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a b s t r a c t

Smart electric vehicle charging stations (EVCSs) having distributed energy resources (DERs), including
photovoltaic (PV) systems and energy storage systems (ESSs), are becoming vital devices for increasing
their profit and maintaining stable distribution grid operations by scheduling the real/reactive power
of DERs. However, prediction errors of PV generation outputs and electric vehicle (EV) loads from
EVCSs may decrease their profit and destabilize the distribution grid owing to incorrect EV charging
scheduling and voltage regulation. To address this issue, we propose a two-stage framework for smart
EVCS scheduling and inverter-based Volt-VAR control (VVC) using prediction error-integrated deep
reinforcement learning (DRL). In the first stage, the EVCS agents train their neural network model with
a 30-min resolution to maximize their profit through a day-ahead charging/discharging scheduling of
ESSs in the EVCSs while responding to various prediction errors of PV generation outputs and EV loads.
The total real power consumption of each EVCS, including the charging/discharging schedules of the
ESSs calculated in the first stage, is delivered to the second stage, in which the VVC agent trains its
neural network model with a 5-min resolution to minimize the real power loss and voltage violations
through real-time reactive power scheduling of the ESSs in the EVCSs via their inverters. The proposed
approach was tested in the IEEE 33-node and IEEE 123-node distribution systems. The results show
that the proposed approach outperforms DRL methods that do not consider the prediction errors in
terms of profitability of the EVCS and reduction of real power loss.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

As more electric vehicles (EVs) are connected to power dis-
ribution systems, thereby reducing environment pollution (e.g.,
reenhouse gas emissions and carbon pollution) and making
he most of their flexible load capability (e.g., vehicle-to-grid
V2G) technology for peak shaving and voltage regulation), elec-
ric vehicle charging stations (EVCSs) are becoming vital enti-
ies for economically managing the charging schedules of EVs
nd reliably maintaining stable power distribution grid opera-
ions (Farzin et al., 2016). Recently, conventional EVCSs have been
ransformed into smart EVCSs equipped with distributed energy
esources (DERs), including solar photovoltaic (PV) systems and
nergy storage systems (ESSs). Smart EVCSs can reduce the power
onsumption from the distribution grid using power generated
y the PV systems and stored in the ESSs, thereby maximizing
heir charging profit while avoiding transformer overloading and
ower equipment degradation (Datta et al., 2020).
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Evidently, scheduling the charging of EVs in smart EVCS with-
out considering power distribution grid operations may result in
abnormal grid operations, such as an increase in power losses
and voltage violations. To resolve this issue, smart EVCSs must
cooperate with the Volt-VAR control (VVC) module, which is
one of the key functions in distribution management systems to
maintain stable distribution grid operations. Recently, VVC has
leveraged on smart inverters of DERs as new voltage regulating
devices through which reactive power absorption and injection
of DERs from and to the grid are controlled to determine optimal
nodal voltage magnitudes along with reduction of the power
loss (Wang et al., 2020b). In this context, smart inverters of DERs
connected to smart EVCSs can be exploited as voltage-regulating
devices to perform VVC. Therefore, the smart inverter-based re-
active power capability of DERs in smart EVCSs suggests the need
for a system-wide coordinated framework in which smart EVCSs
and inverter-based VVC cooperate to manage stable distribution
grid operations while ensuring economical EVCS operation.

However, the development of a framework for smart EVCS–
VVC coordination presents several challenges. First, the predic-
tion errors of PV generation output at smart EVCSs may lead to
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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bnormal EV charging scheduling, thereby yielding a distorted
alculation of the EVCS profit. Second, incorrectly aggregated EV
oad consumption schedules due to such prediction errors are fed
nto the VVC as wrong input data, which in turn gives rise to
iscalculations of the power loss and voltage profile along the
istribution feeder via the malfunction of VVC. Third, because
onventional model-based VVC optimization methods rely on
naccurate large distribution system models with uncertain line
arameters, their solutions may not be optimal and may not
cale well for real-time applications. To resolve the aforemen-
ioned challenges, we present a model-free deep reinforcement
earning (DRL)-based coordination framework in which multiple
VCS DRL agents interact with a VVC DRL agent to calculate
conomic charging schedules of EVs under various prediction-
rror scenarios of PV generation output and aggregated EV load
rom a smart EVCS while maintaining robust distribution grid
perations against uncertainty of the distribution grid model.
Many recent studies have proposed model-based optimization

pproaches for the scheduling of smart EVCSs and VVC in power
istribution systems. These approaches can be categorized as
ollows:

(L1) Optimization-based smart EVCS scheduling: A stochastic
optimization model was presented in Katrin et al. (2019)
in which the operation cost of PV-integrated EVCSs is
minimized along with various prediction options for PV
generation outputs. In Yan et al. (2021b), a two-stage
optimization method was proposed in which the power
allocation of a smart EVCS integrated with a PV system and
an ESS is conducted in the first stage, and the charging
schedules of EVs are coordinated in the second stage.
In Yan et al. (2019), a multi-stage optimization algorithm
comprising day-ahead energy management and real-time
control was developed to reduce the total operating cost
of a PV-ESS-integrated EVCS while considering the satis-
faction of EV users under uncertain EVCS operation. An
optimization framework that coordinates the exchange of
energy between the distribution grid and smart EVCSs was
presented in Li et al. (2020); in this framework, a chance-
constrained optimization method is adopted to handle
the uncertainty in the prediction of PV generation output
from smart EVCSs. In Yang et al. (2021), a time-of-use
(TOU) price tariff-based energy management framework
for smart EVCSs was designed to maximize the profit
of smart EVCSs using the peak–valley price difference. A
robust optimization problem was formulated in Li et al.
(2022) in which the optimal location of smart EVCSs com-
bined with wind and PV systems and ESSs was determined
based on the power distribution and transportation net-
works under uncertainties in wind/PV generation output
and EV charging demand. In Kriekinge et al. (2021), the cost
and peak-minimizing EV charging strategy was developed
using model predictive control method in which the EV
charging schedule is calculated based on the forecasted
PV generation and EV load demand based on the deep
neural network method. In Sierra et al. (2020), a simulation
model was developed to quantify the feasibility of PV-ESS
integrated EVCSs located in the United States and China
from a technical, financial, and environmental perspective.

(L2) Optimization-based VVC: Many studies have addressed
the development of VVC model using the smart inverters
of PV systems and/or EVs based on V2G technology. In Jabr
(2019), two decentralized optimization schemes consider-
ing the uncertainty in PV generation output were formu-
lated using robust and distributionally robust optimization

methods to reduce voltage violations by dispatching the
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reactive power of PV systems via their smart inverters.
A fully distributed VVC framework using aggregated PV
inverters with two timescales was presented in Wang et al.
(2020c). In this framework, the reactive power of PV ag-
gregators is scheduled to minimize the power loss in a
15-min time resolution using the alternating direction mul-
tiplier method while the fast fluctuations of PV generation
outputs are handled using the droop control of PV sys-
tems in real-time. A two-layer VVC method was proposed
in Hu et al. (2020) in which the optimal rates of Volt-
VAR droop control curves for PV systems are calculated to
reduce the network power loss at the global layer, and the
reactive power of PV systems is tuned using the optimized
droop control curves to suppress voltage violations at the
local layer. Demand response-integrated VVC method us-
ing legacy voltage regulators (e.g., on-load tap changers
(OLTCs) and capacitor banks (CBs)) and smart inverters of
PV systems was developed in Vineeth et al. (2021) to mini-
mize both the real power loss and peak load in unbalanced
active distribution systems. In Wenjie et al. (2018), a multi-
agent-based VVC model integrated with V2G technology of
EVs was presented. In this model, reactive power dispatch
of EVs via V2G is conducted along with EV charging co-
ordination while ensuring the performance of VVC under
uncertain EV charging scenarios. A two-stage VVC model
was presented in Sun et al. (2021) in which OLTCs and
CBs are scheduled using an optimal power flow method
with 1-h resolution in the first stage; in the second stage,
the reactive power of PV systems and EVs is controlled in
real-time to mitigate voltage violations.

Although the aforementioned model-based approaches in the
literature (L1) and (L2) yield the desired performance for EVCS
scheduling and VVC, they heavily rely on accurate knowledge of
the EV charging behavior (e.g., arrival/departure time of EVs and
initial/desired state of charge (SOC) of the EV battery) and power
distribution system model; however, such knowledge varies dy-
namically and is difficult to obtain in real-world scenarios. In
addition, under a large number of scenarios for EVCS operation
and VVC, the model-based approach may not calculate the opti-
mal solution efficiently and rapidly owing to the high complexity
of heterogeneous EV charging behaviors and power distribution
systems.

