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We study hybrid inflation with a pseudo-Nambu-Goldstone boson inflaton and two waterfall scalar
fields. The Z2 symmetry for the waterfall fields keeps the inflaton potential flat against quantum corrections
coming from the waterfall couplings, and it is broken spontaneously in the vacuum without a domain-wall
problem within the Hubble horizon of our Universe. We show that the Z2-invariant Higgs portal couplings
to the waterfall fields are responsible for the reheating process, leading to a sufficiently large reheating
temperature after inflation. In the presence of an extra Z0

2 symmetry, one of the waterfall fields or another
singlet scalar field becomes a dark matter candidate. In particular, we find that preheating is sufficient to
account for the correct relic density of the waterfall dark matter.

DOI: 10.1103/PhysRevD.107.115019

I. INTRODUCTION

Cosmic inflation [1] has been successful for solving
various problems in standard big bang cosmology, such
as the initial conditions for the Friedman-Lemaître-
Robertson-Walker universe (namely, homogeneity, isot-
ropy, and flatness), the inhomogeneities imprinted in the
cosmic microwave background (CMB) anisotropies [2,3],
and large-scale structures. The period of exponential
expansion of the Universe requires a very flat potential
of the scalar field, the so-called inflaton, thus accounting
for the early vacuum energy domination.
On the other hand, the exponential expansion must end

in order to recover the success of big bang cosmology,
namely, big bang nucleosynthesis (BBN). Otherwise, the
Universe would have continued to undergo the exponential
expansion, being left with nothing. This requires the
graceful exit from inflation [4] and the reheating process
[5]. Thus, we need to specify the interactions between the
inflaton and the Standard Model (SM) in order to populate
the SM particles in the postinflation regime.
In chaotic inflation models with a single inflaton [4],

inflation ends due to the violation of the slow-roll con-
dition, so the graceful exit from inflation is naturally
realized. Hybrid inflation [6], on the other hand, requires
at least two scalar fields for inflation and the graceful exit at
the same time. In this case, the inflaton drives a slow-roll

inflation whereas the graceful exit or the violation of the
slow-roll condition is achieved due to the tachyonic
instability of another scalar field [7], the so-called waterfall
field. It is conceivable to have multiple scalar fields in a
UV-complete theory, such as in compactifications of string
theory, so hybrid inflation scenarios are more realistic cases
and even single-field inflation models can be regarded as a
certain limit of decoupling heavy particles.
In this article, we consider a model for hybrid inflation

and its reheating dynamics with a pseudo-Nambu-
Goldstone boson (pNGB) inflaton and two waterfall scalar
fields [8]. In this model, the shift symmetry of the inflaton
ensures a naturally flat potential for the inflaton, whereas
the Z2 discrete symmetry for two waterfall fields [8,9]
renders the inflaton potential insensitive to loop corrections
coming from the couplings between the waterfall fields and
the inflaton.
From the post-inflationary dynamics of the hybrid

inflation, we discuss the preheating effects in the presence
of waterfall-field-dependent masses and the perturbative
decay of the waterfall field for reheating. The Z2-invariant
Higgs portal couplings to the waterfall fields are respon-
sible for reheating. Moreover, focusing on the case that the
twin waterfall field or another singlet scalar field coupled to
the waterfall field is a stable dark matter candidate due to
another Z0

2 symmetry, we also calculate the dark matter
abundance from preheating and/or the perturbative decay of
the oscillating waterfall field.
The paper is organized as follows. We first present the

model setup for hybrid inflation with a pNGB inflaton
and two waterfall fields and the condition for the waterfall
transition and the robustness of the tree-level inflaton
potential in this case. Then, we show the inflationary
predictions of the model, the waterfall field dynamics,
and the vacuum structure, constraining the parameters of
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the waterfall sector. Next, we discuss the preheating effects
from the waterfall transition and the reheating from the
perturbative decay of the waterfall field after preheating. In
the presence of an extra Z0

2 symmetry, we regard the twin
waterfall field as a dark matter candidate and discuss the
preheating and the perturbative decay of the waterfall
field for dark matter production. Finally, we draw our
conclusions.

II. THE MODEL

We consider a pNGB ϕ as the inflaton and two real scalar
fields χ1, χ2 as the waterfall fields in the hybrid inflation
scenarios [8]. We discuss the roles of discrete symmetries
and their origin for the UV-insensitive inflaton potential
and the stability of dark matter.

A. Hybrid inflation

We decompose the scalar potential for the hybrid
inflation into the following:

Vðϕ;χ1;χ2;HÞ ¼ VIðϕÞþVWðϕ;χ1;χ2ÞþVRHðχ1;χ2;HÞ;
ð1Þ

where VIðϕÞ is the inflaton potential, VWðϕ; χ1; χ2Þ is the
waterfall field part consisting of two waterfall fields,
and VRHðχ1; χ2; HÞ is the potential part for reheating the
Universe by the couplings of the waterfall fields to the SM
Higgs H.
Imposing a Z2 discrete symmetry [8,9] with

Z2∶ ϕ → −ϕ; χ1 ↔ χ2; ð2Þ

we take the scalar potential for the hybrid inflation in the
following form:

VIðϕÞ ¼ V0 þ AðϕÞ; ð3Þ

VWðϕ; χ1; χ2Þ ¼ BðϕÞðχ21 − χ22Þ þ
1

2
m2

χðχ21 þ χ22Þ − α2χ1χ2

þ βðχ31 þ χ32Þ þ γðχ21χ2 þ χ1χ
2
2Þ

þ 1

4
λχðχ41 þ χ42Þ þ

1

2
λ̄χχ

2
1χ

2
2

þ 1

3
λ0χðχ31χ2 þ χ1χ

3
2Þ; ð4Þ

and

VRHðχ1; χ2; HÞ ¼ κ1ðχ21 þ χ22ÞjHj2 þ κ2χ1χ2jHj2: ð5Þ

Here, V0 is the constant vacuum energy during inflation,
and AðϕÞ; BðϕÞ are arbitrary functions of ϕ, satisfying
Að−ϕÞ ¼ AðϕÞ and Bð−ϕÞ ¼ −BðϕÞ. The simple choices
for AðϕÞ; BðϕÞ are AðϕÞ ¼ − 1

2
m2

ϕϕ
2 and BðϕÞ ¼ −gϕ.

