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ABSTRACT In coupled power distribution and transportation (CPT) system, a joint scheduling framework
for mobile energy storage systems (MESSs) and Volt/VAR control (VVC) ensures reliable power distribution
grid operations while supporting electric vehicle loads at electric vehicle charging stations (EVCSs).
However, conventional model-based optimization methods for MESS scheduling and VVC may yield
suboptimal solutions and greater computation times because of MESS operation and VVC in uncertain
environment of CPT systems. To resolve this issue, this study proposes a model-free deep reinforcement
learning (DRL) framework. In this framework, smart inverters ofMESSs and solar photovoltaic (PV) systems
cooperate to minimize the real power loss and mitigate the violations of both MESSs’ state of charge (SOC)
and voltage in the power distribution network, while MESSs travel via the transportation network to satisfy
EV loads at EVCSs. A MESS routing algorithm based on Dijkstra’s algorithm is developed to determine the
optimal destinations of theMESSs. In addition, two safety modules are developed to ensure that neither SOC
nor voltage violations occur by adjusting real and/or reactive power of MESSs and PV systems during the
training process. The developedMESS routing algorithm and safety modules are integrated into the proposed
DRL framework, wherein the DRL agent performs the desired MESS scheduling and VVC through safe
exploration during the training procedure. The proposed approach is tested in coupled IEEE 33-bus power
distribution and 15-node transportation systems and coupled IEEE 57-bus power distribution and 42-node
transportation systems. Numerical examples demonstrate the advantages of the proposed approach in terms
of training convergence, real power loss, and SOC/voltage violation.

INDEX TERMS Deep reinforcement learning, safe exploration, mobile energy storage system, Volt/VAR
control, smart inverter, coupled power distribution and transportation system.

I. INTRODUCTION
Recent advances in various distributed energy resources
(DERs), including solar photovoltaic (PV) systems, energy
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storage systems (ESSs), and electric vehicles (EVs), have led
to an on-going transition from passive to active power distri-
bution networks to ensure efficient and reliable distribution
grid operations [1]. However, a rapid fluctuation in PV gener-
ation outputs and a sudden increase in aggregated EV loads at
EV charging stations (EVCSs) may have detrimental effects
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on such operations, and cause abnormal voltage regulation
with increasing voltage violations, network power losses, and
incomplete peak shaving [2].

To mitigate such adverse impacts, much attention has been
paid to the utilization of smart inverters of DERs as new
voltage regulating devices. Smart inverters rapidly absorb
or inject the real/reactive power of DERs from or into the
distribution grid to reduce the network power loss [3] and
peak load [4] while maintaining a normal voltage level [5]
along the active distribution feeder. A real-time voltage
control method was proposed in [6] in which the smart
inverters of PV systems and ESSs are coordinated for fast
voltage regulation in power distribution networks with high
PV penetration. In [7], a two-layer Volt/VAR Control (VVC)
method using the reactive power voltage adjustment of the
PV inverter was presented to achieve the network loss opti-
mization along the computation time reduction. A three-stage
robust inverter-based VVC framework was developed in [8]
in which the fast voltage regulators (PV system inverters)
and slow voltage regulators (on-load tap changers (OLTCs)
and capacitor banks (CBs)) cooperate to minimize the total
energy loss while addressing the uncertainties of PV outputs
and load demands. In [9], a novel algorithm was proposed
to determine optimal parameters of volt-var curve for local
voltage control using PV inverters to maintain normal volt-
age quality in active power distribution systems. Recently,
mobile energy storage systems (MESSs) have become vital
DERs to guarantee stable and efficient active distribution
grid operations because of their mobility and plug-and-play
functionality at any time and location [10]. In general,MESSs
are truck-mounted ESSs owned by a utility and perform the
following two tasks by regulating the real and reactive powers
of ESSs through their smart inverters: i) service restoration
for resilient active distribution grid operations against power
failures due to natural disasters and ii) mobile charging for
waiting EVs at EVCSs.

Numerous previous studies formulated model-based opti-
mization problems to implement scheduling algorithms for
MESSs to achieve the aforementioned two tasks in coupled
power and transportation (CPT) networks. A core part of
these previous studies was to construct separate and joint
constraints of MESS charging/discharging and road rout-
ing corresponding to power distribution and transportation
networks, respectively. For service restoration, two-stage
stochastic optimization models were presented to minimize
the total system cost under uncertainties of load consumption,
PV generation output, and traffic demand in CPT networks.
These models considered the scheduling of MESS fleet,
generation dispatching of microgrids and network topology
reconfiguration [11] and coordination of MESSs and hybrid
AC/DC microgrids [12]. In [13], conventional MESSs were
transformed into separable MESSs combined with mobile
generators and fuel tanks. A key concept of separable MESSs
is that they carry multiple detachable modules, each of which
is independently scheduled to perform service restoration

along with dynamic network reconfiguration. A tri-level opti-
mization framework was presented in [14], wherein the opti-
mal sizing and pre-positioning problems of MESSs were
solved in a decentralized manner to enhance the resilience
of networked microgrids. In [15], an optimization-based
long-term transmission planning model with stationary ESSs
(SESSs) and MESSs was proposed to minimize the invest-
ment cost of transmission lines and SESSs/MESSs, operat-
ing cost of conventional generators, and transportation cost
of MESSs. Concerning MESS-enabled charging of EVs at
EVCSs, MESSs were exploited as mobile charging stations
(MCSs) dispatched for EV charging at any time and location.
These studies aimed to reduce the number of waiting EVs
at EVCSs using a new communication scheme [16] while
maintaining a normal voltage profile using the reactive power
capability of MCSs in the power distribution grid [17]. Addi-
tionally, they aimed to relieve the overload of EVCSs with
restricted capacity [18], and increase the operational profits
of EVCSs through economical and computationally efficient
charging of MESSs using a Lyapunov-based method in a
distributed manner [19]. In [20], it was shown that MCSs,
as opposed to fixed charging stations, can reduce the charging
time and cost of EVs owing to their mobility and flexibility.
In [21], a self-scheduling model for a smart EVCS integrated
with a PV system that combined heat and power, electri-
cal and heat energy storage, and an MCS was presented.
This model aimed to maximize the financial gains of smart
EVCSs while maintaining adequate peak electrical demand.
Its effectiveness was tested on real smart EVCSs located
in Los Angeles, California. More recently, a joint optimiza-
tion framework for VVC and MCS operation was presented
in [22]. Herein, voltage regulators, such as OLTCs and CBs,
as well as smart inverters of PV systems andMCSs cooperate
to realize the following. i) Reduce real power losses, peak
demand, and voltage violations, and support EVCS loads in
power distribution networks, and ii) minimize the traveling
costs of MCSs in transportation networks.

In this study, we assume that MESSs are utilized as MCSs
(i.e., the second task of MESSs in the aforementioned lit-
erature review) that perform VVC by regulating the real
and/or reactive power of MCSs via their smart inverters while
supplying the real power of MCSs to EVCS load demands.
However, previous studies based on model-based optimiza-
tion approaches have two major limitations. First, they must
rely on inaccurate knowledge of power distribution and
transportation systems (e.g., uncertain network topology/line
parameters and PV generation outputs in power distribution
networks, and dynamically time-varying traffic conditions
in transportation networks). Evidently, this leads to incor-
rect operation schedules for voltage regulators and MCSs.
Furthermore, this knowledge varies dynamically and is dif-
ficult to obtain in real-world scenarios. Second, as the power
distribution and transportation networks become larger,
model-based optimization problems become more com-
plex and encompass a larger number of decision variables.
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Consequently, they spend notably higher computation time
to obtain their optimal solution and even yield infeasible
solutions. Therefore, this model-based optimization approach
does not scale well for real-time applications.