To resolve these challenges encountered by the aforemen-
tioned model-based approaches, DRL, which is a reinforcement
learning (RL) integrated with artificial neural networks (ANNs),
has recently attracted attention as a model-free methodology
for efficient scheduling of EVCSs and VVC. We next present a
literature review related to our study divided into two categories:

(L3) DRL-based EV/EVCS scheduling: From the planning per-
spective of EVCSs, a hybrid approach that ensures their
long-term revenue was proposed in Tao et al. (2022).
In this approach, DRL and mixed-integer linear program-
ming methods are jointly used to calculate the best match
between the EVs and available charging/swapping infras-
tructure. In Dorokhova et al. (2021), a DRL method us-
ing double deep Q-networks learning and deep deter-
ministic policy gradient approaches was applied to the
EV charging scheduling problem to maximize both the
PV self-consumption and SOCs of EVs when they depart
from a smart EVCS. In Felix et al. (2021), the deep Q-
network method was employed to schedule the charging
of EVs without knowledge of future information, including
arrival/departure time and energy consumption of EVs.
In Wang et al. (2022), a novel cluster-based EV charging

scheduling algorithm was developed using the DRL method
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to response the real-time price signals from the distribu-
tion system operators. A soft actor critic (SAC)-based DRL
framework was developed in Yan et al. (2021a) in which
the performance of an individual EV charging problem with
dynamic EV-user behaviors is improved using supervised
learning and RL methods. In Zhao and Lee (2022), a new
dynamic pricing framework was presented to maximize
the quality of service with a differentiated service require-
ment for EVs. A novel multi-agent DRL (MADRL) algorithm
for PV-ESS-integrated EVCSs was developed in Shin et al.
(2020). In this algorithm, EVCSs minimize their charging
cost by sharing the surplus energy stored at their ESSs.
In Yan et al. (2022), a MADRL-based decentralized and
cooperative charging strategy was proposed to control
the charging of multiple EVs simultaneously considering
varying environmental factors such as electricity price and
EV driver’s characteristics. A MADRL method was adopted
to build an optimal energy purchasing strategy for EVCSs
in Zhang et al. (2023) in which a long short-term memory
neural network is used to predict the EV charging demand.
In Zhang et al. (2021a), a joint charging and traveling route
scheduling problem of EVs was formulated using the DRL
method. A federated DRL model using the SAC method was
proposed in Lee and Choi (2021). In this model, multiple
smart EVCSs maximize their profit using the calculated
profitable electricity price while preserving their private
data. A DRL-based EV charging scheduling algorithm was
proposed in Jin and Xu (2021) in which the power distri-
bution system operation conditions are considered along
with uncertainties of renewable energy generation and
electricity prices. There were many DRL-based algorithms
including Lee and Choi (2021), Jin and Xu (2021) for the
scheduling of EV and EVCS. However, no studies proposed
the DRL framework for the coordination of smart EVCSs
and VVC while considering the various prediction errors of
PV generation outputs and aggregated EV loads in smart
EVCSs.

(L4) DRL-based VVC: A two-timescale hybrid voltage regulation
scheme was presented in Sun and Qiu (2021) in which
OLTC and CBs are dispatched using a mixed-integer second-
order cone programming method in a slow timescale and
PV inverters are controlled using a DRL method in a fast
timescale to mitigate fast voltage violations. A distributed
SAC method was applied to the voltage regulation problem
in Cao et al. (2022). In this method, an entire distribution
network is first decomposed into several sub-networks
using voltage-reactive power sensitivity to achieve fast
control of PV inverters. In each sub-network, PV inverters
cooperate with OLTCs and CBs to minimize the total voltage
deviations and long-term switching numbers of OLTCs and
CBs. In Wang et al. (2020a), a safe off-policy DRL problem
using the constrained SAC method was formulated in a
constrained Markov decision process (MDP) problem to
better satisfy the operation constraints in power distribu-
tion systems. Following a similar approach to that reported
in Wang et al. (2020a), a novel safety layer was added to
the DRL framework in Yuanqi and Nanpeng (2022). This
layer enables the VVC agents to perform a safe exploration
during the training process by satisfying the physical con-
straints of the distribution system while improving the
training convergence performance. A novel MADRL-based
VVC algorithm was presented in Zhang et al. (2021b) in
which DRL agents for OLTC, CBs, and smart inverters of PV
systems interact to perform VVC in unbalanced distribution
systems with voltage-dependent loads. More recently, a
consensus MADRL-based fully distributed VVC model with-
out a central controller was developed in Gao et al. (2021).
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In this model, the DRL agents of heterogeneous legacy
voltage regulators minimize the real power loss, voltage
violations, and switching costs of the voltage regulators
by efficiently communicating their local information with
their neighbors while maintaining resilience against fail-
ures of individual controllers and communication links.
In Liu et al. (2021), a MADRL-based robust VVC algorithm
was adopted to minimize bus voltage deviations and net-
work power losses in which uncertainties of PV generation
outputs and loads are modeled by stochastic program-
ming. In Nguyen and Choi (2022), a novel stand-alone
safety module was proposed and integrated with the DRL-
based VVC to remove voltage violations during the training
process.

Previous studies related to categories (L3) and (L4) have two
limitations. First, these studies on the scheduling of smart EVCSs
were formulated as DRL problems in which the prediction values
of PV generation outputs and EV loads are used as crucial input
data. However, these predicted values are not very accurate and
do not reflect all variations in PV generation outputs and EV
loads. Evidently, this would distort the charging scheduling of
EVs, thereby yielding incorrect profits for smart EVCSs. Second,
DRL approaches for the scheduling of smart EVCSs and VVC were
implemented separately without considering their interdepen-
dence. Note that VVC performs its task based on the aggregated
EV loads scheduled by smart EVCSs. Therefore, incorrect aggre-
gated EV charging schedules due to prediction errors in the PV
generation outputs and EV loads of smart EVCSs would degrade
VVC performance.

In short, the limitations of the aforementioned literature (L1)
∼(L4) are summarized as follows. In the literature (L1) and (L2),
the algorithms for the smart EVCS scheduling and VVC were
formulated using the model-based optimization problem, respec-
tively. However, they assumed the unrealistic situation in which
the knowledge of the system model for smart EVCS and VVC
operation is very accurate. Furthermore, the model-based op-
timization approach may increase the computation complexity
significantly with larger system models. To tackle these limita-
tions, the model-free DRL algorithms for the EV/EVCS scheduling
and VVC were developed in the literature (L3) and (L4), respec-
tively. However, the studies in (L3) have the strict assumption
that the prediction values of PV generation outputs and EV loads
are accurate (i.e., no prediction errors exist), thereby calculating
an incorrect EV/EVCS schedule. Furthermore, DRL approaches for
the scheduling of EVCS and VVC were implemented separately
without considering their interdependence. Given the interde-
pendence between the EVCS and VVC, the distorted EV/EVCS
schedule due to such prediction errors has an detrimental impact
on the performance of the VVC algorithm in the literature (L4).

To address all limitations from the literature (L1)∼(L4), we
propose a two-stage DRL framework for the efficient coordination
of smart EVCSs and VVC in power distribution systems while
quickly responding to various prediction error scenarios for the
PV generation outputs and aggregated EV loads in smart EVCSs.
In this framework, smart EVCSs and VVC cooperate to maintain
stable power distribution system operations while ensuring the
profit of the smart EVCSs under various prediction error scenarios
for the PV generation outputs and aggregated EV loads. The key
point of the proposed two-stage DRL framework is the regula-
tion of charging/discharging real/reactive powers of the ESSs of
smart EVCSs to maximize the profits of the smart EVCSs and
minimize the real power loss and voltage violations in power
distribution systems. Thus, the main contributions of this study
can be summarized as follows:
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• Given a coupling between the smart EVCS operation and
VVC under uncertain environment, we present a two-stage
coordinated DRL model that schedules smart EVCSs (Stage
1) and VVC (Stage 2) to achieve profitable smart EVCS and
stable power distribution grid operations simultaneously.
• We formulate the DRL algorithm for Stage 1. In comparison

with existing DRL methods for the smart EVCS scheduling,
our DRL method explicitly incorporates the prediction errors
of PV generation output and aggregated EV load of smart
EVCSs into the state space of the EVCS agents, thereby
quickly responding to these various prediction errors. In
Stage 1, each EVCS agent maximizes its profit by regulating
the real power charging/discharging of its ESS while taking
into account various prediction errors.
• We formulate the DRL algorithm for Stage 2. The error-

induced real power consumption schedules of all EVCSs
calculated by Stage 1 are embedded and updated in the state
space of the VVC agent in Stage 2. Based on the updated
state, the VVC agent minimizes the real power loss and
voltage violation in the distribution grid by adjusting the
reactive power of the ESSs of all EVCSs.
• Simulation results show that, compared to DRL approaches

excluding the prediction errors of EVCSs, the proposed ap-
proach yields a greater increase of the profits of EVCSs and
a greater reduction of the real power loss in the distribution
grid.