The renormalizable waterfall field couplings, ϕ2ðχ21 þ χ22Þ,
can also be introduced, being consistent with the Z2

symmetry and contributing to the effective masses for
the waterfall fields during inflation. But, as will be shown
below, the shift symmetry for ϕ makes such higher-order
terms in ϕ naturally suppressed.
In the presence of a separate Z0

2 symmetry acting only
on χ2,

Z0
2∶ ϕ → ϕ; χ1 → χ1; χ2 → −χ2; ð6Þ

we can set α ¼ β ¼ γ ¼ λ0χ ¼ 0 in combination with the Z2

symmetry, and κ2 ¼ 0, so χ2 can be a candidate for dark
matter. In this case, the independent parameters of the
waterfall fields are reduced to λχ ; λ̄χ , and κ1 only.
For the concrete discussion on inflation and the waterfall

transition, in the later analysis we take the inflaton potential
in Eq. (3) and the waterfall field couplings for the inflaton
in Eq. (4) in the following periodic forms [8]:

AðϕÞ ¼ Λ4 cos

�
ϕ

f

�
; ð7Þ

BðϕÞ ¼ −
1

2
μ2 sin

�
ϕ

2f

�
: ð8Þ

Then, the shift symmetry for ϕ is broken into a discrete one,
ϕ → ϕþ 4πf. Expanding the sinuous functions around the
origin, we can have AðϕÞ ≃ Λ4 − 1

2
m2

ϕϕ
2 with m2

ϕ ¼ Λ4

f2 and

BðϕÞ ≃ −gϕ with g ¼ μ2

4f. For hybrid inflation, we need to

choose V0 ≳ Λ4, so the graceful exit from inflation is
possible due to the transition with waterfall fields.
We first identify the inflaton-dependent mass eigenval-

ues for the waterfall fields as

m2
1ðϕÞ ¼ m2

χ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4B2ðϕÞ þ α4

q
; ð9Þ

m2
2ðϕÞ ¼ m2

χ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4B2ðϕÞ þ α4

q
; ð10Þ

and the mixing angle θ between the waterfall fields depends
on the inflaton field as

sin 2θðϕÞ ¼ 2α2

m2
2ðϕÞ −m2

1ðϕÞ
: ð11Þ

Here we can keep the kinetic terms for the waterfall fields
in the approximately canonical forms during the slow-roll
inflation. For α ¼ 0, there is no mixing between the
waterfall fields, so we can just keep track of the waterfall
field χ1 to determine the end of inflation.
During inflation, there is no vacuum expectation value

(VEV) for thewaterfall fields form2
1ðϕÞ > 0 andm2

2ðϕÞ > 0,
namely, for ϕ < ϕc where ϕc satisfies B2ðϕcÞ ¼ m4

χ − α4
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with α < mχ and BðϕÞ is a monotonically increasing
function of ϕ near ϕc, so slow-roll inflation takes place.
For instance, from Eq. (9) with Eq. (8), and setting
m2

1ðϕcÞ ¼ 0, we find the point of the waterfall transition
ϕc as

ϕc ¼ 2f arcsin

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4

χ − α4
q

=μ2
�
; ð12Þ

with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4

χ − α4
q

< μ2 and α < mχ . Then, the waterfall fields

are heavy enough for μ; mχ ≫ HI, withHI being the Hubble
scale during inflation, so we can describe the slow-roll
inflation by the inflaton potential given in Eq. (3) with
Eq. (7). At ϕ ¼ ϕc the waterfall field with mass m1 starts to
become unstable, ending inflation even if the slow-roll
condition for the inflaton direction is not violated.

B. UV-insensitive inflaton potential

The couplings of the waterfall fields to the inflaton give
rise to the corrections to the inflaton potential. As the
waterfall fields have masses much heavier than the Hubble
scale during inflation and they couple to the inflaton for the
waterfall transition, it is important to perform a consistency
check of the waterfall field couplings for inflation.
The waterfall field couplings to the one-loop Coleman-

Weinberg potential for the inflaton in the cutoff regulari-
zation with a cutoff scale M� are as follows:

VCW ¼ 1

64π2
X
i¼1;2

�
2m2

χiM
2� −m4

χi ln
�
e
1
2M2�
m2

χi

��

≃
1

16π2
m2

χM2� −
1

64π2
ðm4

χ þ 4B2ðϕÞ þ α4Þ lnM
2�

m2
χ
:

ð13Þ

Here, a constant vacuum energy proportional toM2� must be
renormalized to get the desirable inflation energy. But, we
find that the quadratically divergent part of the inflaton
potential is canceled between the waterfall fields due to the
Z2 discrete symmetry. On the other hand, there remain the
logarithmically divergent terms of the inflaton potential,
which can be ignored during inflation as long as B2ðϕÞ ≲
16π2jAðϕÞj is satisfied. For instance, for the periodic forms
given in Eqs. (7) and (8), we can set the bound on the loop
corrections as μ2 ≲ 8πΛ2.

C. Origin of discrete symmetries

We comment on the origin of the discrete symmetries for
the inflaton and the waterfall fields. Suppose that a Uð1Þ
global symmetry is broken to a Z4 symmetry, under which
the inflaton ϕ and a complex scalar field Φ transform by

Z4∶ ϕ → ϕ; Φ → −iΦ: ð14Þ

Moreover, we take the CP symmetry in the dark sector as

CP∶ ϕ → −ϕ; Φ → Φ�: ð15Þ

As a result of combining Z4 × CP, we get

Z4 × CP∶ ϕ → −ϕ; Φ → iΦ�: ð16Þ

In this case, writing Φ ¼ 1ffiffi
2

p ðχ1 þ iχ2Þ, we can realize

ϕ → −ϕ and χ1 ↔ χ2 under Z4 × CP, as required for the
Z2 symmetry, thus providing the potential for hybrid
inflation in our model. On the other hand, the separate
Z0
2 symmetry for χ2 corresponds to

Z0
2∶ ϕ → ϕ; Φ → Φ�: ð17Þ

III. INFLATION AND WATERFALL
FIELD DYNAMICS

We now discuss the inflationary predictions of the pNGB
inflation with twin waterfall fields. Ignoring the classical
dynamics of the waterfall fields during inflation, we focus
on slow-roll inflation and the condition for the waterfall
transition. Then, we show how the vacuum structure is
connected to the inflation regime, constraining the waterfall
sector parameters.