To resolve these limitations, reinforcement learning (RL)
and deep reinforcement learning (DRL) have recently
attracted attention as model-free methods for efficient
scheduling of EVs/MESSs and VVC. In [23], a model-
free RL method using state-action-reward-state-action was
employed to jointly determine the pricing and charging
scheduling of EVs at EVCSs with random EV arrivals
and departures. A model-free DRL approach for real-time
scheduling of EV charging and discharging was developed
in [24]. This approach was formulated as a Markov decision
process (MDP) problemwith an unknown transition probabil-
ity by considering the randomness of the electricity price and
commuting behavior of EVs. In [25], a DRLmodel for energy
management of an intelligent solar parking lot (ISPL) was
presented. In this model, ISPL calculates both the optimal
charging and hydrogen refueling schedules of fuel cell EVs
under uncertainties in PV generation output. Additionally,
the ISPL estimates the arrival and departure times of EVs,
and preferences of EV users. In [26], a DRL-based routing
algorithm for multiple EVs mounted with PV panels and
ESSs was proposed; herein, EVs were dispatched to supply
their power to consumers having uncertain demands. A safe
DRL method for the EV charging/discharging problem was
developed in [27], wherein the constrained optimal EV charg-
ing/discharging schedules are calculated using a deep neural
network without defining a penalty term and adjusting its
coefficient. In [28], a DRL model employing the deep deter-
ministic policy gradient (DDPG) method was presented to
jointly control the room temperature of households and bidi-
rectional EV charging to minimize the electricity cost. A scal-
able DRL approach for EV routing was proposed in [29],
wherein the EV routing problem within a time window was
solved on the basis of an attention model incorporating a
pointer network and a graph layer to parameterize the stochas-
tic policy of a DRL agent. More recently, a DRL method
was utilized to perform the routing and charging/discharging
scheduling of MESSs to enhance the resilience of power
distribution systems in CPT networks. In [30], a twin-delayed
DDPG method was applied to coordinate the scheduling of
MESSs and conduct resource dispatching of microgrids for
integrated service restoration by considering uncertainties in
load consumption. A real-time multi-agent DRL (MADRL)
approach using double deep Q-networks was developed for
power system service restoration in [31]. In this approach, the
structure of the CPT network was explicitly formulated into
the environment of DRL agents, wherein the constraints for
stable power distribution grid operations and realistic traffic
conditions of MESSs were constructed.

In addition, many studies developed DRL-based VVC
algorithms using the smart inverters of DERs and EVCSs.
A two-stage hybrid VVC framework using MADRL was

presented in [32], wherein OLTC and CBs were sched-
uled using a mixed-integer second-order cone programming
method on a slow timescale, and the reactive power of PV
systems via their smart inverters was regulated using a DRL
method on a fast timescale to mitigate quickly fluctuating
voltage violations. A decentralized DRL approach using a
soft actor-critic (SAC) was presented in [33], wherein PV
inverters, OLTCs, and CBs were coordinated to minimize the
voltage violations while reducing the switching frequencies
of OLTCs and CBs. In [34], a safe off-policy DRL problem
using the constrained SAC (CSAC)methodwas formulated in
a constrainedMDP problem to reduce the network power loss
and operating cost of voltage regulators while satisfying the
operational constraints in power distribution systems. In [35],
a model-augmented safe DRLmethod for VVCwas proposed
to improve the sampling efficiency and enhance the safety
of the DRL agent using a quadratic programming-based pol-
icy neural network. A three-stage peak shaving and VVC
framework using the online safe DRL method was presented
in [36]. In this method, a stand-alone safety module with no
modification of existing DRL algorithms was developed to
eliminate voltage violations during the training process of
the agents. In [37], a MADRL-based VVC framework was
developed wherein DRL agents trained for legacy voltage
regulators and smart inverters of PV systems cooperated to
execute VVC in unbalanced power distribution systems with
voltage-dependent loads. A two-stage real-time VVCmethod
using optimization and DRL methods was implemented in
power distribution systemswith EVs in [38]. In the first stage,
the scheduling problem of OLTCs and CBs was formulated
as a mixed-integer second-order cone programming problem
to minimize power loss. In the second stage, a DRL method
using DDPG was employed to build the local voltage control
strategy through which both real and reactive power capabil-
ities of EVs at EVCSs are utilized via the smart inverters of
the EVCSs to mitigate voltage violations.

However, previous studies on DRL-based MESS schedul-
ing and inverter-based VVC have the following limitations.
First, no previous study presented a DRL framework for
VVC operation considering joint real and reactive power
dispatch of MESS and PV systems via their smart inverters in
CPT systems. Obviously, optimal joint MESS scheduling and
VVC with MESSs and PV systems would become more dif-
ficult under uncertain operation conditions of CPT systems.
Therefore, it is necessary to develop a joint DRL framework
to address such uncertainties. Second, in [30] and [31], which
are similar studies to ours, a DRL model that schedules the
operation of MESSs in CPT system was presented. However,
in these studies, MESSs were used to enhance the resilience
of power distribution grids against extreme natural disasters
by scheduling only their real power. Incorrect reactive power
dispatch of MESSs may hinder stable power distribution grid
operations with high network power loss and abnormal volt-
age profiles. Third, the road routing process of MESSs in a
transportation network is unclear in [30] and [31]. Essentially,
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given current locations of MESSs, the method for determin-
ing their next locations via optimal road paths was not prop-
erly described. Fourth, no safety module for the DRL agent of
the MESSs and PV systems was developed in [30] and [31].
Given a prescribed environment, the DRL agent performs
a broad exploration during the training period to determine
its optimal policy (i.e., the action of the agent). However,
such exploration may yield frequent violations of the MESS
SOC and voltage limits, and increase the network power
loss. Consequently, the performance of the MESSs would be
degraded and the operation of the power distribution system
operation in real-world scenarios would be destabilized.

To resolve these limitations, we propose a DRL framework
that performs VVC by simultaneously controlling the opera-
tion of MESSs and PV systems, while calculating the optimal
destination of MESSs and guaranteeing the safe operation of
MESSs and PV systems in the CPT network. In the present
study, we consider MESSs as MCSs that supply real power to
EVs and perform voltage regulation at EVCSs. In addition,
we consider a situation wherein the agent in the proposed
DRL framework directly interacts with the real environment,
i.e., power distribution and transportation systems, during its
online training process. All in all, the main contributions of
this study can be summarized as follows.
• We present a safety-integrated DRL framework using
the SAC method. This framework jointly performs real
and/or reactive power dispatch of MESSs and PV sys-
tems via their smart inverters for VVC to reduce real
power loss and support EV loads at EVCSs in CPT net-
works while maintaining acceptable levels of the SOC
of MESSs and voltage magnitude.

• We propose a MESS road routing algorithm based on
a Dijkstra’s algorithm through which the DRL agent
determines the traveling status of MESSs according to
its state (i.e., the next arrival time and current location
of MESSs) and action (i.e., the destination of MESSs)
in the transportation networks.

• We propose two safety modules with a plug-and play
functionality for them to be readily integrated into any
DRL algorithm. These safety modules enable the DRL
agent to perform a safe exploration during the training
period by adjusting the real and/or reactive power of
MESSs and PV systems, thereby leading to no MESS
SOC and voltage violations during both the training and
execution periods.

• The performance of the proposed DRL approach is
compared with that of conventional mixed-integer lin-
ear programming (MILP)-based optimization and DRL
approaches without safety module. The simulation
results demonstrate the advantages of the proposed
approach in terms of real power loss and number of SOC
and voltage violations alongwith the convergence rate of
the training curve of the DRL agent.

The remainder of this paper is organized as follows.
Section II introduces a CPT system model for active
power distribution system operation and MESS scheduling

along with the architecture of the proposed DRL approach.
Section III formulates a safety-integrated DRL algorithm
for joint scheduling of MESS and PV system operations
for VVC. Section IV presents the simulation results for the
proposed algorithm. Finally, Section V concludes the study.

II. SYSTEM MODEL
Let us consider a CPT system wherein MESSs and PV
systems are coordinated to minimize the real power loss
and voltage violations for VVC in active power distribution
systems while MESSs support EV loads at EVCSs. In this
study, MESSs are assumed to be truck-mounted EVs having
an ESS. They are dispatched through a transportation network
to the EVCSs to perform the following two tasks using their
smart inverters. i) Real power charging from the grid and
real power discharging to EVs via EVCSs that are located at
the intersection of the power distribution and transportation
networks; ii) reactive power absorption and injection from
and to the grid for voltage regulation. VVC aims to conduct
voltage regulation via the smart inverters of MESSs and PV
systems using their reactive power. MESSs, PV systems,
and EVCS/non-EVCS loads are connected to an electric bus
b ∈ B in the active power distribution networks wherein the
MESSs and PV systems belong to the subsets BMESS and
BPV of the set B, respectively. Each MESS m ∈ M departs
from its depot, transits via transportation node i ∈ I, and
arrives at the EVCSs to support the EV loads and perform
voltage regulation. The transportation node consists of a node
with an EVCS (i ∈ IEVCS) and a node without an EVCS
(i ∈ Inon-EVCS). Node i ∈ IEVCS can be the same as bus
BMESS owing to the intersection of the power distribution
and transportation networks. |A| represents the cardinality of
setA. The bold font denotes a vector. The detailed operational
constraints of MESSs and PV systems in the CPT system are
described in the following subsections.