The remainder of this paper is organized as follows. Section 2
introduces the power distribution system model and the SAC
method based on an RL framework. The system model, with its
mathematical notation and training procedure in the proposed
two-stage DRL framework, is described in Section 3. Section 4
presents a two-stage DRL algorithm using the SAC method along
with the formulation of the state/action spaces and reward func-
tions for each stage. The simulation results for the IEEE 33-node
and 123-node distribution systems are presented and analyzed
in Section 5. The limitation of the presented DRL algorithm is
discussed in Section 6. Finally, concluding remarks are presented
in Section 7.

2. Backgrounds

2.1. Power distribution system model

Let us consider a power distribution system that includes a set
N of nodes and a set L of distribution lines connecting nodes. The
power flow model (Baran and Wu, 1989) of a radial distribution
system is expressed as follows:

Pij,t = Pc
j,t − Pg

j,t +
∑
jk∈L

Pjk,t + rijI2ij,t (1)

Qij,t = Q c
j,t − Q g

j,t +
∑
jk∈L

Qjk,t + xijI2ij,t (2)

V 2
j,t = V 2

i,t − 2(rijPij,t + xijQij,t )+ (r2ij + x2ij)I
2
ij,t (3)

I2ij,tV
2
i,t = P2

ij,t + Q 2
ij,t (4)

where Pij,t and Qij,t are the real and reactive power flows from
node i to j at time t , respectively; Pc

j,t and Pg
j,t are the real power

consumption and generation at node j and time t , respectively;
Q c
j,t and Q g

j,t are the reactive power consumption and generation
at node j and time t , respectively; rij and xij are resistance and
reactance of the line between nodes i and j; Iij,t is the current
that flows from node i to j at time t; and Vi,t denotes the voltage
magnitude at node i and time t .
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2.2. RL framework

AnMDP is a fundamental environment in which RL approaches
can be mathematically formulated. An MDP is defined as a tuple
(S,A, S ′,P,R), where S , A, and S ′ denote the sets of states st
and actions at at the current time t and states st+1 at the next
time t+1 for an RL agent in the given environment, respectively.
P is a function that calculates the state transition probability of
the agent; it can be expressed as P : S × A→ P(S), where P(S)
denotes the probability of transition st ∈ S into st+1 ∈ S ′ by
action at ∈ A. R is a function that calculates a numerical reward
for the agent when the agent moves from state st to state st+1
according to the selected action at . The reward function is R :
S×A×S ′ → R, where Rt+1 is formulated as Rt+1 = R(st , at , st+1).
The primary goal of the agent is to find the optimal policy π∗θ
parameterized with the weights θ of the agent’s neural network,
which generates the largest numerical reward through the best
selection of the action in a certain state. To evaluate the numerical
value of the policy, we define the Q-value as Q (st , at ), which is
expressed as Q (st , at ) = E[

∑T
k=0 γ kRk+t+1 | s = st , a = at ]. In

the Q-value, γ is the discount rate that represents the relative
importance of the future reward to the current reward, and T is
the terminal time of the agent’s learning process. In summary, the
RL agent aims to obtain the optimal policy π∗θ that maximizes the
Q-value by updating its parameter θ given st and at as follows:

π∗θ = argmax
θ

E

[
T∑

k=0

γ kRk+t+1 | s = st , a = at

]
. (5)

2.3. SAC method

SAC (Haarnoja et al., 2018) is a state-of-the-art DRL method
that determines continuous actions given continuous states. Com-
pared to conventional DRL methods, the SAC method significantly
improves its performance in terms of stability and sample ef-
ficiency. To this end, the agent using SAC maximizes the aug-
mented Q-function with an entropy term H(π (at |st )) to calculate
the optimal policy π

∗,SAC
θ as follows:

π
∗,SAC
θ = argmax

θ
E
[ T∑
k=0

γ k
{Rk+t+1 + ζH (π (at | st ))}

| s = st , a = at
]

(6)

where H(π (at |st )) =−
∑

at π (at |st ) logπ (at |st ) represents the en-
tropy value given the probability π (at |st ) of selecting action at
in state st and ζ is a temperature coefficient that represents the
relative importance between reward and entropy. Compared to
conventional DRL-methods, the SAC method improves its perfor-
mance in terms of exploration and sample efficiency by adding
the entropy term (6). In addition, a replay buffer B is employed
to further obtain stable convergence of the training curves of the
SAC agent. The experience at each time is stored in the replay
buffer B as follows: B ← (s, a, r, s′) ∪ B. To prevent correlation
between samples, the agent randomly samples a tuple (s, a, r, s′)
from the replay buffer B and renews the weights θ.

SAC comprises four neural networks: a value network (θv),
a target value network (θ̂v), a critic network (θc), and an actor
network (θa). The value, critic, and actor networks are updated
by minimizing the following three loss functions, respectively:

Lv(θv) = E
[
1
2
(Vθv (s)− E[Qθc (s, a)− ζ logπθa (a|s)])

2
]

(7)

Lc(θc) =
1
2
E

[
Qθc (s, a)− Q̂ (s, a)

]2
(8)

L (θ ) = E[logπ (h (κ; s)|s)− Q (s, h (κ; s))]. (9)
a a θa θa θc θa
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Fig. 1. Architecture of the proposed two-stage DRL framework.
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For notation convenience, the time index t of the subscript
f the variables in (7)–(9) is omitted. In (7), Vθv (s) is state-value

function which identifies the value of state by the policy θv ,
Qθc (s, a) is the Q-value of state s and action a by the policy θc ,
πθa (a|s) is the probability of state–action pair calculated from the
policy θa. In (8), Q̂ (s, a) is the target value of Qθc (s, a). In (9),
hθa (κ; s) is the actor network re-parameterized with the random
noise vector κ. In each training episode i, the weights θx(i) of
ach network with its gradient ∇Lx(θx) and learning rate αx are
pdated as follows: θx(i + 1) ← θx(i) − αx∇Lx(θx), where x
epresents v, c and a for the value, critic, and actor networks,
espectively.

To further improve the training stability, the target value
etwork is iteratively updated along with a periodic copy of the
eights of the value network as follows:

v̂(i+ 1)← δθv(i+ 1)+ (1− δ)θ̂v(i), (10)

here θ̂v(i) is the weights for the target value network during
raining episode i, and δ is a smoothing parameter.

. System model for the proposed two-stage DRL approach

.1. Architecture of the proposed two-stage framework

Let us consider a system in which multiple smart EVCSs inte-
rated with PV systems and ESSs are located in a power distribu-
ion grid. Smart EVCSs are connected to the power distribution
rid via smart inverters of PV systems and ESSs. Using these
nverters, smart EVCSs can absorb or inject their reactive power
rom or to the grid. As shown in Fig. 1, the proposed DRL-
ased framework consists of two stages that correspond to the
perations of (i) DRL-based energy management systems (EMSs)
n smart EVCSs in Stage 1; and (ii) DRL-based VVC in Stage 2.
e consider the situation in which the charging station operators

CSOs) and distribution system operator (DSO) execute the DRL-
ased EMSs for smart EVCSs and DRL-based VVC, respectively. In
he two-stage DRL framework, the CSOs and DSO interact with
ach other to achieve stable power distribution grid operation
hile ensuring economical smart EVCS operation. In Stage 1, each
VCS DRL agent of the EMS schedules charging and discharging

perations of the ESS in the EVCS to maximize the profit of t

1139
he EVCS while considering various prediction errors of the PV
eneration outputs and aggregated EV loads. Here, charging and
ischarging of the ESS correspond to energy bought from the
rid and energy sold to EV users under TOU pricing, respectively.
hen the ESS discharging power is insufficient to fully support

he EV loads, the EVCS agent can buy additional power directly
rom the grid. In Stage 2, using the grid operation data along with
he real power consumption schedule of each EVCS transmitted
rom Stage 1, the VVC DRL agent schedules the reactive power
bsorption and injection of each EVCS from and to the grid via its
mart inverter to minimize the total real power loss and voltage
iolations in the power distribution grid.

.2. Notation

We denote the set of nodes as N = N EVCS
∪ N non-EVCS.