A. Inflationary predictions

From the inflaton potential given in Eq. (7), we first
obtain the slow-roll parameters for inflation as

ϵ ¼ M2
PΛ8 sin2ðϕ=fÞ

2f2ðV0 þ Λ4 cosðϕ=fÞÞ2 ; ð18Þ

η ¼ −
M2

PΛ4 cosðϕ=fÞ
f2ðV0 þ Λ4 cosðϕ=fÞÞ : ð19Þ

The number of e-foldings is also obtained as

N ¼ 1

MP

Z
ϕc

ϕ�

1ffiffiffiffiffi
2ϵ

p dϕ

¼ f2

2M2
PΛ4

�
V0 ln

�
tan2

�
ϕc

2f

��
þ Λ4 ln

�
sin2

�
ϕc

f

���
− ðϕc → ϕ�Þ; ð20Þ

where ϕ�;ϕc are the inflaton field values at the horizon exit
and at the end of inflation, respectively.
For V0 ≫ Λ4 for hybrid inflation, the slow-roll param-

eters and the number of e-foldings are approximated [8] as

η� ≃ −
M2

PΛ4

f2V0

cosðϕ�=fÞ; ð21Þ
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ϵ� ≃
M2

PΛ8

2f2V2
0

sin2ðϕ�=fÞ; ð22Þ

N ≃
f2V0

M2
PΛ4

ln

�
tanðϕc=ð2fÞÞ
tanðϕ�=ð2fÞÞ

�
: ð23Þ

As a result, the spectral index and the tensor-to-scalar ratio
can be determined by

ns ¼ 1þ 2η� − 6ϵ�; ð24Þ

r ¼ 16ϵ�: ð25Þ

The CMB normalization, As ¼ 1
24π2

V0þΛ4

ϵ�M4
P
≃ 2.1 × 10−9,

leads to

r ¼ 3.2 × 107 ·
V0

M4
P
: ð26Þ

The observed spectral index from Planck data, ns ¼
0.967� 0.0037 [2], sets 2η� ≃ −0.0033, because ϵ� ≪
jη�j in our case. We note that the critical value ϕc of the
inflaton should satisfy ϕ� ≲ ϕc ≲ f for the number of
e-foldings, N ¼ 50–60, to solve the horizon problem.
Moreover, from the Planck bound on the tensor-to-scalar
ratio, r < 0.036 [3], we can constrain the Hubble scale
during inflation as HI < 4.6 × 1013 GeV.
We can check the parameter space for inflation in

our model by writing Eqs. (23), (24), and (26) with
H2

I ≃ V0=ð3M2
PÞ in the parametrization

ns ≃ 1þ 2η� ≃ 1−
jm2

ϕj
3H2

cosðϕ�=fÞ; jm2
ϕj ¼

Λ4

f2
; ð27Þ

N ¼ cosðϕ�=fÞ
jη�j

ln

�
tanðϕc=ð2fÞÞ
tanðϕ�=ð2fÞÞ

�
; ð28Þ

HI

f
¼ 2.9 × 10−4jη� tanðϕ�=fÞj; ð29Þ

together with Eq. (12). Equation (29) leads to the corre-
lation between the axion decay constant and the Hubble
scalar during inflation. Choosing jη�j ¼ 0.033=2 to get a
consistent spectral index and cosðϕ�=fÞ ¼ 0.95, we get
f ≃ 6.4 × 105HI . Thus, the decay constant for the pNGB
inflaton is much larger than the Hubble scale, so the Uð1Þ
global symmetry associated with the inflaton is broken
during inflation. As we vary the Hubble scale during
inflation [8], we can adjust f; jm2

ϕj, and μ ∼mχ to maintain
successful predictions for inflation while the waterfall
fields remain safely decoupled during inflation.

B. Waterfall field dynamics

The waterfall field in the direction with m2
1 < 0 starts

rolling fast at ϕ ¼ ϕc and develops a nonzero background
field. Then, the effective inflaton mass squared from ∂

2V
∂ϕ2 is

modified to

m2
ϕ;eff ¼ −

Λ4

f2
cos

�hϕi
f

�
þ μ2

8f2
ðhχ21i − hχ22iÞ sin

�hϕi
2f

�
;

ð30Þ

where hi denotes the background field values. As a result,
the inflaton settles down to a stable minimum near
ϕ=f ¼ π, which is the common minimum for the inflaton
potential and the waterfall-induced potential. On the other
hand, the waterfall field masses are of order μ ∼mχ even
after inflation ends, as will be shown below.
After inflation ends, we consider the post-inflation

dynamics using the Boltzmann equations for scalar fields
and the radiation energy density ρR,

ϕ̈þ 3H _ϕ ¼ −Γϕ
_ϕþ Λ4

f
sin

�
ϕ

f

�
þ μ2

4f
cos

�
ϕ

2f

�
ðχ21 − χ22Þ;

ð31Þ

χ̈1 þ 3H _χ1 ¼ −Γχ1 _χ1 þ μ2 sin

�
ϕ

2f

�
χ1 −m2

χχ1

− α2χ2 − λχχ
3
1 − λ̄χχ1χ

2
2; ð32Þ

χ̈2 þ 3H _χ2 ¼ −Γχ2 _χ2 − μ2 sin

�
ϕ

2f

�
χ2 −m2

χχ2

− α2χ1 − λχχ
3
2 − λ̄χχ

2
1χ2; ð33Þ

_ρR þ 4HρR ¼ Γϕ
_ϕ2 þ Γχ1 _χ

2
1 þ Γχ2 _χ

2
2; ð34Þ

and the Friedmann equation,

H2 ¼ ρI þ ρR
3M2

P
; ð35Þ

where ρI is the sum of energy densities for the inflaton and
the waterfall fields, given by

