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Graceful exit from inflation and reheating with twin waterfall scalar fields
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We study hybrid inflation with a pseudo-Nambu-Goldstone boson inflaton and two waterfall scalar
fields. The Z, symmetry for the waterfall fields keeps the inflaton potential flat against quantum corrections
coming from the waterfall couplings, and it is broken spontaneously in the vacuum without a domain-wall
problem within the Hubble horizon of our Universe. We show that the Z,-invariant Higgs portal couplings
to the waterfall fields are responsible for the reheating process, leading to a sufficiently large reheating
temperature after inflation. In the presence of an extra Z), symmetry, one of the waterfall fields or another
singlet scalar field becomes a dark matter candidate. In particular, we find that preheating is sufficient to
account for the correct relic density of the waterfall dark matter.
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I. INTRODUCTION

Cosmic inflation [1] has been successful for solving
various problems in standard big bang cosmology, such
as the initial conditions for the Friedman-Lemaitre-
Robertson-Walker universe (namely, homogeneity, isot-
ropy, and flatness), the inhomogeneities imprinted in the
cosmic microwave background (CMB) anisotropies [2,3],
and large-scale structures. The period of exponential
expansion of the Universe requires a very flat potential
of the scalar field, the so-called inflaton, thus accounting
for the early vacuum energy domination.

On the other hand, the exponential expansion must end
in order to recover the success of big bang cosmology,
namely, big bang nucleosynthesis (BBN). Otherwise, the
Universe would have continued to undergo the exponential
expansion, being left with nothing. This requires the
graceful exit from inflation [4] and the reheating process
[5]. Thus, we need to specify the interactions between the
inflaton and the Standard Model (SM) in order to populate
the SM particles in the postinflation regime.

In chaotic inflation models with a single inflaton [4],
inflation ends due to the violation of the slow-roll con-
dition, so the graceful exit from inflation is naturally
realized. Hybrid inflation [6], on the other hand, requires
at least two scalar fields for inflation and the graceful exit at
the same time. In this case, the inflaton drives a slow-roll

* .
hminlee @cau.ac.kr
"amenkara@cau.ac.kr

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010/2023,/107(11)/115019(12)

115019-1

inflation whereas the graceful exit or the violation of the
slow-roll condition is achieved due to the tachyonic
instability of another scalar field [7], the so-called waterfall
field. It is conceivable to have multiple scalar fields in a
UV-complete theory, such as in compactifications of string
theory, so hybrid inflation scenarios are more realistic cases
and even single-field inflation models can be regarded as a
certain limit of decoupling heavy particles.

In this article, we consider a model for hybrid inflation
and its reheating dynamics with a pseudo-Nambu-
Goldstone boson (pNGB) inflaton and two waterfall scalar
fields [8]. In this model, the shift symmetry of the inflaton
ensures a naturally flat potential for the inflaton, whereas
the Z, discrete symmetry for two waterfall fields [8,9]
renders the inflaton potential insensitive to loop corrections
coming from the couplings between the waterfall fields and
the inflaton.

From the post-inflationary dynamics of the hybrid
inflation, we discuss the preheating effects in the presence
of waterfall-field-dependent masses and the perturbative
decay of the waterfall field for reheating. The Z,-invariant
Higgs portal couplings to the waterfall fields are respon-
sible for reheating. Moreover, focusing on the case that the
twin waterfall field or another singlet scalar field coupled to
the waterfall field is a stable dark matter candidate due to
another Z), symmetry, we also calculate the dark matter
abundance from preheating and/or the perturbative decay of
the oscillating waterfall field.

The paper is organized as follows. We first present the
model setup for hybrid inflation with a pNGB inflaton
and two waterfall fields and the condition for the waterfall
transition and the robustness of the tree-level inflaton
potential in this case. Then, we show the inflationary
predictions of the model, the waterfall field dynamics,
and the vacuum structure, constraining the parameters of
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the waterfall sector. Next, we discuss the preheating effects
from the waterfall transition and the reheating from the
perturbative decay of the waterfall field after preheating. In
the presence of an extra Z, symmetry, we regard the twin
waterfall field as a dark matter candidate and discuss the
preheating and the perturbative decay of the waterfall
field for dark matter production. Finally, we draw our
conclusions.

II. THE MODEL

We consider a pNGB ¢ as the inflaton and two real scalar
fields yq, y, as the waterfall fields in the hybrid inflation
scenarios [8]. We discuss the roles of discrete symmetries
and their origin for the UV-insensitive inflaton potential
and the stability of dark matter.

A. Hybrid inflation

We decompose the scalar potential for the hybrid
inflation into the following:

V(b x1:02.H) =V (@) + V(b xr.x2) + Vea(xi.02. H),

(1)
where V,;(¢) is the inflaton potential, Vy, (¢, vy, x>) is the
waterfall field part consisting of two waterfall fields,
and Vyy(r1,x2, H) is the potential part for reheating the
Universe by the couplings of the waterfall fields to the SM

Higgs H.
Imposing a Z, discrete symmetry [8,9] with

Zy: - 4, X1 < X2 (2)

we take the scalar potential for the hybrid inflation in the
following form:

Vi(g) = Vo +Al9). (3)

1
Vi(1120) = BOE - 8) +3m3 0 + B) - @
+ ﬁ()f +23) + y(x%)(z + 2123

+— M;{“r)(z)Jr Were

+3 i’()( 1+ x103), (4)
and

Vra(1.22.- H) = k1 (01 + 23)[H* + kox 12| H2. (5)

Here, V| is the constant vacuum energy during inflation,
and A(¢), B(¢p) are arbitrary functions of ¢, satisfying
A(—¢) = A(¢p) and B(—¢) = —B(¢p). The simple choices

for A(¢), B(¢) are A(p) = —3mzp* and B(¢) = —gp.