EVCS and N non-EVCS represent sets of nodes with and without
VCSs, respectively. In Stage 1, a day-ahead real power charg-
ng/discharging scheduling of the ESS in the EVCS is performed
ith a scheduling period t ∈ T (1)

= {1, . . . , T (1)
} based on a

0-min resolution. In Stage 2, a real-time VVC is executed with
scheduling period t ∈ T (2)

= {1, . . . , T (2)
} based on a 5-min

esolution.
In Stage 1, ∀ n ∈ N EVCS, ∀ t ∈ T (1), Pch/dch

n,t indicates the
harging/discharging power schedule of the EVCS at node n and
ime t . P

ch/dch
n and Pch/dch

n are the maximum and minimum capac-
ties for charging/discharging of the EVCS at node n, respectively.
he SOC of the EVCS at node n and time t is denoted by SOCn,t ,
nd its maximum and minimum capacities are SOCn and SOCn,
espectively. The SOC dynamics of the EVCS at node n and time t
s expressed as SOCn,t = SOCn,t−1 +

ηchn Pchn,t+P̂
PV
n,t+∆PPVn,t

Ecapn
−

Pdchn,t
ηdchn Ecapn

. In

this SOC dynamics, ηch(dch)
n is the charging (discharging) efficiency

of the EVCS, Ecap
n is the energy capacity of the EVCS, and P̂PV

n,t and
∆PPV

n,t are the predicted real power output of the PV system in the
EVCS and its corresponding prediction error, respectively. P̂EV

n,t and
∆PEV

n,t are the predicted aggregated EV load and its corresponding
prediction error for the EVCS at node n and time t , respectively.
π

sell(buy)
n,t denotes the selling (buying) price of the EVCS at node n

and time t . The deficient power of the EVCS at node n and time
is defined as PEV,de, which is the positive difference between
n,t
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Fig. 2. Illustration of the training procedures of the proposed two-stage DRL algorithm.
ˆ

he actual aggregated EV load (̂PEV
n,t + ∆PEV

n,t ) and the discharging
power (Pdch

n,t ) defined as follows: PEV,de
n,t = P̂EV

n,t + ∆PEV
n,t − Pdch

n,t .
ote that each EVCS n can buy its deficient energy PEV,de

n,t from
he grid directly and sell it back to EVs without discharging of
SS. The predicted fixed load (e.g., heating, ventilation, and air
onditioning appliances) of the EVCS at node n and time t is
denoted by P̂Fixed

n,t .
In Stage 2, ∀ t ∈ T (2), the vectors of the real and reactive

power consumptions at non-EVCS nodes are denoted by Pc
t =

Pc
n,t ] and Qc

t = [Q
c
n,t ], respectively, where Pc

n,t and Q c
n,t are the

eal and reactive power consumptions at node n ∈ N non-EVCS

nd time t , respectively. The vector of voltage magnitudes at
ny node is defined as Vt =

[
Vn,t

]
, where Vn,t is the voltage

magnitude at any node n ∈ N and time t . The vector of real
power consumption schedules for all EVCSs at time t is denoted
by PEVCS

t =
[
PEVCS
n,t

]
, where PEVCS

n,t is the real power consumption of
the EVCS at node n ∈ N EVCS and time t; it is expressed as PEVCS

n,t =

Pch
n,t+PEV,de

n,t +P̂Fixed
n,t . Note that PEVCS

n,t is used as the training data for
the VVC agent in Stage 2 and is obtained by randomly sampling
the prediction error-integrated EVCS real power consumption
schedules that are generated using the trained model of the EVCS
agents under various prediction error scenarios in Stage 1. The
vector of reactive power generation or consumption schedules for
all the EVCSs at time t is denoted by QEVCS

t =
[
Q EVCS
n,t

]
, where Q EVCS

n,t
is the reactive power generation or consumption of the EVCS at
node n ∈ N EVCS and time t .

3.3. Training process description

As depicted in Fig. 2, the training procedure of the proposed
two-stage DRL algorithm can be summarized as follows:

• Stage 1: As the preliminary step of Stage 1, a day-ahead
predicted PV generation output and aggregated EV load
data are obtained and their corresponding error data are
generated and sampled. Then, for t ∈ T (1), each EVCS DRL
agent n trains its own neural network model and finds its
optimal policy (i.e., charging/discharging schedule Pch/dch

n,t of
the EVCS) using the following data: (i) buying/selling price
(πbuy

n,t /π sell
n,t ), (ii) SOC (SOCn,t−1) of ESS in the EVCS, (iii) pre-

diction values (̂PPV
n,t , P̂

EV
n,t ) and prediction errors (∆PPV

n,t , ∆PEV
n,t )

of PV generation outputs and aggregated EV loads, and (iv)
fixed EVCS load (̂PFixed

n,t ). After completing the training of
each EVCS agent in Stage 1, all EVCS agents send a set
of their real power consumption schedules generated with
various prediction errors to the VVC agent in Stage 2.
1140
• Stage 2: Prediction error-integrated real power consumption
schedules of EVCSs from Stage 1 are gathered and randomly
sampled by the VVC agent. Then, for t ∈ T (2), the VVC
DRL agent trains its own neural network model and find
its optimal policy (i.e., reactive power schedule Q EVCS

n,t of the
EVCS) using the sampled real power consumption schedules
of the EVCSs (PEVCS

t ) along with the real/reactive power
consumption (Pc

t /Qc
t ) at the non-EVCS nodes and voltage

magnitude (Vt−1) at any node.

4. Mathematical formulation of the proposed two-stage DRL
approach

In this section, we formulate the state/action spaces and re-
ward functions for the EVCS agents in Stage 1 and VVC agent in
Stage 2.

4.1. DRL formulation of EVCS agent in stage 1

State space: For t ∈ T (1)
= {1, . . . , T (1)

}, state space S(1)
n,t of

EVCS agent at node n and time t is defined as follows:

S(1)
n,t = {π

buy
n,t , π sell

n,t , SOCn,t−1, P̂PV
n,t , P̂

EV
n,t , ∆PPV

n,t , ∆PEV
n,t , P̂

Fixed
n,t } (11)

where π
buy(sell)
n,t is the buying (selling) energy price of EVCS n at

time t; SOCn,t−1 is the SOC of the ESS in the EVCS n at time
t−1; P̂PV(EV)

n,t is the predicted PV generation output (EV aggregated
load) of EVCS n at time t; ∆PPV(EV)

n,t is the prediction error of PV
generation output (EV aggregated load) of EVCS n at time t; and
PFixed
n,t is the predicted fixed load of EVCS n at time t .
Action space: Action space A(1)

n,t of EVCS agent at node n and
time t is expressed as follows:

A(1)
n,t = {P

ch/dch
n,t } (12)

where Pch/dch
n,t represents the charging/discharging power of the

ESS for EVCS n at time t .
Reward function: Reward function R(1)

n,t of EVCS agent at node
n and time t is formulated as follows:

R(1)
n,t = π sell

n,t P
sell
n,t − π

buy
n,t Pbuy

n,t − SOCpen
n,t (13)

where

Psell
n,t = P̂EV

n,t +∆PEV
n,t = Pdch

n,t + PEV,de
n,t (14)

Pbuy
n,t = Pch

n,t + PEV,de
n,t + P̂Fixed

n,t (15)

SOCpen
n,t =

⎧⎨⎩
µ1(SOC

reg
n − SOCn,t ), if SOCn,t < SOC reg

n

µ2(SOCn,t − SOCn), if SOCn,t > SOCn (16)

0, otherwise.
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The reward function in (13) consists of two parts: (i) the profit
of the EVCS (i.e., the difference between the revenue π sell

n,t P
sell
n,t

from selling power to EVs and the cost π
buy
n,t Pbuy

n,t from buying
power from the grid) and (ii) the penalty cost SOCpen

n,t result-
ing from undercharging and overcharging the ESS. In (14), the
selling power Psell

n,t is defined as the actual aggregated EV load
(̂PEV

n,t + ∆PEV
n,t ), which is equal to the sum of the discharging

power (Pdch
n,t ) of the ESS and the deficient EV load (PEV,de

n,t ) that
cannot be supported by the ESS discharging. In this study, if
the discharging power Pdch

n,t is less than the actual aggregated
EV load (̂PEV

n,t + ∆PEV
n,t ), the EVCS directly buys the deficient EV

load power PEV,de
n,t from the grid and sells it to EVs. In (15),

he buying power Pbuy
n,t is expressed as the sum of the charging

ower (Pch
n,t ) of the ESS, deficient EV load (PEV,de

n,t ), and predicted
ixed load of the EVCS (̂PFixed

n,t ). The penalty SOCpen
n,t for the SOC of

he ESS, defined in (16), avoids undercharging and overcharging
he ESS with positive parameters µ1 and µ2. SOC

reg
n in (16) is

enoted by SOC reg
n = max

{
SOC reg

n , SOCn

}
, which is a predefined

OE regulation parameter of the EVCS at node n to constrain
he current discharging capability of the EVCS to store sufficient
nergy in response to an unexpected power shortage.