A. ACTIVE POWER DISTRIBUTION GRID OPERATION
DistFlow equations [39] of the linearized real (Plinehb,t ) and
reactive (Qline

hb,t ) power flows at line hb and the squared voltage
magnitude (νb,t = (Vb,t )2) at bus b and time t are written as
follows.

Plinehb,t =
∑
k∈Bb

Plinebk,t + P
node
b,t (1)

Qline
hb,t =

∑
k∈Bb

Qline
bk,t + Q

node
b,t (2)

νb,t = νh,t − 2(rhbPlinehb,t + xhbQ
line
hb,t ). (3)

Equations (1) and (2) indicate the real and reactive power
flow balance at bus b and time t , where bus k is included in
a set of buses Bb having all neighboring buses to bus b. The
squared voltage drop between buses h and b is described in (3)
where the resistance and reactance at line hb are denoted by
rhb and xhb, respectively.

Equations (4) and (5) represent the net real (Pnodeb,t )
and reactive (Qnode

b,t ) power consumptions belonging
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to (1) and (2). They are written in terms of real/reactive
power consumption (Ploadb,t ,Q

load
b,t ), real/reactive power gener-

ation of the PV system (̂PPVb,t ,Q
PV
b,t ), and real/reactive charg-

ing/discharging power of MESS m at bus b and time t

(PMESS,ch
b,t,m ,PMESS,dch

b,t,m ,QMESS
b,t,m ).

Pnodeb,t = Ploadb,t − P̂
PV
b,t +

∑
m∈M

(
PMESS,ch
b,m,t − PMESS,dch

b,m,t

)
(4)

Qnode
b,t = Qload

b,t + Q
PV
b,t +

∑
m∈M

QMESS
b,m,t . (5)

The net real/reactive power consumption (Ploadb,t ,Q
load
b,t )

in (4) and (5) are expressed in terms of ZIP load models,
which are defined in (6) and (7):

Ploadb,t = P̂load,nomb,t

[
Zp

(
Vb,t
V0

)2

+ Ip

(
Vb,t
V0

)
+ Pp

]
(6)

Qload
b,t = Q̂load,nom

b,t

[
Zq

(
Vb,t
V0

)2

+ Iq

(
Vb,t
V0

)
+ Pq

]
(7)

where P̂(Q)load,nomb,t is the predicted real (reactive) power con-
sumption at nominal voltage (V0). The percentage of con-
stant impedance/current/power load for real (reactive) power
follows its coefficient {Zp(q), Ip(q),Pp(q)} with Zp(q) + Ip(q) +
Pp(q) = 1.
Equations (8) and (9) represent the limits of the charging

(discharging) real power (PMESS,ch(dch)
b,m,t ) and reactive power

(QMESS
b,m,t ) of theMESS, respectively, where bch(dch)b,m,t and SMESS

b,m

denote the binary charging (discharging) decision variable
and apparent power of MESS m at bus b, respectively. The
reactive power of the PV system is constrained by the appar-
ent power (SPVb ) and predicted output (̂PPVb,t ) of the PV system
at bus b and time t , as described in (10). The squared voltage
magnitude νb,t at bus b and time t is limited by νmin

=

0.952 and νmax
= 1.052 according to (11).

0 ≤ PMESS,ch(dch)
b,m,t ≤ bch(dch)b,m,t PMESS,ch(dch),max (8)(

PMESS,ch
b,m,t + PMESS,dch

b,m,t

)2
+

(
QMESS
b,m,t

)2
≤

(
SMESS
b,m

)2
(9)(

P̂PVb,t
)2
+

(
QPV
b,t

)2
≤

(
SPVb

)2
(10)

νmin
≤ νb,t ≤ ν

max. (11)

B. MESS OPERATION IN THE CPT NETWORK
Equation (12) indicates that any MESS m arrives at one
transportation node at most at time t , with bai,m,t denoting
a binary decision variable that determines the arrival sta-
tus of the MESS at node i. Given that there is no MESS
travel (i.e., btrm,t = 0), charging or discharging the MESS
can be carried out according to (13). Equation (14) allows
the MESS to charge or discharge only when it arrives at

the EVCS (i.e., bai,m,t = 1).

∑
i∈I

bai,m,t ≤ 1 (12)

∑
i∈I

bch(dch)i,m,t ≤ 1− btrm,t (13)

bchi,m,t + b
dch
i,m,t ≤ b

a
i,m,t . (14)

Equation (15) describes the change in the SOC of MESSm
at time t with the scheduling time unit 1t . This is expressed
using the SOC at previous time t − 1, sum of charg-
ing/discharging real power (

∑
b∈BMESS PMESS,ch

b,m,t ,
∑

b∈BMESS

PMESS,dch
b,m,t ) at all EVCSs, charging/discharging efficiency

(ηchm , η
dch
m ), battery capacity (EMESS,max

m ), binary traveling
status (btrm,t ), and traveling efficiency (ηtrm [kWh/1t]). Equa-
tions (16) and (17) limits the SOC at time t ̸= T and time
t = T , respectively, given scheduling period t ∈ T =
{1, . . . ,T }. Here, T is the finishing scheduling period of
MESSs. Note that the condition expressed by (17) enables the
MESS to be operated correctly the next daywhilemaintaining
the desired SOC level, i.e., SOC r

m,T of the MESS m at t = T .

SOCm,t = SOCm,t−1

+

(
ηchm

∑
b∈BMESS

PMESS,ch
b,m,t − ηdchm

∑
b∈BMESS

PMESS,dch
b,m,t

− ηtrmb
tr
m,t

)
1t/EMESS,max

m (15)

SOCmin
m ≤ SOCm,t ≤ SOCmax

m (16)

SOC r
m,T ≤ SOCm,T . (17)

C. MESS ROAD ROUTING IN THE TRANSPORTATION
NETWORK
According to (18), each MESS m builds a single transit path
at most in the scheduling time, where bcij,m,t determines the
binary connection status of the transit path i−j. Equation (19)
enforces that the traveling path i− j is connected (bcij,m,t = 1)
when the MESS arrives at the EVCS (bai,m,t = 1). Equa-
tion (20) guarantees that during the normalized traveling time
γij,t , no MESS is allowed to stay at any node when the transit
path i− j is constructed. Here, γij,t represents the normalized
traveling time for path i − j and is defined as γij,t =

⌈wij,t
1t

⌉
.

Herein, wij,t is the ratio of the distance (dij) of transit path
i−j, which is obtained by Dijkstra’s algorithm, to the average
driving speed of any MESS, 1t is the scheduling time unit,
and ⌈·⌉ is a round-up. According to (21), the MESS is forced
to arrive at node j after γij,t via transit path i− j. Equation (22)
ensures that no transit path is constructed while the MESS
remains at the EVCS node. According to (23) noMESS travel
is allowed (btrm,t = 0) when the MESS arrives at node i
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FIGURE 1. Architecture of the proposed DRL framework in the CPT
network.