ρI ¼
1

2
_ϕ2 þ 1

2
_χ21 þ

1

2
_χ22 þ V: ð36Þ

Here, we maintain the homogeneity for scalar fields in
space, but quantum fluctuations can give rise to nontrivial
momentum modes of scalar fields during preheating or
nonperturbative reheating, as will be discussed in the
next section.
During the waterfall transition, the effective masses for

the Higgs fields and the waterfall fields vary with time due
to their couplings. We set the waterfall field χ2 to zero at the
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onset of the waterfall transition. Then, we find that the
effective masses for the Higgs field and the waterfall field
χ2 take the following simple forms:

m2
H;eff ¼ m2

H;0 þ κ1χ
2
1ðtÞ; ð37Þ

m2
χ2;eff

¼ m2
χ2;0

þ λ̄χχ
2
1ðtÞ; ð38Þ

where m2
H;0; m

2
χ2;0

are the squared bare masses, being
independent of the field value of χ1.

C. Vacuum structure

We discuss the vacuum structure for the inflaton and the
waterfall fields.
In the presence of a separate Z0

2 symmetry for χ2, which
sets α ¼ β ¼ γ ¼ λ0χ ¼ 0 in the waterfall sector potential,
the vacuum structure gets simplified due to the unique
minimum of the potential at hϕi ¼ πf, hχ1i ¼ vχ , and
hχ2i ¼ 0, with

vχ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

χ

λχ

s
≡

ffiffiffiffiffiffi
m2

1

λχ

s
: ð39Þ

Then, the cosmological constant during inflation
can be fine-tuned to the observed value in the true
vacuum, if

V0 − Λ4 −
1

4
λχv4χ ≃ 0; ð40Þ

thus constraining the parameters of the waterfall fields. We
note that in the situation where there is no Z0

2 symmetry [8],
α ≠ 0 gives rise to a nonzero VEV for the waterfall field χ2,
so, in general, the Z2 symmetry is broken in the vacuum
because hχ1i ≠ hχ2i. Henceforth, we focus on the case with
the Z0

2 symmetry for reheating and dark matter production.
There might be a concern regarding the domain-wall

problem in our model, because the Z2 symmetry for the
waterfall fields is broken spontaneously in the vacuum.
Namely, the vacuum A with hϕi ¼ πf, hχ1i ¼ vχ , and
hχ2i ¼ 0 is degenerate in energy with the vacuum B with
hϕi ¼ −πf, hχ1i ¼ 0, and hχ2i ¼ vχ . However, the inflaton
direction is chosen to take positive values during the hybrid
inflation and the Universe evolves only to the vacuum A
through the waterfall transition, as discussed above. Thus,
domain walls could be formed in the entire space, but the
regions evolving into the vacuum B are beyond the Hubble
horizon during the hybrid inflation and remain so at
present, so there is no observable signature of the domain
walls in the current Universe. As will be discussed later, the
reheating temperature is smaller than the tachyonic mass of
the waterfall field, the Z2 symmetry is not restored, and a
domain-wall problem does not occur even after reheating.

Here we comment on the constraints on the parameters of
the waterfall fields from the vacuum structure. ForV0 ≫ Λ4,
Eqs. (39) and (40) give rise to 4V0=λχ ¼ v4χ ¼ m4

1=λ
2
χ .

Then, the quartic coupling and the VEV for the waterfall
fields are related to the dimensionful parameters of the
inflation as follows:

λχ ¼
m4

1

4V0

¼ 1.4 × 10−20
�

m1

100HI

�
4
�

HI

105 GeV

�
2

; ð41Þ

vχ ¼
ffiffiffiffiffiffiffiffi
4V0

m2
1

s
¼ 0.035MP

�
100HI

m1

�
: ð42Þ

Therefore, since HI ≲ 1.6 × 1010 GeV for f ≲ 1016 GeV,
the waterfall self-coupling λχ is smaller than about 10−10 for
μ≳ 100HI, and the VEVof the waterfall field vχ is not far
from the Planck scale.
Next, expanding around the VEV by ϕ ¼ vϕ þ a and the

waterfall fields as χ1 ¼ vχ þ χ̃1, we obtain the inflaton
mass and the mass eigenvalues for the waterfall fields in the
true vacuum as

m2
a ¼

1

f2

�
Λ4 þ 1

8
μ2v2χ

�
; ð43Þ

m2
χ̃1
¼ 2λχv2χ

¼ 2ðμ2 −m2
χÞ; ð44Þ

m2
χ2 ¼ μ2 þm2

χ þ λ̄χv2χ

¼ μ2 þm2
χ þ

λ̄χ
λχ

ðμ2 −m2
χÞ: ð45Þ

We also note that the vacuum stability for the waterfall field
potential requires λχ > 0 and λχ þ λ̄χ > 0 for λ̄χ < 0.
We find that the inflaton mass receives a tree-level

correction due to the waterfall field coupling. Using
jη�j ¼Λ4 cosðϕ�=fÞ=ðf2H2

I Þ¼ 0.033=2, with cosðϕ�=fÞ ¼
0.95 at horizon exit, f ¼ 6.4 × 105HI , and r≡ μ=mχ ≳ 1,
we can rewrite the effective inflaton mass as

m2
a¼0.0495

H2
I

cosðϕ�=fÞ
þð3×10−9Þ

�
r2

r2−1

��
m1

100HI

�
2

v2χ :

ð46Þ

Thus, as compared to the tachyonic mass for the waterfall
field, we recall that m2

1 ¼ λχv2χ , with λχ ≲ 10−10, so the
effective inflaton mass is much heavier than that of the
waterfall fields. Therefore, the inflaton rapidly settles down
to the minimum of the potential, so it does not influence the
reheating dynamics with the waterfall fields. It is also
possible to reheat the Universe from the inflaton energy
density in the presence of interactions between the inflaton
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and the SM particles, but reheating is dominated by the
waterfall fields because V0 ≫ Λ4.
For mχ̃1 < 2mχ2, namely, for ð1þ 2αXÞðμ=mχÞ2þ