.2. DRL formulation of VVC agent in stage 2

State space: For t ∈ T (2)
= {1, . . . , T (2)

}, state space S(2)
t of

VC agent at time t is defined as follows:
(2)
t = {P

c
t ,Q

c
t , P

EVCS
t ,Vt−1} (17)

here Pc
t and Qc

t are the vectors of the real and reactive power
onsumptions at non-EVCS nodes n ∈ N non-EVCS and time t ,
espectively; PEVCS

t is the vector of the real power consumptions
t EVCS nodes n ∈ N EVCS and time t; and Vt−1 is the vector
f voltage magnitudes at every node n ∈ N and time t − 1.
ote that PEVCS

t are the randomly sampled data of the prediction
rror-integrated real power consumption schedules of the EVCSs
alculated in Stage 1.
Action space: Action space A(2)

t of VVC agent at time t is
expressed as follows:

A(2)
t = {Q

EVCS
t }, (18)

here QEVCS
t =

[
Q EVCS
n,t

]
is the vector of reactive powers for all

he EVCSs, where Q EVCS
n,t is the reactive power generation or con-

umption of the EVCS at node n ∈ N EVCS and time t . The allowable

ange of Q EVCS
n,t is defined as

⏐⏐Q EVCS
n,t

⏐⏐ ≤ √
(Sn)2 − (PEVCS

n,t )2, where
Sn denotes the apparent power of the EVCS at node n.

Reward function: Reward function R(2)
t of VVC agent at time

t is formulated as the sum of two negative cost functions:

R(2)
t = −β1

|N |∑
n=1

∆Vn,t − β2P loss
t . (19)

In (19), the first cost function
∑
|N |
n=1 ∆Vn,t represents the total

oltage violation for all nodes, where ∆Vn,t is the deviation of the
oltage magnitude from its admissible range [V , V ]. The second

cost function P loss
t represents the total real power loss, which is

expressed as P loss
t =

∑
nm∈L rnm

[
(Pnm,t )2+(Qnm,t )2

(Vn,t )2

]
. β1 and β2 are

the penalties for both negative cost functions. The penalty-based
multi-reward function in (19) shows a trade-off relationship be-
tween the reduction of the total voltage violation and real power
loss in terms of β1 and β2. On this trade-off relationship, the
DSOs may adaptively adjust these penalties to situations in which
they aim to reduce the total voltage violation or total real power
loss further in distribution systems. For example, the DSO can
adaptively adjust the penalty β1 (or β2) to reduce the total voltage
violation (or real power loss) further with higher β (or β ).
1 2
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Algorithm 1: Two-stage DRL algorithm using SAC method

nitialize [θ(1)
v , θ̂(1)

v , θ(1)
c , θ(1)

a ] and [θ(2)
v , θ̂(2)

v , θ(2)
c , θ(2)

a ]
ach EVCS agent n receives {̂PPV

n,t , P̂
EV
n,t } and generates prediction errors

%Training for an optimal charging/discharging scheduling of each EVCS
agent
or training episode i = 1, maximum training episode do

for time step t = 1,T (1) do
▷ Randomly sample ∆PPV

n,t and ∆PEV
n,t from prediction error sets

▷ Extract Pch/dch
n,t from the actor network based on π

θ
(1)
a
(a(1)n,t |s

(1)
n,t )

▷ Compute the action and receive R(1)
n,t+1 and s(1)n,t+1

▷ Store the tuple [s(1)n,t , a
(1)
n,t , R

(1)
n,t+1 , s

(1)
n,t+1] in B(1)

end
▷ Randomly sample batches of [s(1), a(1), r (1), s′(1)] from B(1)

▷ Calculate Lv(θ(1)
v ), La(θ(1)

a ), and Lc(θ(1)
c )

▷ Update the networks with the weight optimizer Υ
(1)
x :

∇θ(1)
x = Υ

(1)
x

(
Lx(θ(1)

x )
)
, θ(1),new

x ← θ(1),old
x − α

(1)
x ∇θ(1)

x , x = v, a, and c
▷ Update the target value network using an updated value network as

follows: θ̂(1)
v (i+ 1)← δ(1)θ(1)

v (i+ 1)+ (1− δ(1))θ̂(1)
v (i)

end
Each EVCS agent n transmits the set of prediction error-integrated EVCS
real power consumption schedules to the VVC agent

%%Training for optimal EVCS reactive power scheduling of VVC agent
for training episode i = 1, maximum training episode do
▷ Randomly sample PEVCS

= [PEVCS
n,t ] from the transmitted sets

for time step t = 1,T (2) do
▷ Extract QEVCS

t from the actor network based on π
θ
(2)
a
(a(2)t |s

(2)
t )

▷ Compute the action and receive R(2)
t+1 and s(2)t+1

▷ Store tuple [s(2)t , a(2)t , R(2)
t+1 , s

(2)
t+1] in B(2)

end
▷ Conduct the same procedure in line 11∼14 with [s(2)t , a(2)t , R(2)

t+1 ,

s(2)t+1], B
(2) , Lx(θ(2)

x ), ∇θ(2)
x , Υ

(2)
x , α

(2)
x , θ̂(2)

v , and δ(2) , x = v, a, and c
nd

4.3. Algorithm description of two-stage SAC framework

The proposed two-stage DRL approach (Algorithm 1) is im-
plemented using the SAC method, as explained in Section 2.3.
In Algorithm 1, the superscripts (1) and (2) of both variables
and parameters represent Stages 1 and 2, respectively. Algo-
rithm 1 consists of three parts: (i) initialization of the weights
of neural networks for SAC-based EVCS and VVC agents along
with the generation of prediction errors of the PV generation
outputs and aggregated EV loads (lines 1∼2); (ii) training pro-
cedure of each EVCS agent in Stage 1 (lines 4∼15); and (iii)
raining procedure of VVC agent in Stage 2 (lines 16∼26). In Stage
1, all SAC-based EVCS agents independently train their neural
network model using their own data, including the prediction
errors of PV generation outputs and aggregated EV loads, and
find their optimal policy of charging and discharging schedule of
the ESSs in the EVCSs. Various prediction error-integrated EVCS
real power consumption schedules generated by the EVCS agents
are randomly sampled and embedded into the elements of the
state space for the SAC-based VVC agent in Stage 2. Then, using
the sampled EVCS consumption schedule and distribution grid
operation data, the VVC agent trains its neural network model
and find its optimal policy of reactive power schedule for all the
EVCSs. Fig. 3 depicts the SAC structure of the proposed two-stage
DRL framework.

5. Simulation results

5.1. Simulation setup

The proposed two-stage DRL algorithm was applied to the
IEEE 33-node and 123-node distribution systems (Kersting, 1991),
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Fig. 3. Structure of the SAC method employed for the proposed two-stage DRL framework.
Fig. 4. Profiles of electricity price, PV generation output and EVCS load for four smart EVCSs in the IEEE 33-node distribution system: (a) TOU price, (b) predicted/actual
PV generation outputs, (c) predicted/actual aggregated EV loads, and (d) predicted fixed loads.
ˆ

which present four and eight smart EVCSs integrated with the
PV systems and ESSs, respectively. EVCSs 1 ∼ 4 were connected
o nodes 2, 10, 15, and 22 in the former system whereas EVCSs
∼ 8 were connected to nodes 3, 8, 21, 34, 40, 48, 55, and 74

n the latter system. In this study, EVCS n represents an EVCS
onnected to node n. Concerning the ESS of each EVCS n, its
apacity was set to Ecap

n = 1 MWh; the maximum and minimum
harging/discharging powers were set to P

ch/dch
n = 300 kW and

ch/dch
n = 0 kW, respectively; the initial SOC, maximum and min-
mum SOCs, and regulation SOC of the ESS were set to SOCn,0 =

.5, SOCn = 1.0, SOCn = 0.1, and SOC reg
n = 0.1, respectively;

he charging and discharging efficiencies for the ESS were set to
ch
n = ηdch

n = 1.0; and the size of the ESS was set to Sn = 0.885
VA. Under a TOU pricing tariff as depicted in Fig. 4(a), each EVCS
uys power from the grid and sells it to EVs with a gain factor
f 1.5 with respect to the TOU price. Figs. 4(b) and (c) show the
redicted/actual PV generation outputs and the predicted/actual
ggregated EV loads for each EVCS n and time t in the IEEE 33-
ode distribution system, respectively. The data in these figures
re referred to and modified from Zhang et al. (2020), Wood et al.
1142
(2018). Fifteen prediction error scenarios of the PV generation
outputs and aggregated EV loads were generated by sampling the
predicted data from the continuous uniform distributions U(0, 2×
PPV
n,t ) and U(0, 2 × P̂EV

n,t ), respectively. The actual PV generation
outputs and aggregated EV loads were used as test data for the
EVCS agents. Twelve real power consumption scenarios generated
by each EVCS agent in Stage 1 are transmitted to VVC agent for
its training process in Stage 2. The predicted fixed load P̂Fixed

n,t for
each EVCS n in the IEEE 33-node distribution system is shown in
Fig. 4(d). The predicted/actual data for the PV generation outputs
and aggregated EV loads of the eight EVCSs in the IEEE 123-
node distribution system were also modified from Zhang et al.
(2020), Wood et al. (2018), respectively. The prediction errors of
the eight EVCSs were sampled from the aforementioned uniform
distributions of the four EVCSs in the IEEE 33-node distribution
system. In addition, the predicted fixed loads of the eight EVCSs
were generated by inserting numerical noise into the data shown
in Fig. 4(d). The maximum and minimum limits of the allowed
voltage range for any node were set to V = 1.05 and V = 0.95
p.u., respectively.
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Table 1
Specification of neural networks for SAC-based EVCS agent (Stage 1) and SAC-based VVC agent (Stage 2).
Stage Neural network Number of