(bai,m,t = 1) with no connected traveling path (bcij,m,t = 0).∑
i∈I

∑
j∈Ii

bcij,m,t ≤ 1 (18)

bai,m,t − 1 ≤
∑
j∈Ii

bcij,m,t ≤ b
a
i,m,t (19)

bcij,m,t +
1
|I||0|

t+γij,t−1∑
t ′=t+1

∑
j̸=i∈I

baj,m,t ′ ≤ 1 (20)

bcij,m,t ≤ b
a
j,t+γij,t ,m (21)

bai,m,t −
∑
j∈Ii

bcij,m,t ≤ b
a
i,m,t+1 (22)

btrt,m =
∑
i∈I

∑
j∈Ii

bcij,m,t−
∑
i∈I

bai,m,t + 1. (23)

D. ARCHITECTURE OF THE PROPOSED DRL FRAMEWORK
As shown in Fig. 1, we present a DRL framework wherein
a DRL agent performs VVC and satisfies the EV loads at
EVCSs by jointly scheduling the operation of MESSs and
PV systems while interacting with a real-world CPT envi-
ronment. The DRL agent enables the MESSs to conduct
the following three tasks. i) Scheduling the road routing of
multiple MESSs in the transportation network where the
destinations of the MESSs (i.e., the locations of EVCSs)
are determined upon their current locations and traveling
times calculated by Dijkstra’s algorithm [40]; ii) scheduling
the real charging/discharging power of MESSs from/to the
grid and real discharging power to the EVs at EVCSs via
their smart inverters in the power distribution network; and
iii) scheduling the reactive charging and discharging power
of MESSs from and to the grid for VVC (i.e., minimizing real
power loss and voltage violations) via their smart inverters in
the power distribution network. Additionally, the DRL agent
conducts a VVC by scheduling the reactive charging and
discharging power dispatch of PV systems via their smart
inverters. The DRL agent is equipped with stand-alone safety
modules that enable the MESSs and PV systems to mitigate
the SOC violations of the MESSs and nodal voltage vio-
lations during the online training process. In summary, the
proposed safety-integrated DRL framework performs VVC

and supports EV loads at EVCSs by scheduling the operation
of MESSs and PV systems while significantly reducing SOC
violations ofMESSs and nodal voltage violations during both
the training and execution stages of the DRL process.

III. SAFE DRL-BASED MESS SCHEDULING AND VVC
ALGORITHM
In this section, we formulate a safety-integrated DRL algo-
rithm for joint MESS and PV system scheduling to perform
VVC considering a safe exploration of the DRL agent during
its online training process. Sections III-A and III-B provide
an overview of the background of MDP, RL, and SAC, which
is a state-of-the-art DRL method. The state/action space and
reward function for the DRL agent are formulated using the
SACmethod in Section III-C. Section III-D presents a MESS
routing algorithm based on Dijkstra’s algorithm that updates
the states of the MESS (i.e., the current location, arrival time
at the destination, and transit status of the MESS) based on its
action defined in Section III-C. Sections III-E and III-F pro-
pose two safety algorithms that prevent both SOC violations
of MESSs and nodal voltage violations during the training
process by adjusting MESS real charging/discharging power
and MESS/PV reactive power, respectively. Given that the
charging and discharging of MESS influence the voltage
level, the safety algorithm presented in Section III-E is per-
formed prior to the execution of the safety algorithm reported
in Section III-F.

A. MDP AND RL
An MDP is an environment wherein RL methods can be
mathematically formulated. An MDP is defined as a tuple
(S,A,P,R), wherein S and A represent the sets of states
st and actions at at current time t for an RL agent, respec-
tively. P : S × S × A → [0,∞) denotes the transition
probability from the current state st ∈ S to the next state
st+1 ∈ S via action at ∈ A. R : S × A × S → R
represents a numerical reward for the agent transition, where
rt is formulated as rt = R(st , at , st+1). Each transition in
the MDP holds the Markov property (i.e., the state transition
relies only on the current state). The RL agent aims to find an
optimal policy π⋆ that maximizes the discounted cumulative

future rewards J (π ) = E
[∑NT

t=0 γ
trt
]
, where policy π is

the probability distribution over the actions under each state
st ∈ S, (i.e., at ∼ π (·|st)), γ ∈ [0, 1) is the discount rate
that indicates the relative importance of the future reward to
the current reward, and NT is the terminal time of the agent’s
learning process. Concerning the RL method, the state-value
function Vπ (s) and state-action value function Qπ (s, a) are,
respectively, formulated as follows.

Vπ (s) = E
τ∼π

[ NT∑
t=0

γ trt |s0 = s

]
, (24)

Qπ (s, a) = E
τ∼π

[ NT∑
t=0

γ trt |s0 = s, a0 = a

]
(25)
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where τ represents a trajectory of state and action of the agent
under policy π .

B. SAC METHOD
SAC [41] is a state-of-the-art off-policy DRL method that
enhances the sample efficiency and training stability of
a DRL agent, given continuous state and action spaces.
Traditional on-policy DRL approaches need a new sam-
ple from the environment to build a gradient step. This
leads to poor sample efficiency, thereby preventing agents
from performing online training in actual power distribu-
tion grids. However, the off-policy-based SAC approach
learns the optimal policy by maximizing the following
reward function with an additional entropy term:H (π (·|st)):
J (π) = E

[∑NT
t=0 γ

t (rt + αH (π (·|st)))
]
. Here, α repre-

sents the temperature coefficient that determines the relative
importance of the reward and entropy. The entropy term
enables the agent to perform a wider exploration during the
learning procedure and improves the sample efficiency of the
agent. To ensure the stable convergence of the training curves
of the DRL agents using the SAC method, an experience
replay method is employed such that the agent’s experience
at each time step is stored in a replay buffer.

The SAC-basedDRL agent is built on five neural networks:
a critic network comprising twoQ-networks, a value network,
a target network, and an actor network. The two Q-networks
are denoted by θ1 and θ2; the value and target value
networks are denoted by ψ and ψ targ, respectively; and the
actor network is denoted by φ. The value, critic, and actor
networks are updated by minimizing the following three loss
functions, respectively:

JV (ψ) = E
(st ,at )∼D

[
1
2

(
Vψ (st )

− E
at∼πφ

[
min
i=1,2

Qθ i (st , at)− logπφ (at |st)
])2]

(26)

JQ(θ i) = E
(st ,at )∼D

[
1
2

(
Qθ i (st , at )

−

(
rt + γ E

st+1∼P

[
Vψ targ (st+1)

]))2]
(27)

Jπ (φ) = E
st∼D
ξt∼N

[
logπφ(at |st )− min

i=1,2
Qθ i (st , at )

]
(28)

where actions are sampled from a standard normal
distribution ξt (i.e., at = tanh

(
µφ(st )+ σφ(st )⊙ ξt

)
,

ξt ∼ N (0, I)). In this action sampling, µφ and σφ represent
the mean and log standard deviation, respectively, and they
are two outputs of the actor network; ⊙ denotes the dot
product. In addition, a delayed update of the value function
is employed to enhance the training stability of the SAC
agent, wherein the target value network is updated byψ targ =

τψ + (1− τ)ψ targ, where τ is in the range [0,1].

C. MATHEMATICAL FORMULATION FOR DRL AGENT
1) STATE
For each scheduling period t ∈ T = {1, . . . ,T } based on a
15-min resolution, the state of the DRL agent, denoted by st ,
is described as follows.

st = {t,kat , l
c
t ,b

tr
t ,SOCt ,Pload

t ,Qload
t , P̂PV

t }. (29)

In (29), the vector of arrival times of MESSs at EVCSs
after time t is denoted by kat = [ka1,t , . . . , k

a
|M|,t ]. The

vector of current locations of MESSs at time t is defined
as lct = [lc1,t , . . . , l

c
|M|,t ], wherein lcm,t includes both the

location of EVCS im,t ∈ IEVCS and road path r(im,t , jm,t ) ∈
REVCS between EVCSs im,t and jm,t for MESS m at time t .
Note that the arrival time kam,t and road path r(im,t , jm,t )
of MESS m at time t are determined by Dijkstra’s algo-
rithm. The vector of transit statuses of MESSs at time t
is denoted by btrt = [btr1,t , . . . , b

tr
|M|,t ], wherein bm,t rep-

resent the binary transit status of MESS m at time t and
bm,t = 1 on the transit of MESS m at time t; otherwise,
bm,t = 0. The vector of SOCs for the MESSs at time t is
denoted by SOCt = [SOC1,t , . . . , SOC|M|,t ]. The vector of
nodal real (reactive) powers of the loads at time t is defined
as P(Q)loadt = [P(Q)1,t , . . . ,P(Q)|B|,t ]. The vector of the
predicted PV real power generation outputs is denoted by

P̂PV
t = [̂PPV1,t , . . . , P̂

PV
|BPV|,t

].