3 − 2αX < 0, with αX ¼ λ̄χ=λχ , the waterfall field χ̃1 could
not decay into a χ2 pair. This is the case in most of the
parameter space where μ > mχ (waterfall condition) and
αX > −1 (vacuum stability), so dark matter χ2 is not
produced from the decay of the waterfall field χ1.
However, as will be shown below, dark matter χ2 can still
be produced abundantly during preheating.
Moreover, we find the leading interaction terms between

the inflaton a, the mass eigenstates of the waterfall fields
χ̂1;2, and the Higgs boson h as follows:

Lint ¼
μ2

8f2
vχa2χ̃1 þ

μ2

16f2
a2ðχ̃21 − χ22Þ

− λ̄χvχ χ̃1χ22 − κ1vχ χ̃1h2 þ � � � : ð47Þ

Thus, we find that the inflation has no quadratic divergent
mass correction thanks to the Z2 symmetry. The logarith-
mic radiative corrections to the inflaton mass are present
due to the cubic interactions in the first line of Eq. (47). We
note that the decay modes, χ̃1 → aa; χ2χ2, are kinemati-
cally blocked in most of the parameter space, but χ̃1 → hh
is open for reheating.

IV. REHEATING AND DARK MATTER
PRODUCTION

We first discuss the preheating effects from the waterfall
transition and the reheating from the perturbative decay of
the waterfall field. Then, we show the time evolution of
the radiation energy density and determine the maximum
temperature and reheating temperature. We apply the
results to obtain the relic density for dark matter.

A. Preheating

After the end of inflation, the equations of motion for
scalars, ψ ¼ H; χ2, can be written in terms of the rescaled
field, φ ¼ aψ , as follows:

φ00 − ∂
2
iφþ

�
m2

ψ ;effa
2 þ ð6ζψ − 1Þ a

00

a

�
φ ¼ 0; ð48Þ

where ζψ is the nonminimal coupling of the scalar field ψ
and we define the conformal time η ¼ R

dt=aðtÞ, with aðtÞ
being the scale factor. In the case with ζψ ¼ 1

6
, we get the

total number density of produced particles at the end of the
waterfall transition as

nψ ¼ 1

2π2

Z
∞

0

dk k2nψk ; ð49Þ

where

nψk ¼ −
gψ
2
þ 1

2ωk
ðjv0kj2 þ ω2

kjvkj2Þ; ω2
k ¼ k2 þm2

ψ ;eff :

ð50Þ

Here, vk is the mode function for the scalar field, and gψ is
the number of degrees of freedom for ψ ¼ H; χ2. For
ζψ ≠ 1

6
, the Hubble expansion also affects the evolution of

the scalar field.
We take the effective time-dependent scalar masses due

to the waterfall transition [10] as

m2
ψ ;effðtÞ ¼ m2

ψ ;0 þ
1

4
cψv2χð1þ tanh λðt − t�ÞÞ2; ð51Þ

where m2
ψ ;0 are the bare masses and cψ are the couplings of

the waterfall field χ1, given by cψ ¼ κ1; λ̄χ for ψ ¼ H; χ2,
respectively. Here, λ is the strength of the waterfall
transition, given by λ ¼ m1=2, with m1 ¼

ffiffiffiffiffi
λχ

p
vχ being

the tachyonic mass of the waterfall field χ1. t� ≃
lnð32π2=λχÞ=ð2m1Þ is the duration time of the waterfall
transition [10], which is given by t� ≃ 14=m1 − 26=m1 for
λχ ¼ 10−20–10−10. As m1 ≫ Hend, the waterfall transition
takes place in less than one Hubble time and finishes
rapidly. Thus, the Hubble expansion can be ignored during
the waterfall transition, allowing us to set the scale factor to
a ¼ 1, so the situation does not change even for ζψ ≠ 1

6
.

For a scalar field ψ with the effective mass given in
Eq. (51), and following the general formalism for particle
production in Refs. [11–13], we obtain the number density
of produced particles with momentum k as

nψk ¼ coshðπðwψ ;2 − wψ ;1Þ=λÞ þ coshð2πδÞ
2 sinhðπωψ ;1=λÞ sinhðπωψ ;2=λÞ

; ð52Þ

where w2
ψ ;1 ¼ k2 þm2

ψ ;0, w2
ψ ;2 ¼ k2 þm2

ψ ;0 þ cψv2χ , and

δ ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cψv2χ
λ2

− 1

q
. Therefore, we obtain the energy density

of the produced particles at the end of the waterfall
transition as

ρψðt�Þ ¼
gψ
2π2

Z
∞

0

dk k2nψk wψ ;2: ð53Þ

As a consequence, the ratio of the produced energy
density to the initial vacuum energy density, V0 ≃ 1

4
λχv4χ ¼

m4
1

4λχ
, is given by

ρψðt�Þ
V0

¼ 2gψλχ
π2

Z
∞

0

dκ κ2nψk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þm2

ψ ;0

m2
1

þ αψ

s
; ð54Þ

with κ ¼ k=m1 and αψ ¼ cψ=λχ . In order to compare our
results with lattice calculations [10], for mψ ;0 ¼ 0 we quote
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the numerical solution for ρψ ðt�Þ
V0

in terms of a fitting

function, fðα; γÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
αþ γ2

p
− γ [10], as follows:

ρψ ðt�Þ
V0

¼ 2 × 10−3gψλχfðαψ ; 1.3Þ: ð55Þ

Similarly, the numerical result for the number density at
the waterfall transition is given by [10]

nψðt�Þ ¼ 10−3gψm3
1fðαψ ; 1.3Þ=αψ : ð56Þ

In Fig. 1 we depict the analytic and numerical results for
ρH=V0 for the Higgs as a function of αH ¼ κ1=λχ as red and
blue lines, respectively. We set the bare Higgs mass to
mH;0 ¼ 0. The analytic result is based on the formula in
Eq. (54), while the numerical result is taken from Eq. (55).
For αH ≳ 0.1, the analytic and numerical results agree. The
black dashed line corresponds to the case of instantaneous
reheating.