layers
Number of Neurons per Layer Transfer

function
Optimization
method

Learning
rate

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Stage 1

Actor
Network

4 256 256 256 128 – Hyperbolic
Tangent
Function

ADAM
Optimization
Method

5× 10−7

Critic
Network

4 256 256 128 128 – Sigmoid
Function

ADAM
Optimization
Method

10−6

Value
Network

4 256 256 128 128 – Sigmoid
Function

ADAM
Optimization
Method

10−6

Target Value
Network

4 256 256 128 128 – Sigmoid
Function

ADAM
Optimization
Method

–

Stage 2

Actor
Network

5 512 256 256 128 128 Hyperbolic
Tangent
Function

ADAM
Optimization
Method

10−6

Critic
Network

4 512 256 256 128 – Sigmoid
Function

ADAM
Optimization
Method

5× 10−5

Value
Network

4 512 256 256 128 – Sigmoid
Function

ADAM
Optimization
Method

5× 10−5

Target Value
Network

4 512 256 256 128 – Sigmoid
Function

ADAM
Optimization
Method

–

Table 2
Classification for case studies.
Case Stage 1 Stage 2

Neural network State space Neural network

Case 1 ANN ∆PPV
n,t , ∆PEV

n,t /∈ S(1)
n,t ANN

Case 2 RNN ∆PPV
n,t , ∆PEV

n,t /∈ S(1)
n,t RNN

Case 3 GRU ∆PPV
n,t , ∆PEV

n,t /∈ S(1)
n,t GRU

Case 4 ANN ∆PPV
n,t , ∆PEV

n,t /∈ S(1)
n,t , P̃PV

n,t , P̃
EV
n,t ∈ S(1)

n,t ANN
Case 5 RNN ∆PPV

n,t , ∆PEV
n,t ∈ S(1)

n,t RNN
Case 6 GRU ∆PPV

n,t , ∆PEV
n,t ∈ S(1)

n,t GRU
Proposed ANN ∆PPV

n,t , ∆PEV
n,t ∈ S(1)

n,t ANN
r
t
h
o
r
t
w
a

Table 1 provides the specifications of four SAC-based neural
etworks for EVCS and VVC agents in Stages 1 and 2, respec-
ively. Since the complexity of the problem in Stage 2 is higher
han that in Stage 1, an extra hidden layer is added to actor
etwork of Stage 2 for ensuring stable training performance.
or both stages, the ADAM optimization method (Kingma and
a, 2014) was adopted to optimally update the weights of the
eural networks. For the EVCS and VVC agents, the maximum
izes of the replay buffer and sampling sizes of the batch in the
raining were set to {40000, 50000} and {48, 72}, respectively.
he smoothing parameter in the target value network and the
emperature coefficient in the augmented Q-function were set to
= 0.2 and ζ = 1, respectively. The penalties in the reward

unctions of the EVCS and VVC agents were set to µ1 = µ2 = 20
nd {β1 = 1000, β2 = 500}, respectively. The SAC algorithms
or Stages 1 and 2 were run for 24 h with T (1)

= 48 (30-
in scheduling resolution) and T (2)

= 288 (5-min scheduling
esolution), respectively. The values of the maximum training
pisode for Stages 1 and 2 in Algorithm 1 were set to 4500 and
00, respectively. Simulations for both stages were conducted
sing pytorch 1.6.0 in Python 3.7.0.
Table 2 shows a classification of the results of our simulation

tudy into six cases. Cases 1∼3 exclude the prediction errors of
V generation outputs and aggregated EV loads in the state space
or each EVCS agent (i.e., ∆PPV

n,t , ∆PEV
n,t /∈ S(1)

n,t ) having as neural
etworks an ANN, a recurrent neural network (RNN) (Williams
t al., 1986), and a gated recurrent unit (GRU) (Cho et al., 2014),
1143
espectively. RNNs constitute an advanced approach with respect
o ANNs to efficiently manage sequential data by employing a
idden state that implies iterative memory during the training
f the agent. GRUs in turn constitute an advanced approach with
espect to RNNs to solve the long-term dependencies during the
raining of the agent. Case 4 denotes a benchmarking method in
hich the actual PV generation outputs (̃PPV

n,t = P̂PV
n,t +∆PPV

n,t ) and
ggregated EV loads (̃PEV

n,t = P̂EV
n,t+∆PEV

n,t ) belong to the elements of
the state space for each EVCS agent (i.e., P̃PV

n,t , P̃
EV
n,t ∈ S(1)

n,t ) without
their prediction errors (i.e., ∆PPV

n,t , ∆PEV
n,t /∈ S(1)

n,t ). Cases 5 and 6
correspond to the proposed approach, which explicitly embeds
the prediction errors of PV generation outputs and aggregated EV
loads into the state space of the EVCS agent; however, the ANN
in the proposed approach was replaced by the RNN and GRU for
Cases 5 and 6, respectively.

5.2. Performance evaluation

The performance results of the proposed approach are pre-
sented in the following four subsections.

• Section 5.2.1: The performance of four EVCS agents in Stage
1 was quantified in the IEEE 33-node distribution system in
terms of charging and discharging power schedules and sen-
sitivities of their SOCs and profits with respect to changes in
the SOC regulation parameter.
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Fig. 5. Charging/discharging power (Pch/dch
n,t ) of four EVCSs in Stage 1 during a 24-h period: (a) EVCS 1, (b) EVCS 2, (c) EVCS 3, and (d) EVCS 4.
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• Section 5.2.2: Through the comparison of Cases 1∼4 with
the proposed approach, the performance of four EVCS agents
in Stage 1 and a VVC agent in Stage 2 was assessed in the
IEEE 33-node distribution system in terms of EVCS profit
(Stage 1) and total real power loss and voltage magnitude
(Stage 2).
• Section 5.2.3: Through the comparison of Cases 5 and 6

with the proposed approach, the performance improvement
of the proposed approach resulting from the utilization of
advanced neural networks was verified in the IEEE 33-node
distribution system in terms of EVCS profit, total real power
loss, and voltage magnitude.
• Section 5.2.4: The scalability of the proposed approach was

tested in the IEEE 123-node distribution system. In addition,
the convergence of the training curves of the agents along
with their execution times in Stages 1 and 2, was validated
in both the IEEE 33-node and 123-node distribution systems.

5.2.1. Performance results of EVCS agents
The performance of the EVCS agents considering various pre-

iction errors were validated using actual data of PV generation
utput and aggregated EV load as shown in Figs. 4(b) and (c).
igs. 5 show the charging schedule (positive power consump-
ion) and discharging schedule (negative power consumption)
or the four EVCSs. The charging/discharging schedule (Pch/dch

n,t )
represents the action of each EVCS agent n. From these figures,
we first observe that the discharging schedules of the EVCSs rely
on actual data of the requested aggregated EV loads. For example,
by comparing Figs. 4 and Figs. 5, it can be concluded that EVCS 1
discharges a larger amount of power than the other three EVCSs
in the time period [00:30 a.m., 02:00 a.m.] owing to the request
of a larger amount of aggregated EV loads for EVCS 1. In addition,
as shown in Figs. 5(b) and (d), in general, EVCSs 2 and 4 discharge
more power in the time period [08:00 a.m., 2:00 p.m.] than in the
other time slots. This is because the agents of these EVCSs aim
to maximize their profit by selling power to EVs in a high TOU
pricing period.

Table 3 shows the sensitivities of the average SOC (SOCavg
n (x))

and average profit deviation (∆Prn(x)) of EVCS n with respect to
the varying SOC regulation parameter x = SOC reg during a total
n
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Table 3
Average SOCs (SOCavg

n (x)) and average profit deviation (∆Prn(x)) of four EVCSs
during a 24-h period.
Index EVCS 1 (%) EVCS 2 (%) EVCS 3 (%) EVCS 4 (%)

SOCavg
n (0.1) 31.2 24.2 68.4 24.5

SOCavg
n (0.25) 39.0 30.7 72.1 40.1

SOCavg
n (0.35) 47.3 47.1 78.3 49.8

∆Prn(0.25) −7.3 −4.9 −8.2 −8.3
∆Prn(0.35) −14.5 −10.4 −12.8 −12.3

of T (1) scheduling periods, calculated using the following indices:

OCavg
n (x) =

1
T (1)

T (1)∑
t=1

SOCn,t (x)× 100% (20)

∆Prn(x) =
Prn(x)− Prn(0.1)

Prn(0.1)
× 100% (21)

where, for a given x = SOC reg
n , SOCn,t (x) is the value of the SOC

of EVCS n at time t , and Prn(x) = 1
T (1)

∑T (1)
t=1 (π

sell
n,t P

sell
n,t − π

buy
n,t Pbuy

n,t )
s the average profit of EVCS n with respect to a total of T (1)

cheduling periods when x ̸= 0.1. Note from Table 3 that, as
OC reg

n increases from x = 0.1 to x = 0.35, SOCavg
n increases,

whereas ∆Prn decreases. This is because an increase in SOC reg
n

raises the minimum limit of the SOC according to SOC reg
n =

max
{
SOC reg

n , SOCn

}
and curtails the EVCS selling power to EVs

through the discharging process, thereby decreasing the profit
of the EVCS. However, the limited discharging capability of the
EVCS enables it to store more energy in the ESS to respond to
unexpected power consumption in the future.