2) ACTION
The DRL agent computes three types of actions; these actions
are associated with i) road routing (i.e., determination of the
destination with EVCS for MESSs), ii) real/reactive charg-
ing/discharging power dispatch of MESSs, and iii) reactive
power dispatch of PV systems. The action at of theDRL agent
at time t is defined as follows.

at = {ldt ,α
P,MESS
t ,α

Q,MESS
t ,α

Q,PV
t }. (30)

In (30), vector ldt = [ld1,t , . . . , l
d
|M|,t ] represents the sched-

uled destinations for MESSs at time t . Vectors αP,MESS
t =

[αP,MESS
1,1,t , . . . , α

P,MESS
|BMESS|,|M|,t ], α

Q,MESS
t = [αQ,MESS

1,1,t , . . . ,

α
Q,MESS
|BMESS|,|M|,t ], and α

Q,PV
t = [αQ,PV1,t , . . . , α

Q,PV
|BPV|,t

] deter-

mine the dispatched real/reactive power of MESSs and reac-
tive power of PV systems at time t , respectively, where

−1 ≤ αP,MESS
b,m,t , α

Q,MESS
b,m,t , α

Q,PV
b,t ≤ 1. Based on the values of

α
P,MESS
t , αQ,MESS

t , and αQ,PVt , the real and reactive powers of
the MESSs and PV systems are calculated as follows.

Pagentb,m,t = α
P,MESS
b,m,t (1− btrm,t )P

MESS,max
m (31)

Qagent
b,m,t = α

Q,MESS
b,m,t (1− btrm,t )

√
(Sm)2 −

(
Pb,m,t

)2 (32)

Qagent
b,t = α

Q,PV
b,t

√
(Sb)2 −

(̂
Pb,t

)2 (33)

where PMESS,max
m is the maximum limit of the charging/

discharging real power of MESS m; Sm and Sb are the appar-
ent powers of MESS m and the PV system at bus b, respec-
tively. Note that from (31) and (32), the real and reactive
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charging/discharging processes of MESSs are allowed only
when they remain at bus b (i.e., btrm,t = 0).

3) REWARD FUNCTION
The total reward function rt of the DRL agent at time t is
formulated as a weighted multi-negative cost function that
comprises the following five terms.

rt =− ω1

∑
hb∈L

Plosshb,t − ω2

∑
b∈BPV

|1Qb,t |

− ω3

∑
b∈BMESS

∑
m∈M

|1Qb,m,t |

− ω4

∑
m∈M

|1SOCm,t | − ω5

∑
m∈M

1SOC r
m,t (34)

where

Plosshb,t =
rhb
[
(Plinehb,t )

2
+ (Qline

hb,t )
2
]

(V0)2
, ∀hb ∈ L (35)

1Qb,t = Qagent
b,t − Qb,t , ∀b ∈ BPV (36)

1Qb,m,t = Qagent
b,m,t − Qb,m,t , ∀b ∈ B

MESS, m ∈M (37)

1SOCm,t = SOCagent
m,t − SOCm,t , ∀m ∈M (38)

1SOC r
m,T = max(SOC r

m,T − SOCm,T , 0), ∀m ∈M. (39)

Concerning the five cost functions in (34), the first term
is the total real power loss (Plosshb,t ) for all the distribution
lines. This term is formulated in (35). The second and third
terms are the total reactive power mismatches between the
actions (Qagent

b,m,t ,Q
agent
b,t ) and the actual reactive power outputs

(Qb,m,t ,Qb,t ) of MESS m and PV system at bus b and time t ,
respectively. These terms are defined in (36) and (37). The
non-zero reactive power mismatch in (36) and (37) implies
that some voltage violations occur in power distribution sys-
tems when actions are applied. The fourth term is the total
SOC mismatch between the action (SOCagent

m,t ) and actual
SOC (SOCm,t ) of MESS m at time t; this term is defined
in (38). Note that the mismatches of the reactive power and
SOC in the second, third, and fourth terms are significantly
reduced by the safety modules of theMESSs and PV systems,
which is explained in Sections III-E and III-F. The fifth term
is the total positive SOC deviation of the SOC (SOCm,T ) of
MESS m at time T from the required SOC (SOC r

m,T ); this
term is defined in (39). Here, SOC r

m,T guarantees that the
MESS successfully returns to the depot and performs its task
the following day.

D. ROAD ROUTING ALGORITHM OF MESS
In the proposed approach, the traveling statuses of MESSs
in the transportation network are determined by road rout-
ing algorithm based on Dijkstra algorithm, as shown in
Algorithm 1. As a preliminary step, each MESS m obtains
three states (arrival time kam,t at the destination after time t ,
current location lcm,t and transit status btrm,t at time t) and the
action ldm,t of the destination at time t . Given these states and

Algorithm 1 MESS Routing in Transportation Net-
work Based on Dijkstra’s Algorithm
Take the next arrival time kat = [ka1,t , . . . , k

a
|M|,t ],

current location lct = [lc1,t , . . . , l
c
|M|,t ], and the transit

status btrt = [btr1,t , . . . , b
tr
|M|,t ] of MESSs in St ;

Take the destination ldt = [ld1,t , . . . , l
d
|M|,t ] of MESSs

in At ;
foreachMESS m do

if t = kam,t − 1 then (%Case 1)
btrm,t+1 = 0, kam,t+1 = kam,t ,
lcm,t+1 = jam,t , j

a
m,t ∈ IEVCS;

else if t = kam,t then(%Case 2)
if lcm,t = ldm,t then (%Case 2-1)

btrm,t+1 = 0, kam,t+1 = t + 1,
lcm,t+1 = lcm,t , l

c
m,t , l

c
m,t+1 ∈ I

EVCS;
else (%Case 2-2)

btrm,t+1 = 1, kam,t+1 = t + γlcm,t ,ldm,t + 1,

lcm,t+1 = r(lcm,t , l
d
m,t ), l

c
m,t+1 ∈ R

EVCS;
end

else (%Case 3)
btrm,t+1 = 1, kam,t+1 = kam,t ,
lcm,t+1 = lcm,t , l

c
m,t , l

c
m,t+1 ∈ R

EVCS;
end

end

FIGURE 2. Illustrative example of MESS road routing using Algorithm 1.

action, Algorithm 1 calculates the MESS’s next states at time
t + 1 (i.e., btrm,t+1, k

a
m,t+1, and l

c
m,t+1).

Algorithm 1 comprises three cases: when i) MESS is on
the transit one scheduling time unit before arrival at the desti-
nation (Case 1), ii) MESS arrives at the destination (Case 2),
and iii) MESS is on the transit two additional scheduling time
units before arrival at the destination (Case 3). In Case 1, the
MESS travels at time t (btrm,t = 1). Given that it arrives at
the destination at time t + 1 = kam,t , the transit status, arrival
time, and location of the MESS at time t + 1 are updated by
btrm,t+1 = 0, kam,t+1 = kam,t , and l

c
m,t+1 = jam,t , respectively.

Here, jam,t is the index of the next arrival of EVCS when
the MESS departs from current location lcm,t = r(im,t , jm,t ),
which is determined by the agent’s action prior to traveling.
In Case 2, the MESS arrives at its destination at t = kam,t .
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Case 2 is decomposed into two subcases (Cases 2-1 and 2-2)
according to the action of the MESS, i.e., ldm,t . If the MESS
wishes to stay and perform the charging and discharging
processes at the next time (i.e., lcm,t = ldm,t ) (Case 2-1), the
MESS remains at t + 1 (btrm,t+1 = 0, lcm,t+1 = lcm,t ) and
the arrival time is updated by kam,t+1 = t + 1. Otherwise
(Case 2-2), the MESS leaves for another destination deter-
mined by the new action ldm,t (b

tr
m,t+1 = 1) and travels along

the action-related road path lcm,t+1 ∈ R
EVCS at t + 1, which

is updated by lcm,t+1 = r(lcm,t , l
d
m,t ). Additionally, the new

arrival time is updated by kam,t+1 = t + γlcm,t ,ldm,t + 1, where

γlcm,t ,l
d
m,t

represent the traveling time between lcm,t and l
d
m,t .

In Case 2-2, the updates of road path r(lcm,t , l
d
m,t ) and travel-

ing time γlcm,t ,ldm,t between l
c
m,t and l

d
m,t are performed using

Dijkstra’s algorithm. In Case 3, the MESS travels on the road
in consecutive times (btrm,t = btrm,t+1 = 1). Therefore, the
arrival time and road path remain unchanged (kam,t+1 = kam,t ,
lcm,t+1 = lcm,t ). Fig. 2 depicts the road routing of the three
aforementioned cases based on Algorithm 1.