B. Reheating completion

At the end of preheating, the waterfall fields reach the
minimum of the scalar potential and start oscillating around
it. Then, if preheating is not efficient, we can determine the
reheating temperature from the perturbative decay of the
waterfall field condensate into an SM Higgs pair as

TRH ¼
�

90

π2gRH

�
1=4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MPΓχ1→hh

p
; ð57Þ

where gRH is the number of relativistic degrees of freedom
at reheating completion and Γχ1→hh is the partial decay rate
for χ1 → hh.

Expanding the waterfall field as χ1ðtÞ ¼ vχ þ χcðtÞ, with
χcðtÞ being the waterfall condensate, we note that the total
decay rate of the waterfall condensate is

Γχ1 ¼ Γχ1→hh þ Γχ1→χ2χ2 ; ð58Þ

with

Γχ1→hh ¼
κ21v

2
χ

2πmχ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
H

m2
χ1

s
; ð59Þ

Γχ1→χ2χ2 ¼
λ̄2χv2χ
2πmχ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
χ2

m2
χ1

s
: ð60Þ

Then, ignoring the Higgs and χ2 masses, we obtain the
approximate reheating temperature as

TRH ≃
�

90

π2gRH

�
1=4

�
κ21

4πλχ

�
1=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MPmχ1

p
: ð61Þ

Therefore, for Γχ1 ≪ HI ∼mχ1, namely, κ21 ≪ 4πλχ , and
taking HI ≲ 1.6 × 1010 GeV for f ≲ 1016 GeV, we get the
reheating temperature as TRH ≪ 1014 GeV.
More concretely, from Eq. (61) with λχ ¼ m4

1=ð12H2
IM

2
PÞ

in Eq. (41), we can rewrite the reheating temperature as

TRH ≃ 0.04αHm1

�
100

gRH

�
1=4

�
m1

MP

�
1=2

�
m1

HI

�
: ð62Þ

Thus, takingm1∼100HI ≪MP, withHI ≲ 4.6 × 1013 GeV
[from the bound on the tensor-to-scalar ratio belowEq. (26)],
for αH ≲ 10, we find that the reheating temperature is
smaller than the tachyonic mass of the waterfall field, so
the domain-wall problemwill not occur even after reheating,
as mentioned in Sec. III C.
The waterfall transition takes place faster than the

Hubble expansion, so preheating is instantaneous. But, if
the reheating during the waterfall oscillation is sizable and
it is not instantaneous, the number of e-foldings required to
solve the horizon problem [14,15] is modified to

N ¼ 61.1þ ΔN − ln

�
V1=4
0

Hk

�
−

1

12
ln

�
gRH

106.75

�
; ð63Þ

where the correction to the number of e-foldings due to the
noninstantaneous reheating is given by

ΔN ¼ 1

12

�
3w − 1

wþ 1

�
ln

�
45ρχ1ðt�Þ
π2gRHT4

RH

�
: ð64Þ

Here, ρχ1ðt�Þ ¼ V0 − ρRðt�Þ is the energy density of
the waterfall field at the end of the waterfall transition
and w is the equation of state for the waterfall condensate.

FIG. 1. Analytic and numerical solutions for ρH=V0 from
preheating as a function of αH ¼ κ1=λχ (red and blue lines,
respectively).
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Here, Hk is the Hubble parameter evaluated at the horizon
exit for the Planck pivot scale, k ¼ 0.05 Mpc−1, and w is
the averaged equation of state during reheating. Then,
taking w ¼ 0 for V0 ≳ ρRðt�Þ and gRH ¼ 106.75 in
Eq. (64), we obtain the number of e-foldings as

N ¼ 51.3 −
1

3
ln

�
HI

1.6 × 1010 GeV

�

−
1

12
ln

�
1 −

ρRðt�Þ
V0

�
þ 1

3
ln

�
TRH

1014 GeV

�
: ð65Þ

As a result, we conclude that there is a wide range of the
parameter space for a successful inflation, and a sufficiently
large reheating temperature is achieved due to the decay of
the waterfall field.

C. Time evolution of radiation energy density

Here we discuss the time evolution of the waterfall and
radiation energy densities after preheating and determine
the reheating temperature.
After preheating, we consider the Boltzmann equations

in the presence of the coherent oscillation of the waterfall
field as follows:

_ρR þ 4HρR ¼ Γχ1→hhρχ1 ; ð66Þ

_ρχ1 þ 3Hρχ1 ¼ −Γχ1ρχ1 ; ð67Þ

with

H2 ¼ ρR þ ρχ1
3M2

P
: ð68Þ

We take the initial condition for the waterfall energy density
at preheating as ρχ1ðt�Þ ¼ V0 − ρRðt�Þ, where ρRðt�Þ ¼ ρH
is the radiation energy density from preheating. For a
constant decay rate, Γχ1 ≃ Γχ1→hh, we obtain the analytic
solutions to the above Boltzmann equations as [16]

ρχ1ðtÞ ¼ ρχ1ðt�Þ
�
aðtÞ
a�

�
−3
e−Γχ1

ðt−t�Þ; ð69Þ

ρRðtÞ ¼ ρχ1ðt�Þ
�
aðtÞ
a�

�
−4
�
ρRðt�Þ
ρχ1ðt�Þ

þ
Z

u

u�

�
aðuÞ
a�

�
eu�−udu

�
:

ð70Þ

Here, u ¼ Γχ1t and u� ¼ Γχ1t�.
Combining Eq. (68) and the effective continuity equation

for the total energy density, ρ ¼ ρχ1 þ ρR, given by

_ρþ 3Hρð1þ wðtÞÞ ¼ 0; ð71Þ

with wðtÞ being the effective equation of state, we find the
total energy density as