5.2.2. Performance comparison between cases 1∼4 and the proposed
approach

In this subsection, the performance of the proposed two-stage
DRL approach is evaluated and compared with that of Cases 1∼4
in Table 2 for the IEEE 33-node distribution system.

Table 4 shows three performance results: (i) the relative av-
erage profit (Rel. Avg. Profit) of the four EVCSs in the four cases
for the proposed approach (Stage 1); (ii) the relative real power
loss (Rel. Real Power Loss) in the four cases for the proposed
approach (Stage 2); and (iii) the minimum (Vmin) and maximum
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Fig. 6. Voltage profile for 33 nodes during a 24-h period in the proposed approach.
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Vmax) voltage magnitudes in the four cases (Stage 2). In this table,
the positive (negative) relative average profit and real power
loss represent their increase (decrease) in each case with respect
to the average profit and real power loss, respectively, for the
proposed approach. The main observations from Table 4 can be
summarized as follows:

(O1) No voltage violations occurred during an entire scheduling
period for any of the four cases. In addition, Fig. 6 demon-
strates that the proposed approach maintains a normal
voltage profile within its acceptable range of [V , V ] =
[0.95 p.u., 1.05 p.u.].

(O2) Cases 1∼3 present negative relative average profits, which
implies that the average profits in Cases 1∼3 are less than
those in the proposed approach. This is due to the fact
that the EVCS agents in the three cases for which the
prediction errors of both the PV generation output and
aggregated EV load are not considered do not respond to
various prediction error scenarios adequately, and hence
present low discharging efficiency. Here, the discharging
efficiency of the EVCSs requires the utilization of discharg-
ing power of the ESSs to support EV loads, which is defined
as 1

T (1)
∑T (1)

t=1
Pdcht,n
Psellt,n
× 100% where Pdch

t,n and Psell
t,n represent

the discharging and selling powers of EVCS n at time t .
According to the defined discharging efficiency and (14)
(i.e., Psell

n,t = Pdch
n,t + PEV,de

n,t ), an increasing discharging effi-
ciency implies that the EVCS can sell more ESS discharging
power (Pdch

n,t ) to EVs while buying less power (PEV,de
n,t ) from

the grid, consequently leading to an increase of the EVCS
profit. As expected, Fig. 7 shows that the discharging ef-
ficiency of each EVCS in the proposed approach is higher
than that in Cases 1∼3.

(O3) Cases 1∼3 are listed in the following decreasing order of
relative average profit: Case 3 (with GRU) > Case 2 (with
RNN) > Case 1 (with ANN). This observation justifies that
EVCS agents with a more advanced neural network can
achieve greater profit. However, Cases 2 and 3 still have a
negative relative profit, even though the neural networks in
both cases (RNN and GRU, respectively) are more advanced
than the neural network (ANN) of the proposed approach.
This demonstrates that the prediction error embedded in
the state space of the EVCS agent is more influential in
terms of profit than having an advanced neural network
structure for the EVCS agent.

(O4) The relative real power losses for Cases 1∼3 are positive
(i.e., the real power loss in the proposed approach is less

than that of Cases 1∼3). The three cases can be listed in

1145
Table 4
Performance comparison between four cases (Cases 1∼4) and the proposed
approach for the IEEE 33-node distribution system.
Case Stage 1 Stage 2

Rel. Avg. Profit (%) Rel. Real Power Loss (%) Vmin (p.u.) Vmax (p.u.)

Case 1 −24.25 4.1 0.9502 1.0451
Case 2 −18.98 3.1 0.9515 1.0463
Case 3 −17.98 2.9 0.9523 1.0470
Case 4 10.78 −2.4 0.9547 1.0470

increasing order of the real power loss as follows: Case 3
< Case 2 < Case 1. Note from (O2) that each EVCS agent
with higher discharging efficiency makes more profit by
discharging ESS power to EVs instead of purchasing power
from the grid and selling it to EVs. This decreasing grid
power request of the EVCS agent enables the VVC agent to
further reduce real power loss. Furthermore, similar to the
results in (O3), as the EVCS and VVC agent are implemented
with more advanced neural networks, the real power loss
can be further reduced.

(O5) The EVCS agent in Case 4 was trained using actual (test)
data of the PV generation output and aggregated EV load.
Therefore, Case 4 outperforms the proposed approach in
terms of profit and real power loss. However, Case 4 can-
not be deployed in an actual power distribution system
because the prediction of the PV generation output and
aggregated EV load without error is extremely difficult
in real-world scenarios. The proposed approach performs
more practical scheduling of EVCS operations and VVC
under realistic situations with various prediction errors.

.2.3. Performance comparison between cases 5, 6 and the proposed
pproach
In this subsection, we investigate the impact of different neu-

al networks for the SAC-based EVCS and VVC agents on the
erformance of the proposed approach for the IEEE 33-node
istribution system.
Table 5 compares Cases 5 and 6 in terms of relative average

rofit/real power loss and voltage magnitude. According to Ta-
le 2, the EVCS and VVC agents in Cases 5 and 6 are implemented
sing advanced neural networks, namely RNN and GRU, which
utperform the ANN used for the proposed approach. Note from
able 5 that in both cases the average profit and real power
oss are improved with respect to the proposed approach while
aintaining an acceptable voltage profile. Furthermore, a greater
rofit and less real power loss are achieved in Case 6 than in Case
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. Therefore, we conclude from the aforementioned observations
hat SAC-based EVCS and VVC agents built with more advanced
eural networks contribute to the performance improvement of
he proposed approach.

Recently, many studies have proposed new DRL methods com-
ined with advanced neural network structures to improve the
raining performance of DRL agents. In this context, the proposed
wo-stage DRL approach provides a universal framework to en-
ure both the profitability of EVCSs and the stability of power
istribution grids in an environment with various prediction er-
ors. It can be extended to a framework with better performance
y employing DRL methods with upgraded neural networks.

.2.4. Analysis of scalability, training convergence, and computation
ime

In this subsection, the performance of the proposed approach
s analyzed in terms of scalability, training convergence, and
omputation time. Concerning scalability, the proposed approach
as tested using an IEEE 123-node distribution system. Fig. 8
hows voltage magnitudes at any node and time during a 24-h
eriod when the proposed approach is executed. Note from this
igure that the proposed approach maintains a normal voltage
rofile within its acceptable range, [V , V ] = [0.95 p.u., 1.05 p.u.],
ven in a larger power distribution system. Fig. 9 compares the
elative average profit of eight EVCSs and real power loss in Cases
∼6 with respect to the proposed approach for the IEEE 123-
ode distribution system. All observations for the IEEE 33-node
istribution system pointed out in Sections 5.2.2 and 5.2.3 were
lso verified for the larger IEEE 123-node distribution system: (i)
 w
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Table 5
Performance comparison between two cases (Cases 5 and 6) and the proposed
approach for the IEEE 33-node distribution system.
Case Stage 1 Stage 2

Rel. Avg. Profit (%) Rel. Real Power Loss (%) Vmin (p.u.) Vmax (p.u.)

Case 5 3.1 −1.1 0.9508 1.0488
Case 6 3.5 −1.2 0.9504 1.0491

less profitability and less real power loss reduction (Cases 1∼3)
and greater profitability and real power loss reduction (Cases
4∼6); (ii) the impact of different neural networks on the profit
and real power loss can be expressed in decreasing order of
performance as follows: Case 3 > Case 2 > Case 1 and Case 6 >

ase 5; and (iii) the greatest profitability with highest real power
oss reduction is achieved in Case 4.