E. A SAFETY MODULE FOR MITIGATING SOC VIOLATION
OF MESS
The SAC-based DRL agent performs a wide exploration
during its training procedure to calculate its optimal action
(Pagentb,m,t in (31)) for the real charging and discharging power
of MESSs. However, during the training procedure, the DRL
agent may conduct unsafe exploration that yields overcharg-
ing (i.e., violation of the maximum SOC limit) and under-
charging (i.e., violation of the minimum SOC limit) of a
MESS. This degrades the performance of the MESS and
reduces its lifetime. To resolve this issue, we propose a safety
module for the DRL agent that enables the MESS to signifi-
cantly reduce SOC violations through safe-exploration-based
real charging and discharging power scheduling during the
training procedure.

After the DRL agent selects its action (Pagentb,m,t ) for MESSm
at bus b and time t with the scheduling time unit1t , the SOC
of the MESS associated with the action is updated as follows.

SOCagent
m,t = SOCagent

m,t−1 +

(
ηchm P

agent
b,m,t − η

tr
mb

tr
m,t

EMESS,max
m

)
1t. (40)

Subsequently, using the updated SOCagent
m,t in (40), the SOC

violation (1SOCv
m,t ) is calculated as follows.

1SOCv
m,t = (1− btrb,m,t )

×
{
[sgn(SOCmin

m − SOCagent
m,t )]+(SOCmin

m − SOCagent
m,t )

− [sgn(SOCagent
m,t − SOC

max
m )]+(SOCagent

m,t − SOC
max
m )

}
(41)

where [x]+ and sgn(x) are denoted as max(x, 0) and
|x|
x , respectively. Based on the SOC violation calculated
using (41), the MESS real charging or discharging power
(Pb,m,t ) that eliminates its SOC violation is determined using

the following equation.

Pb,m,t = Pagentb,m,t +
EMESS,max
m 1SOCv

m,t

ηchm1t
. (42)

Finally, the value of the SOCbetween SOCmin
m and SOCmax

m
is obtained using the following expression.

SOCm,t = SOCagent
m,t +

ηchm1Pb,m,t1t

EMESS,max
m

(43)

where 1Pb,m,t ensures that the real charging or discharg-
ing power of the MESS belongs to its allowable range
[−Pmax

b,m ,P
max
b,m ], which is defined as follows.

1Pb,m,t =Pb,m,t − P
agent
b,m,t − [Pb,m,t − Pmax

b,m ]
+ (44)

+ [−Pmax
b,m − Pb,m,t ]

+. (45)

F. A SAFETY MODULE FOR MITIGATING NODAL VOLTAGE
VIOLATION
The SAC-based DRL agent in charge of VVC using the
MESS and PV system may lead to nodal voltage violations
in power distribution systems through unsafe exploration
with inadequate reactive power dispatch of the MESS and
PV system during the training procedure. To mitigate such
voltage violations, we propose the following iteration-based
safety equations that update the reactive power absorption or
injection from or to the grid for the MESS and PV system,
respectively.

Qb,m,t (k + 1) =Qb,m,t (k)

+ ρMESS
b,m,t

(
Qagent
b,m,t − Qb,m,t (k)

)
(1− btrm,t ) (46)

Qb,t (k + 1) =Qb,t (k)+ ρPVb,t
(
Qagent
b,t − Qb,t (k)

)
. (47)

In (46) and (47), ρMESS
b,m,t and ρPVb,t are adaptive parameters

for the safe operation of the MESS and PV system in view
of maintaining a normal voltage profile, respectively. Qagent

b,m,t
and Qagent

b,t are the reactive powers (actions (32) and (33) of
the DRL agent) of the MESS and PV system, respectively.
Note that from (46), the safe reactive power adjustment of
the MESS can be performed only when the MESS remains
at the EVCS (i.e., btrm,t = 0). Using (46) and (47), the DRL
agent iteratively updates the reactive power of the MESS and
PV system based on their selected actions Qagent

b,m,t and Q
agent
b,t

to mitigate voltage violations. In particular, reactive powers
of the MESS and PV system converge to Qagent

b,m,t and Q
agent
b,t ,

respectively, with increasing iterations k (i.e., Qb,m,t (k) =
Qagent
b,m,t and Qb,t (k) = Qagent

b,t ) when the voltage magnitude is
within the safe range

[
Vmin

+ ϵ,Vmax
− ϵ

]
. In this range, ϵ

indicates the safety margin, which is set with a small positive
constant. The update of the reactive power is terminated when
the maximum or minimum voltage magnitude remains in the
safety margin region (i.e., Vmax

− ϵ ⩽ Vmax(k) ⩽ Vmax and
Vmin

≤ Vmin(k) ≤ Vmin
+ ϵ). In summary, overvoltage and

undervoltage are prevented by the aforementioned iterative
update policy based on the safety-margin region when the

34448 VOLUME 11, 2023



S. Jeon et al.: Safety-Integrated Online DRL for MESS Scheduling and VVC in Power Distribution Networks

FIGURE 3. Illustrative examples of safety modules for the MESS and PV
system with decreasing real and reactive power: (a) real power of MESS;
(b) maximum SOC of MESS; (c) reactive power of PV system; and
(d) minimum voltage magnitude.

maximum and minimum voltage magnitudes approach their
limits, respectively.

During the iterations expressed in (46) and (47), ρMESS
b,m,t and

ρPVb,t are adaptively tuned according to the values of Vmax(k)
and Vmin(k) at iteration k; they are expressed as follows.

ρMESS
b,m,t =0m

(
[sMESS
b,m,t ]

+[Vmax
− ϵ − Vmax(k)]+

+ [−sMESS
b,m,t ]

+[Vmin(k)− Vmin
− ϵ]+

)
(48)

ρPVb,t =0b

(
[sPVb,t ]

+[Vmax
− ϵ − Vmax(k)]+

+ [−sPVb,t ]
+[Vmin(k)− Vmin

− ϵ]+
)
. (49)

In (48) and (49), sMESS
b,m,t and sPVb,t are defined as

sgn(Qagent
b,m,t (k) − Qb,m,t (0)) and sgn(Qagent

b,t (k) − Qb,t (0)),
respectively. 0m and 0b are positive constant parameters;
Vmax(min) is themaximum (minimum) limit of the permissible
voltage magnitude range; and Vmax(min)(k) is the maximum
(minimum) voltage magnitude of the power distribution sys-
tem at the k-th iteration.

Finally, the converged actual reactive power of the MESS
(Q∗b,m,t ) through iterative equation (46) must be within
its allowable range [−Qmax

b,m,t ,Q
max
b,m,t ] where Qmax

b,m,t =√
(Sm)2 −

(
Pb,m,t

)2; it is calculated as follows.

Qb,m,t =Q∗b,m,t − [Q∗b,m,t − Q
max
b,m,t ]

+

+ [−Qmax
b,m,t − Q

∗
b,m,t ]

+. (50)

Figs. 3 show conceptual diagrams that illustrate the oper-
ation of the proposed safety modules for mitigating SOC
and voltage violations, corresponding to Figs. 3(a), (b) and
Figs. 3(c) and (d), respectively. Figs. 3(a) and (b) compare the
real power of MESS m and its SOC at bus b and times t and
t + 1 without and with a safety module, respectively. In the
absence of the safety module, the real power charging action
of the DRL agent is applied to the power distribution system
at time t , which causes an SOC violation of its maximum
limit (0.8) at time t . This violation is aggravated when the
MESS further charges the real power at t + 1. In contrast,

Algorithm 2 Online SAC Algorithm Integrated With
MESS Road Routing and Safety Modules for the
MESS and PV System
Initialize weights of neural networks ψ,ψtarg, θ, φ

and replay buffer D;
repeat

foreach time step t do
Compute the action (30) of the agent:
at = tanh

(
µφ (st)+ σφ (st)⊙ ξt

)
Update btrm,t+1, k

a
m,t+1, and l

c
m,t+1 using

Algorithm 1;
%Safe Exploration for MESS
Charging/Discharging;
Compute SOCs of MESSs using (40);
Update real powers and SOCs of MESSs
using (41)–(45);

Compute the reactive powers of MESSs and
PV systems using (32), (33);

for k=0 to max do (%Safe Exploration for
VVC)