ρðtÞ ¼ V0

�
1þ

ffiffiffiffiffiffiffiffiffi
3

4
V0

r
ð1þ w̄Þ t − t�

MP

�
−2
; ð72Þ

where

w̄ðtÞ ¼ 1

t − t�

Z
t

t�
dt0 wðt0Þ: ð73Þ

Here we used ρχ1 þ ρR ≃ V0 at the waterfall transition.
Then, for a slowly varying w̄, we also obtain the scale factor
as a function of time,

aðtÞ
a�

≃
�
1þ

ffiffiffiffiffiffiffiffiffi
3

4
V0

r
ð1þ w̄Þ t − t�

MP

�2
3

1
1þw̄

: ð74Þ

Setting w̄ ¼ 0 for the waterfall field oscillation near
the quadratic potential and using the results in Eqs. (70)
and (74), we get the total radiation energy density after
preheating as follows:

ρRðtÞ ¼ ρχ1ðt�Þ
�
1þ v

A

�
−8=3

×

�
ρRðt�Þ
ρχ1ðt�Þ

þ
Z

v

0

�
1þ v0

A

�
2=3

e−v
0
dv0

�
; ð75Þ

where v≡ Γχ1ðt − t�Þ and

A ¼ Γχ1

mχ1

�
3

4

V0

m2
χ1M

2
P

�
−1=2

¼ 4

ffiffiffi
2

3

r
Γχ1

mχ1

�
vχ
MP

�
−1
: ð76Þ

Here we used V0 ¼ m4
1

4λχ
and m2

1 ¼ λχv2χ ¼ m2
χ1=2 in the

second line of Eq. (76).
In Fig. 2 we depict the time evolution of ρχ1 ; ρR as

functions of Γχ1ðt − t�Þ (blue and red solid lines, respec-
tively) for HI ¼ 106; 1010 GeV in the left and right plots.
We find that the reheating temperature TRH is determined
from ρR ¼ ρχ1 , for which Γχðt − t�Þ ∼ 1. Thus, the results
are consistent with the identification of the reheating
temperature by Eq. (57) with Γχ1 ≃ Γχ1→hh.
The second term from reheating in Eq. (75) is maximized

at vmax ¼ Γχ1ðtmax − t�Þ ¼ 0.80A, resulting in the maxi-
mum radiation energy,

ρRðtmaxÞ ¼ 1.8−8=3ðρRðt�Þ þ 1.0Aρχ1ðt�ÞÞ: ð77Þ

Therefore, for ρRðt�Þ≲ V0 and ρχ1ðt�Þ ≃ V0, we get the
maximum ratio of reheating to preheating contributions to
the radiation energy density as
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Rrh ≡ 1.0Aρχ1ðt�Þ
ρRðt�Þ

≃ 1600
Γχ1=mχ1

λχfðαH; 1.3Þ
�
vχ
MP

�
−1

≃ 130
α2H

fðαH; 1.3Þ
�
vχ
MP

�
−1
: ð78Þ

Here we used Eq. (76) and the numerical result for
preheating with the Higgs coupling, αH ¼ κ1=λχ , in
Eq. (55), and took Eq. (58) in the second equality. Thus,
from Eq. (78) and with Eq. (42), we find that

Rrh ≃ 3700
α2H

fðαH; 1.3Þ
�

m1

100HI

�
: ð79Þ

In Fig. 3 we show the fraction of the radiation energy in
the waterfall energy density at the end of inflation, ρR=V0,
as a function of αH ¼ κ1=λχ , for preheating (blue solid line)
and the decay of the waterfall field (purple dashed line).
For comparison, we also show the case for instantaneous
reheating, ρR=V0 ¼ 1 (black dashed line). Then, for
m1 ¼ 100HI, we get Rrh ≳ 1 for αH ≳ 2.6 × 10−5, so the
decay of the waterfall field is dominant for reheating.
For Rrh ≳ 1 and A ≪ v ≪ 1, we can approximate

Eq. (75) to

ρR ≃
4

5
ðΓχ1MPÞ2v−1 ¼

π2

30
g�T4 ð80Þ

and rewrite the scale factor in Eq. (74) as a function of the
radiation temperature T as

�
a
a�

�
3

≃
�
v
A

�
2

¼
�
24Γ2

χ1M
2
P

g�π2AT4

�
2

: ð81Þ

So, choosing T ¼ TRH in the above result, we can take into
account the redshift factor from the waterfall transition to
the reheating completion.
In Fig. 4 we show the maximum and reheating temper-

atures as functions of αH ¼ κ1=λχ (red solid and dashed
lines, respectively). We chose HI ¼ 106; 108; 1010 GeV
from left to right. The lower bound on the reheating
temperature for BBN is set to TBBN ¼ 10 MeV (blue
dashed lines) and the black dashed lines correspond to
instantaneous reheating, for comparison. Consequently, for
a relatively small Hubble scale as in the left plot, the
waterfall coupling to the Higgs field should be sizable for a
successful reheating; for instance, αH ≳ 5 × 10−6 for

FIG. 2. ρχ , ρR as functions of Γχ1ðt − t�Þ (blue and red solid lines, respectively). Red dashed lines correspond to the reheating
completion. We take αH ¼ 0.01 and m1 ¼ 100HI for both plots, and HI ¼ 106; 1010 GeV in the left and right plots, respectively.

FIG. 3. ρR=V0 as a function of αH ¼ κ1=λχ , from preheating
(blue solid line) and its maximum value from the decay of the
waterfall field (purple dashed line). We take m1 ¼ 100HI . The
black dashed line corresponds to the instantaneous reheating.
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HI ¼ 106 GeV. However, for a high Hubble scale, as in the
middle and right plots, small waterfall couplings can be
compatible with BBN, for which the preheating effect as
shown in Fig. 3 becomes important for reheating.