In addition, the performance of the proposed SAC-based DRL
ethod is compared with that of the actor-critic (AC) and advan-

age actor-critic (A2C) methods (Silver et al., 2014) that are also
ell known as the DRL approaches that determine continuous
ctions given continuous states. In this performance comparison,
he AC, A2C, and SAC methods were implemented using GRU.
igs. 10 compare the training curves of the EVCS agents (Stage 1)
nd VVC agent (Stage 2) between the AC, A2C, and SAC methods
n the IEEE 33-node and 123-node distribution systems. Note
rom these figures that the AC and A2C methods show a poor
erformance of the convergence. By contrast, the proposed SAC
ethod shows that the training curves increase and converge
ell to optimal policy of the EVCS and VVC agents during the
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Fig. 9. Relative average profit and real power loss among six cases (Cases 1∼6) for the IEEE 123-node distribution system.
Fig. 10. Comparison of average reward convergence between the AC, A2C, and SAC methods for the IEEE 33-node and 123-node distribution systems: (a) EVCS
agents in Stage 1 (33-node), (b) EVCS agents in Stage 1 (123-node), (c) VVC agent in Stage 2 (33-node), and (d) VVC agent in Stage 2 (123-node).
training period in both distribution systems. After completing
their training process, the EVCS and VVC agents calculate their
optimal actions (i.e., charging/discharging power and reactive
power schedules of EVCSs) based on the trained models during
the execution process. The execution times of Stages 1 and 2
for the IEEE 33-node and 123-node distribution systems can be
summarized as follows: (i) 0.039 s in Stage 1 and 3.182 s in Stage
2 for the IEEE 33-node distribution system and (ii) 0.041 s in Stage
1 and 3.891 s in Stage 2 for the IEEE 123-node distribution system.
Note that Stages 1 and 2 in our system model are assumed to
be carried out with 30-min and 5-min scheduling resolutions, re-
spectively. Therefore, the proposed approach is computationally
efficient and applicable to the system model.

In addition, the result show that, in contrast with the AC and
A2C methods, the proposed SAC method increases the EVCS profit
(Stage 1) by 21.7% and 19.4% in the IEEE 33-node distribution
system, respectively, and increases 20.3% and 19.9% in the IEEE
123-node distribution system, respectively. The proposed SAC
method decreases the real power loss (Stage 2) by 4.3% and
4.1% in the IEEE 33-node distribution system, respectively, and
decreases 2.1% and 2.0% in the IEEE 123-node distribution system,
respectively. Furthermore, the performance of the proposed SAC-
based DRL method is compared with that of the model-based
1147
optimization method. The model-based optimization methods
for Stages 1 and 2 are formulated as the mixed-integer linear
programming and mixed-integer second-order cone program-
ming problems, respectively. These two model-based optimiza-
tion methods are selected as the benchmarking algorithms that
yield optimal solution of Stages 1 and 2 when no prediction errors
of PV generation output and EV load occur. The simulation results
show that, in comparison with the optimization methods, the
proposed DRL method in Stage 1 decreases the average profit
of EVCSs by 12.3% and 13.7% in the IEEE 33-node and 123-node
distribution systems, respectively, and increases the real power
loss by 3.5% and 2.3% in the IEEE 33-node and 123-node distribu-
tion systems, respectively. These degraded performance results
of the proposed DRL method over the optimization methods are
natural because the optimization methods have an assumption
that the predictions of PV generation output and EV load are
accurate. However, such assumption is too strict and unrealistic
because it is impossible to predict PV generation output and
EV load with 100% accuracy. In addition, the solving times for
the optimization method in Stage 2 are 211 s and 314 s in
the IEEE 33-node and 123-node distribution systems; however,
the execution times for the proposed DRL method in Stage 2

are 3.182 s and 3.891 s that are much faster than the solving
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Table 6
Performance comparison between the baseline approaches (AC, A2C, and opti-
mization) and the proposed DRL approach for the IEEE 33-node and 123-node
distribution systems.
Baseline method AC A2C Optimization

Stage 1 Rel. Avg. Profit
Increase (%)

33-node 21.7 19.4 −12.3
123-node 20.3 19.9 −13.7

Stage 2 Rel. Real Power Loss
Decrease (%)

33-node 4.3 4.1 −3.5
123-node 2.1 2.0 −2.3

times of the optimization method. In summary, compared to the
optimization method without considering the prediction error,
the proposed DRL method calculates the solution more rapidly
while responding to various real-time prediction errors. Table 6
summarizes the relative average profit increase and real power
loss decrease of the proposed approach in Stages 1 and 2 with
respect to the baseline methods (AC, A2C, and optimization) in
the IEEE 33-node and 123-node distribution systems.

Lastly, the advantages and main observations of the proposed
pproach can be summarized as follows:

• The proposed two-stage DRL framework can further in-
crease the profits of smart EVCSs and decrease the real
power losses of power distribution systems by incorporat-
ing the prediction errors of the PV generation outputs and
aggregated EV loads into the state space of EVCS agents.
• Compared to Cases 1∼3, which do not consider the predic-

tion errors, the proposed approach leads to further increase
of the total profit of EVCSs and reduction of the real power
loss by 24.25% and 4.1% (Case 1), 18.98% and 3.1% (Case
2), and 17.98% and 2.9% (Case 3), respectively, for the IEEE
33-node distribution system (See Table 4).
• The proposed approach integrating more advanced neural

networks (RNN and GRU) results in further increase of the
total profit of EVCSs and reduction of the real power loss by
3.1% and 1.1% (Case 5 with RNN) and 3.5% and 1.2% (Case
6 with GRU), respectively, for the IEEE 33-node distribution
system (See Table 5).
• From the perspective of scalability, the merits of the pro-

posed approach observed in the IEEE 33-node distribution
system were also verified in the IEEE 123-node distribution
system (See Fig. 9).

. Discussions

This study is motivated by a desire to develop a CSO–DSO
oordinated DRL framework that achieves: (i) profitable smart
VCS operation from the perspective of CSO and (ii) stable power
istribution grid operation from the perspective of DSO. To satisfy
he goals of CSO and DSO simultaneously, ESS in smart EVCS is
crucial device, which serves as a buffer between the power
istribution grid and EVs to maximize the EVCS profit given the
ggregated EV load and perform voltage regulation by exploit-
ng real/reactive charging/discharging capability of ESS. In this
ontext, this study (the DRL algorithm in Stage 1) is limited to
he charging/discharging scheduling of ESS in smart EVCS with-
ut considering the charging/discharging scheduling of individual
Vs. Previous studies in Chaudhari et al. (2018), Datta et al. (2020)
imilar to this study focused on the charging/discharging role of
SS in smart EVCS to minimize the electricity purchase cost and
he degradation of ESS and avoid transformer overloading while
ulfilling the aggregated EV load completely; in these previous
tudies, the charging/discharging scheduling of individual EVs
as not considered. Nonetheless, an important extension of this
tudy would be to incorporate the scheduling of individual EVs
nto our DRL framework in Stage 1. A key part of this task would
1148
be to expand state/action space and reward function for EVCS
agent in terms of individual EVs scheduling. However, the per-
formance analysis of EVCS agent with the expanded state/action
space and reward function is beyond the scope of this study and
it is referred to as our future work.

7. Conclusions

This paper presents a two-stage DRL framework in which
multiple PV-ESS integrated smart EVCSs and VVC are coordinated
to simultaneously maximize the profit of EVCSs and minimize the
real power loss and voltage violations in power distribution grids
under uncertain operating environments of EVCSs with various
prediction errors. In the first stage, each EVCS agent trains its
robust neural network model against the prediction errors, and
calculates the profitable charging/discharging schedule of the ESS
in the EVCS. The profitable charging/discharging schedules calcu-
lated by all EVCS agents are used by the VVC agent in the second
stage, which trains its neural network model and calculates the
reactive power schedules of the ESSs in all EVCSs to minimize
the real power loss and voltage violations. Numerical examples
demonstrate that, in comparison with DRL methods that do not
consider prediction errors, the proposed DRL method increases
the EVCS profit by 17.9∼24.2% and 18.9∼23.7% and decreases
the real power loss by 2.9∼4.1% and 2.3∼3.4% in the IEEE 33-
node and 123-node distribution systems, respectively. The impact
of different neural networks of the agents on the performance
of the proposed framework is also analyzed. The results show
that the RNN-and GRU-based agents increases the EVCS profit
by 3.1∼3.5% and 2.9∼3.1% and decreases the real power loss
y 1.1∼1.2% and 0.71∼0.75% in the IEEE 33-node and 123-node
istribution systems, respectively. Furthermore, the performance
f the proposed SAC method is compared with that of the other
RL methods (the AC and A2C methods). The results show that,
n comparison with the AC and A2C methods, the proposed SAC
ethod increases the EVCS profit by 19.4∼21.7%, and decreases

he real power loss by 2.0∼4.3% in both distribution systems.
In future studies, the proposed method will be extended to

more practical DRL framework in which conventional voltage
egulators, including OLTCs and CBs, will be coordinated with
he smart inverters of EVCSs to ensure profitable operation of
he EVCSs and efficient voltage regulation in realistic unbalanced
istribution systems. In the future study, the DRL algorithm that
chedules the optimal charging and discharging of individual EVs
ill be incorporated into the proposed two-stage DRL framework
o minimize their charging cost while satisfying the preferences
f EV users.
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