Update reactive powers of MESSs and PV
systems using (46), (47);

end
Obtain the new state st+1 and the reward
r(st , at );
Store a new tuple in the replay buffer D.
D← D ∪ {st , at , rt , st+1}

end
foreach gradient step do

Perform a random sampling of a batch B ∈ D;
Compute the gradient of three loss functions
through (26)–(28);
Update:
ψ ← ψ − δV∇ψJV (ψ)

θ i← θ i − δQ∇θ iJQ (θ i) , with i ∈ {1, 2}

φ← φ − δπ∇φJπ (φ)

ψ targ← τψ + (1− τ)ψ targ
end

until convergence;

using the SOC safety module, the SOC violation is eliminated
by reducing the real charging powers,1Pb,m,t and1Pb,m,t+1,
at times t and t + 1, respectively, which are calculated
using (45). Figs. 3(c) and (d) compare the reactive power of
the PV system at bus b and the minimum voltage magnitude
without and with a safety module, respectively. Without the
safety module, a sudden absorption of the reactive power of
the PV system leads to a voltage violation of its minimum
limit (0.95 p.u.). However, the voltage safety module allows
the PV system to absorb its reactive power while maintaining
the voltage stability. In particular, according to the iterative
equation (47) with the adaptive parameter (49), the reactive
power absorption of the PV system significantly increases
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FIGURE 4. Architecture of the proposed SAC framework integrated with
safety modules and MESS routing algorithm.

TABLE 1. Simulation parameters.

when the minimum voltage magnitude is much higher than
its limit; thereupon, it slowly increases when the minimum
voltage magnitude approaches its safety margin areas with ϵ.
Subsequently, the reactive power and voltage magnitude
become constant during iterations. The safety module for the
MESS is implemented in the same way as the safety module
for the PV system.

Finally, Algorithm 2 summarizes the procedure of the
proposed SAC method integrated with the road routing algo-
rithm for MESSs (Section III-D), and the safety modules
of the MESSs and PV systems (Sections III-E and III-F).
Fig. 4 shows the proposed SAC framework integrated with
safety modules and the MESS routing algorithm in the
CPT network.

IV. SIMULATION RESULTS
A. SIMULATION SETUP
The performance of the proposed SAC algorithm was ana-
lyzed in a coupled IEEE 33-bus power distribution [42] and

FIGURE 5. Coupled IEEE 33-bus power distribution and 15-node
transportation systems.

FIGURE 6. Simulation profile of power distribution and transportation
systems during 24 h: (a) real and reactive power at substation; (b) real
power consumptions of four EVCSs; (c) predicted output of PV real power
generation; and (d) average driving speed of MESSs.

15-node transportation networks comprising three MESSs,
two PV systems, and four EVCSs along with one depot,
as shown in Fig. 5. The values of the simulation parameters
are provided in Table 1. Figs. 6 show the total real and reactive
power supply at the substation, aggregated real power EV
loads of the four EVCSs, predicted output of PV real power
generation, and average driving speed of the MESSs during
the entire scheduling period. The proposed algorithm was
trained and executed for 24 h (T = 96) with a 15-min
scheduling resolution (1t = 15 min). The proposed SAC
and its corresponding MILP methods were simulated on an
AMDRyzen 7with a 3700XEight-Core Processor at 3.6GHz
and 32 GB of RAM using Python with the machine-learning
package Pytorch and MATLAB R2020a with the IBM ILOG
CPLEX Optimization Studio 12.8 solver, respectively.

B. TRAINING RESULTS
Figs. 7 compare two training curves of the total reward and
negative real power loss between the SAC [41] (without
safe exploration), CSAC [34] (with the SOC and voltage
constraints), and proposed SAC methods (with the proposed
safety modules) in the CPT network. Given that the SAC
method has no safety module, the second and third reactive
power mismatch terms in (37) and (36) for the MESSs and
PV systems in the reward function of the proposed SAC
method are replaced by the voltage mismatch term 1Vn,t in
the SAC method, where 1Vn,t is the deviation of the voltage
magnitude from its admissible range [Vmin,Vmax]. Note from
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FIGURE 7. Comparison of training curves between the SAC, CSAC, and
proposed SAC methods for: (a) total reward and (b) negative real power
loss.

FIGURE 8. Comparison of cumulative violations between the SAC, CSAC,
and proposed SAC methods in the coupled IEEE 33-bus power distribution
and 15-node transportation systems for: (a) SOC of MESS and (b) voltage.

Fig. 7(a) that the training curve of the total reward for the
proposed method converges faster than those of the other
SAC and CSAC methods. This phenomenon occurs because
the former negative real power loss included in the total
reward increases more quickly in the early training period
owing to the proposed safety modules than the latter negative
real power loss without and with the conventional SOC and
voltage constraints, as shown in Fig. 7(b).

Figs. 8 compare the cumulative violations of SOCs for
the three MESSs and the voltage magnitude at any bus for
the SAC, CSAC, and proposed SAC methods, respectively.
In these figures, the SOC and voltage violation indicate the
total number of MESSs and buses that reached values of the
SOC and voltage magnitude beyond their acceptable ranges,
i.e. [0.19, 0.8] and [0.95, 1.05] p.u. respectively, during
the entire training period. Note that the original minimum
limit of the MESS SOC was 0.2. However, the SOCs of
MESSs decreased slightly owing to their travels after safe

FIGURE 9. Performance comparison between the SAC, CSAC, and
proposed SAC methods for: (a) minimum voltage magnitude and
(b) minimum and maximum SOCs.

exploration. Therefore, the minimum limit of the MESS
SOC was relaxed to 0.19 with a margin of 0.01. Note from
Fig. 8(a) that no SOC violations occurred for the proposed
SAC method, whereas the number of cumulative SOC vio-
lations for the SAC and CSAC methods increased rapidly
in early stages of the training period and slowly after those
stages. Another observation is that in comparison with the
SAC method, the CSAC method leads to a greater reduc-
tion in SOC violations because the CSAC method considers
the SOC constraints of MESSs during the training process;
however, the CSAC method cannot eliminate SOC violations
completely. Regarding the comparison of the three methods
in terms of voltage violation, similar observations to those
from Fig. 8(a) were also verified in Fig. 8(b): i) no voltage
violations are identified in the proposed SAC method and
ii) the CSACmethod yields a greater reduction in voltage vio-
lations than the SACmethod. The results in Figs. 8(a) and (b)
demonstrate the effectiveness of the proposed safetymodules,
which eliminate SOC and voltage violations completely dur-
ing the training process of the safety-integrated SAC DRL
agent.

Table 2 summarizes the minimum/maximum values of the
voltage magnitude and SOCs of the three MESSs at any
bus along with their corresponding cumulative violations for
the aforementioned three methods during the online training
period. From this table, we point out the following three
observations. First, the proposed SAC method resulted in
no voltage violations with a minimum voltage magnitude of
0.9505 p.u., whereas the SAC and CSAC methods yielded
significant voltage violations with minimum voltage mag-
nitudes of 0.9385 and 0.9389 p.u., respectively. This obser-
vation was verified through Fig. 9(a), which shows that the
proposed SAC method maintained a minimum voltage mag-
nitude larger than 0.95 p.u. during the entire training period,
whereas the SAC and CSAC methods generated a minimum
voltage magnitude significantly less than 0.95 p.u., particu-
larly in early stages of the training period. Second, no SOC
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TABLE 2. Online training performance results in the coupled IEEE 33-bus power distribution and 15-node transportation systems.

FIGURE 10. Routing and real/reactive power charging/discharging schedule of three MESSs using the proposed SAC method: (a) location
of MESS 1; (b) location of MESS 2; (c) location of MESS 3; (d) charging/discharging of MESS 1; (e) charging/discharging of MESS 2; and
(f) charging/discharging of MESS 3.

violations occurred in the proposed SAC method in which
the minimum and maximum SOC values remained within
the acceptable SOC range, i.e., [0.19, 0.8], corresponding to
0.194 and 0.8, respectively. Fig. 9(b) compares the minimum
and maximum values of the SOCs for three MESSs between
the SAC, CSAC, and proposed SAC methods. From this
figure that, it can be verified that in comparison with the SAC
and CSAC methods, which present large fluctuations in SOC
during early stages of the training period, the proposed SAC
method mitigates the SOC violations during such early stages
and maintains the SOC within its permissible range. Third,
the required SOC violations occurred in the training process
of all three methods; however, the number of such violations
was significantly reduced by the proposed SACmethod. This
is because the required SOC mismatch term belongs to the
reward function of the proposed SAC method as a penalty
and the range of the SOC is limited by the SOC safety module
during the entire training period.

