spatial domains is a novel approach proposed in this work.

Similar works have studied the use of Generative Adversarial Net-
works to learn change probabilities for each pixel in the spatial domain
of the cover image, so later different distortions are introduced but min-
imising the detection probability (Tang et al., 2017). Similarly, again
without introducing an evolutionary strategy, authors have employed
a GAN to improve the quality of images embeddings hidden mes-
sages (Qin et al., 2020). With the goal of embedding images as payload,
researchers have also evidenced that encoder–decoder architectures are
a powerful instrument, proposing a new loss function (ur Rehman,
Rahim, Nadeem, & ul Hussain, 2019). This research, in contrast, fo-
12

cuses on the image space before applying the steganography method.
In this line, a state-of-the-art research proposes a new approach for
embeddings the hidden message layer by layer, seeking for a better
integration of the cover image. The authors employ a encoding and a
decoding networks, which is the steganography method used (Gan &
Zhong, 2021).

In case of the application of evolutionary strategies, state-of-the-art
literature has mostly focused on the use of genetic algorithms. One typ-
ical combination are methods based on the integer wavelet transform,
where the genetic algorithm is used to select coefficients (Sabeti et al.,
2022), while other authors employ the genetic algorithm to generate
stego images based on different functions (Raja et al., 2007) and other
researchers are focused on the frequency domain (Miri & Faez, 2017).

With a different objective, genetic algorithms have been used in
the steganography domain to generate images with characteristics that
can be the key to break the inspection of steganalysis systems (Wu &
Shih, 2006). An evolutionary strategy can also be used to improve the
quality of the stego image, through a genetic algorithm and a Optimal
Pixel Adjustment Process (Tseng et al., 2008). Finally, other researchers
have also studied the use of genetic algorithms to encrypt the secret
message and later use the LSB algorithm (Khodaei & Faez, 2010) or a
method based on modelling steganography as a search and optimisation
problem (Kanan & Nazeri, 2014b).

7. Conclusions and future work

In summary, the scheme proposed in this research involves a GAN
and a genetic algorithm, in charge of defining the best architecture
for the generator. In the experimentation section, three different ex-
periments have allowed (1) to measure the performance of the GAN
architecture, (2) to evaluate the implementation of the genetic algo-
rithm an its performance at finding valid sequences of layers to build
a generator of cover images adapted for steganography and (3) to
evaluate if the combination of the GAN architecture proposed and the
genetic algorithm is successfully at deceiving a steganalysis model.

The approach has proven to be able to improve the generator
performance by generating new adapted cover images where a hid-
den message can be safely introduced. In comparison to previous
research, this agnostic approach aims at providing an instrument to
prepare a cover medium to later introduce the message. Thus, different
steganography algorithms can be used, including combinations with
cryptography algorithms to avoid accessing the message if the medium
is intercepted. Moreover, the use of an evolutionary strategy allows to
continuously build new generators which introduce different changes,
thereby hampering the application of classic steganalysis models.

Future work involves analysing other steganography algorithms,
including those centred on the spatial domain but also in the frequency
domain. Furthermore, other evolutionary strategies can also be anal-
ysed, evaluating how different schemes can be lead to different results.
Other architectures can also be tested. Lighter architectures would
allow to train the GAN model more epochs during the individuals
evaluation. It would be also interesting to analyse if the generator
architecture can be generalised (a good architecture is good against any
steganalysis model) or if the advantages of the architecture depends on
the discriminator employed. With this purpose the discriminator could
be replaced by other steganalysis CNN model of the state of the art.
Besides, the approach proposed could be also extended to target other
types of steganography and steganalysis techniques and also other types
of cover mediums, such as audio or video.
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