D. Dark matter production

If theZ0
2 symmetry for thewaterfall field χ2 is unbroken in

the vacuum, the waterfall field χ2 can be a dark matter
candidate. Darkmatter can be produced from preheating, but
there is no production from the decay of thewaterfall field χ1
due to the kinematic blocking, namely, mχ̃1 < 2mχ2 , from
Eqs. (44) and (45).
From the result in Eq. (55), preheating leads to the

number density for dark matter X ¼ χ2 as

nXðt�Þ ¼ 10−3m3
1fðαX; 1.3Þ=αX; ð82Þ

with αX ¼ λ̄χ=λχ . Then, the number density produced from
preheating becomes redshifted at the reheating temperature
as follows:

npreX ðTRHÞ ¼
�

a�
aðtRHÞ

�
3

nXðt�Þ ¼
�
g�π2AT4

RH

24Γ2
χ1M

2
P

�
2

nXðt�Þ;

ð83Þ
where Eq. (81) at the reheating temperature is used in the
second equality. As a result, the relic density for dark matter
χ2 at present is given by

ΩDMh2 ¼
mχ2nXðt0Þ
ρc=h2

¼ 5.9 × 106
�
npreX ðTRHÞ

T3
RH

��
mχ2

1 GeV

�
: ð84Þ

FIG. 4. Maximum and reheating temperatures as functions of αH ¼ κ1=λχ (red solid and dashed lines, respectively) for HI ¼
106; 108; 1010 GeV from left to right. We takemψ ;0 ¼ 0 and m1 ¼ 100HI . Black dashed lines correspond to the instantaneous reheating
and blue dot-dashed lines correspond to TRH ¼ 10 MeV, which is the lower bound from BBN.

FIG. 5. Parameter space satisfying the relic density (red lines). Left: HI vs αH with the relic density from dark matter χ2. We choose
mX ¼ 1.2m1 and draw the with reheating temperature contours TRH ¼ 102; 104; 106 GeV (blue dashed, dotted, and dot-dashed lines,
respectively). The results are insensitive to αX ¼ λ̄χ=λχ as long as αX ≲ αH. Middle and right: mS vs αS with the relic density from dark
matter S. We choose αH ¼ 10−2 for both plots, butHI ¼ 106; 108 GeV in the middle and right plots, respectively. We takem1 ¼ 100HI
for all plots.
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In the left plot of Fig. 5 we show the parameter space for
HI vs αH ¼ κ1=λχ , satisfying the relic density for dark
matter χ2 (red line). We take the dark matter mass to be
mX ¼ 1.2m1 and m1 ¼ 100HI . The results are insensitive
to the dark matter coupling αX as long as αX ≲ αH because
the numerical formula for the number density of dark
matter in Eq. (82) does not depend much on αX. We also
show the contours of the reheating temperature TRH ¼
102; 104; 106 GeV (blue dashed, dotted, and dot-dashed
lines, respectively). In this case, we find that the correct
relic density can be achieved for αH ¼ 0.1–10−7 and
HI ¼ 2 × 108–1010 GeV. Thus, we need a relatively high
reheating temperature for the relic density.
Suppose that there is a real scalar dark matter S that does

not participate in the waterfall transition, transforms by
S → −S under the Z0

2 symmetry, and takes the following
effective squared mass:

m2
S;eff ¼ m2

S;0 þ λSχ
2
1ðtÞ; ð85Þ

where m2
S;0 is the squared bare mass and λS is the coupling

between S and the waterfall field χ1. Then, S particles can
be produced from not only preheating but also the decay of
the waterfall field χ1. The Boltzmann equation for the dark
matter density after preheating is given by

_nS þ 3HnS ¼ 2Bχ1Γχ1

ρχ1
mχ1

; ð86Þ

where Bχ1 is the decay branching ratio for χ1 → SS. Then,
solving the above Boltzmann equation with Eq. (57), we
obtain the number density at the reheating temperature
from the decay of the waterfall field χ1 as [17]

ndecayS ðTRHÞ ¼
g�ðTRHÞπ2Bχ1

18mχ1

T4
RH: ð87Þ

As a result, we obtain the relic density for the scalar dark
matter S at present as follows:

ΩDMh2 ¼
mSnSðt0Þ
ρc=h2

¼ 5.9 × 106
�
nSðTRHÞ
T3
RH

��
mS

1 GeV

�
; ð88Þ

where the total number density for dark matter is given by
the sum of both the preheating and decay contributions,

nSðTRHÞ ¼ npreS ðTRHÞ þ ndecayS ðTRHÞ: ð89Þ

Here npreS ðTRHÞ is the preheating contribution, obtained
from Eqs. (82) and (83) with αX being replaced by αS.
In the middle and right plots of Fig. 5 we show the

parameter space for mS vs αS, satisfying the correct relic

density for S in the case with HI ¼ 106; 108 GeV, respec-
tively. We choose αH ¼ 10−2 and m1 ¼ 100HI for both
plots. As a result, we find that dark matter with masses up
to mS ¼ 1–108 GeV can be produced with a correct relic
density for 10−4 ≳ αS ≳ 10−8.

V. CONCLUSIONS

We have explored the inflation and post-inflationary
evolution of the Universe in the hybrid inflation with a
pNGB boson inflaton and two waterfall scalar fields. The
couplings between the inflaton and the waterfall fields were
introduced for the graceful exit, but the Z2 symmetry for the
twin waterfall fields ensure that the quadratic divergent
loop corrections to the inflaton potential are canceled, so
the inflationary predictions of the hybrid inflation are
maintained at the quantum level for a wide range of the
parameter space.
The Z2 symmetry is broken spontaneously in the vacuum

when the inflaton and the waterfall fields settle down to the
local minimum of the potential, but there is no domain-wall
problem during inflation or after reheating because the
domain walls could only form beyond the horizon of our
Universe during inflation, and the Z2 symmetry is not
restored by reheating due to a low reheating temperature in
our model.
We showed that the Z2-invariant couplings between the

waterfall fields and the SM Higgs are responsible for
the reheating process via preheating and the perturbative
decay of the waterfall field. Thus, we achieved the post-
inflationary Universe with a sufficiently large reheating
temperature being compatible with BBN, depending on
the Higgs coupling to the waterfall field. On the other
hand, the inflaton receives a large mass in the Z2-breaking
minimum, with a large VEV for the waterfall field that is
larger than the VEV for the other waterfall field, so it
rapidly settles down to the minimum of the inflaton
potential without changing the results on reheating with
the waterfall fields.
In the presence of an extra Z0

2 symmetry, one of the
waterfall fields or another singlet scalar field becomes a
dark matter candidate. Although the mass of the waterfall
dark matter is constrained to be comparable to the other
waterfall field by the Z2 symmetry, we showed that the
correct relic abundance for dark matter can be produced
via preheating.
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