C. EXECUTION RESULTS
In this subsection, the execution performance of the pro-
posed SAC method is analyzed and compared with those of
the following four baseline methods: i) no VVC, ii) SAC,
iii) CSAC, and iv) MILP-based optimization. The formula-
tion of the MILP optimization method is based on the sys-
tem model illustrated in Sections II-A–II-C along with the
negative reward function, which is modified according to the
formulation in [22]. Table 3 shows the average real power
loss and number of voltage/SOC/required SOC violations of
the proposed and four baseline methods during the execution
process. Note from the second column of Table 3 that in

TABLE 3. Execution performance results in the coupled IEEE 33-bus
power distribution and 15-node transportation systems.

contrast with no VVC, SAC, and CSAC methods, the pro-
posed SAC method reduces the average real power loss by
28.1%, 4.5%, and 4.3%, respectively. In addition, the average
real power loss of the proposed SAC method was slightly
higher (2.8%) than that of the MILP optimization method.
Note from the third, fourth, and fifth columns of Table 3 that
no voltage/SOC/required SOC violations for the proposed
SAC, MILP, and CSAC methods occurred in the execution
stage, whereas the SAC method did yield some SOC and
required SOC violations. This is because the SAC method
includes neither an SOC constraint and nor its corresponding
safety module for a safe exploration of the agent. This addi-
tionally leads to a slower convergence of the agent’s training
curve when the agent determines the complex routing paths
of the MESSs in the transportation network.

Figs. 10 compare the road routing and charging/discharging
real/reactive power of the three MESSs during the entire
scheduling period. The y-axis in Figs. 10(a)–(c) represent
the indices of the four EVCSs where the MESSs remain
and perform the charging and discharging processes. On the
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FIGURE 11. Reactive power schedule of PV systems using the proposed
SAC method.

FIGURE 12. Coupled IEEE 57-bus power distribution and 42-node
transportation systems.

y-axis in Figs. 10(d)–(f), the positive and negative
real/reactive power correspond to charging and discharging,
respectively. Note from Figs. 10(a)–(c) that in general, the
MESSs are dispatched to EVCSs 2 and 4, where the MESSs
inject real and reactive power into the grid during their
discharging process, as shown in Figs. 10(d)–(f). This is
because the MESSs discharge their real and reactive power
at EVCSs 2 and 4 further away from the substation to
minimize the real power loss while maintaining a normal
voltage profile. In addition, note from Figs. 10(d) and (f) that
MESSs 1 and 3 tend to inject reactive power into the grid
during the scheduling time periods [48, 96], when the grid
has high loading conditions, as shown in Fig. 6(a). This is
because the reactive power injection of theseMESSs prevents
undervoltage violations resulting from high load consump-
tion. Furthermore, the MESSs recharge the real power from
the grid to travel to another EVCS and discharge it to the EVs
as shown in Figs. 10(a)–(c).
Fig. 11 shows the reactive power schedules of two PV sys-

tems using the proposed SAC method. Note from this figure
that the amount of injected reactive power of the PV sys-
tems decreased and increased during the scheduling periods
[36, 72] and [72, 96], respectively. This is because the total net
power consumption (i.e., the difference between the power
at the substation in Fig. 6(a) and the PV generation output
in Fig. 6(c)) was low and high in the former and latter time
periods, thereby injecting less and more reactive power into
the grid to improve the real power loss reduction and voltage
stability, respectively.

D. SCALABILITY
The scalability of the proposed SAC algorithm was validated
in a coupled IEEE 57-bus power distribution [43] and 42-node

FIGURE 13. Comparison of cumulative violations between the SAC, CSAC,
and proposed SAC methods in the coupled IEEE 57-bus power distribution
and 42-node transportation systems for: (a) SOC of MESS and (b) voltage.

transportation networks comprising four MESSs, three PV
systems, and five EVCSs along with one depot, as shown in
Fig. 12. The real and reactive power at substation was scaled
up to be consistent with the IEEE 57-bus power distribution
system’ load data. The real power consumption of addi-
tional EVCS5 was scaled down from that of EVCS 1 in the
IEEE 33-bus power distribution system. The identical simu-
lation parameters in Table 1 were used in the coupled IEEE
57-bus power distribution and 42-node transportation net-
works except the apparent power SPVb = 1200 kVA. All
training performance observations made from Table 2 and
Figs. 8(a) and (b) (IEEE 33-bus power distribution system)
can also be made from Table 4 and Figs. 13(a) and (b) (IEEE
57-bus power distribution system): i) no voltage and SOC
violations and ii) reduction of the required SOC violations
compared to the SAC and CSAC methods. In addition, sim-
ilar to the execution performance results in Table 3 (IEEE
33-bus power distribution system), Table 5 (IEEE 57-bus
power distribution system) shows that the proposed SAC
method removes the voltage and SOC violations completely
and yields slightly greater average real power loss than the
benchmarked MILP optimization method during the execu-
tion process.

The novelty and valuable observations of the proposed
SAC method are summarized as follows.

• To the best of authors knowledge, the proposed approach
is the first SAC-based DRL framework (Algorithm 2)
that jointly schedules the operation of MESSs and
PV systems for VVC considering the road rout-
ing of MESSs (Algorithm 1) and safe exploration
(Sections III-E and III-F) of the DRL agent in the CPT
system.

• In comparison with conventional SAC and CSAC meth-
ods, the proposed safety-integrated SAC approach elim-
inates theMESS SOC and voltage violations completely
during the entire training period of the DRL agent
(see Figs. 7 and Table 2).
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TABLE 4. Online training performance results in the coupled IEEE 57-bus power distribution and 42-node transportation systems.

TABLE 5. Execution performance results in the coupled IEEE 57-bus
power distribution and 42-node transportation systems.

• Compared to no VVC, SAC, and CSAC methods, the
proposed approach further reduces the average real
power loss by 28.1%, 4.5%, and 4.3% during the execu-
tion period of theDRL agent, respectively, while no SOC
and voltage violations occurred. The proposed approach
yielded slightly greater average real power loss (2.8%)
than the benchmarked MILP optimization method
(see Table 3).

V. CONCLUSION
In this study, an SAC-based DRL framework integrated with
a road routing algorithm of MESSs and plug-and-play safety
modules of both MESSs and PV systems was proposed to
jointly conduct the scheduling of MESS and PV system oper-
ations for VVC in a CPT network. Compared to conventional
model-based optimization methods that address uncertain-
ties inadequately along with a large computation time, the
proposed framework is a model-free DRL method that is
computationally efficient and robust in uncertain environ-
ment of the CPT network. Furthermore, compared to con-
ventional safety-constrained DRL algorithms, the proposed
safety modules need no modification of DRL structure so that
they can be easily incorporated into any DRL algorithm. The
proposed framework enables a DRL agent to minimize the
real power loss and satisfy EV loads at EVCSs in the active
power distribution network by i) dispatching the MESSs via
the transportation network to EVCSswhere their real/reactive
power charging and discharging processes are performed,
and ii) regulating the reactive power of MESSs and PV
systems, while ensuring no MESS’ SOC and voltage viola-
tions. The proposed framework was simulated in: i) coupled
IEEE 33-bus power distribution and 15-node transportation
systems comprising two PV systems, three MESSs, and four
EVCSs and ii) coupled IEEE 57-bus power distribution and
42-node transportation systems comprising three PV sys-
tems, four MESSs, and five EVCSs. The simulation results
demonstrated the superior performance of the proposed DRL

approach over conventional DRL approaches in terms of real
power loss, SOC/voltage violation, and convergence speed of
the training curve of the DRL agent.

In the future, we will extend the proposed centralized
DRL framework to a decentralized DRL framework, includ-
ing conventional voltage regulating devices (e.g., OLTCs
and CBs) to reduce the computational complexity. A key part
of this future work is to develop a multi-agent DRL frame-
work in which heterogeneous DRL agents of conventional
voltage regulating devices and smart inverters of MESSs and
PV systems cooperate to maintain stable power distribution
grid operations and support EV loads in CPT networks.
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