The renormalizable waterfall field couplings, ¢ (¥ + x3),
can also be introduced, being consistent with the Z,
symmetry and contributing to the effective masses for
the waterfall fields during inflation. But, as will be shown
below, the shift symmetry for ¢» makes such higher-order
terms in ¢ naturally suppressed.
In the presence of a separate Z), symmetry acting only
on x2,
Zy: ¢ - .

X1 X1 - X2 (6)

we can set @ = f§ = y = A, = 0 in combination with the Z,
symmetry, and x, = 0, so y, can be a candidate for dark
matter. In this case, the independent parameters of the
waterfall fields are reduced to /11,/_11, and «; only.

For the concrete discussion on inflation and the waterfall
transition, in the later analysis we take the inflaton potential
in Eq. (3) and the waterfall field couplings for the inflaton
in Eq. (4) in the following periodic forms [8]:

A(@) = nteos(%). )
B(#) = -y sin(2). ®)

Then, the shift symmetry for ¢ is broken into a discrete one,
¢ — ¢ + 4xnf. Expanding the sinuous functions around the

origin, we can have A(¢) ~ A* =} mg¢* with mj = ’]}—Z and
B(¢) ~ —g¢ with g
choose V(= A%, so the graceful exit from inflation is
possible due to the transition with waterfall fields.

We first identify the inflaton-dependent mass eigenval-
ues for the waterfall fields as

— 4B 9)

) =m2 +\/4B*(¢ (10)

= %. For hybrid inflation, we need to

and the mixing angle 6 between the waterfall fields depends
on the inflaton field as

20

m3($) = mi()

Here we can keep the kinetic terms for the waterfall fields
in the approximately canonical forms during the slow-roll
inflation. For @ =0, there is no mixing between the
waterfall fields, so we can just keep track of the waterfall

field y; to determine the end of inflation.
During inflation, there is no vacuum expectation value
(VEV) for the waterfall fields for m?(¢) > 0 and m3(¢) > 0,
4 _ 4

namely, for ¢ < ¢ where ¢, satisfies B*(¢.) = mj —

sin20(¢p) = (11)
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with @ < m, and B(¢) is a monotonically increasing
function of ¢ near ¢,, so slow-roll inflation takes place.
For instance, from Eq. (9) with Eq. (8), and setting
m?}(¢.) = 0, we find the point of the waterfall transition

¢ as
b, :2farcsin< mj—a4/y2>, (12)

with y /mj — a* < p? and @ < m,,. Then, the waterfall fields

are heavy enough for y, m, > H , with H; being the Hubble
scale during inflation, so we can describe the slow-roll
inflation by the inflaton potential given in Eq. (3) with
Eq. (7). At ¢p = ¢, the waterfall field with mass m, starts to
become unstable, ending inflation even if the slow-roll
condition for the inflaton direction is not violated.

B. UV-insensitive inflaton potential

The couplings of the waterfall fields to the inflaton give
rise to the corrections to the inflaton potential. As the
waterfall fields have masses much heavier than the Hubble
scale during inflation and they couple to the inflaton for the
waterfall transition, it is important to perform a consistency
check of the waterfall field couplings for inflation.

The waterfall field couplings to the one-loop Coleman-
Weinberg potential for the inflaton in the cutoff regulari-
zation with a cutoff scale M, are as follows:

1 eM?
_ 2 112 4 *
Vew = i g {me’_M* —my, ln< P >}

i=12 Xi

1 M?
mzM? — can? (m} +4B*(¢) +a*)In -

(13)

~

" 16x2

Here, a constant vacuum energy proportional to M2 must be
renormalized to get the desirable inflation energy. But, we
find that the quadratically divergent part of the inflaton
potential is canceled between the waterfall fields due to the
Z, discrete symmetry. On the other hand, there remain the
logarithmically divergent terms of the inflaton potential,
which can be ignored during inflation as long as B?(¢) <
167%|A(¢h)] is satisfied. For instance, for the periodic forms
given in Egs. (7) and (8), we can set the bound on the loop
corrections as u> < 8zwA>.

C. Origin of discrete symmetries
We comment on the origin of the discrete symmetries for
the inflaton and the waterfall fields. Suppose that a U(1)
global symmetry is broken to a Z, symmetry, under which
the inflaton ¢ and a complex scalar field @ transform by

Zy: > @, O - -0, (14)

Moreover, we take the CP symmetry in the dark sector as

CP: ¢ — -, & — @, (15)

As a result of combining Z, x CP, we get

ZyxCP: p— —p, @ > id". (16)

In this case, writing ® = \/%(;(1 +iy,), we can realize
¢ — —¢ and y; < y, under Z, x CP, as required for the
Z, symmetry, thus providing the potential for hybrid
inflation in our model. On the other hand, the separate
Z, symmetry for y, corresponds to

Zy: - ¢, D - . (17)
III. INFLATION AND WATERFALL

FIELD DYNAMICS

We now discuss the inflationary predictions of the pPNGB
inflation with twin waterfall fields. Ignoring the classical
dynamics of the waterfall fields during inflation, we focus
on slow-roll inflation and the condition for the waterfall
transition. Then, we show how the vacuum structure is
connected to the inflation regime, constraining the waterfall
sector parameters.

A. Inflationary predictions

From the inflaton potential given in Eq. (7), we first
obtain the slow-roll parameters for inflation as

_ M3ASsin’(¢/f)
C T2 (Vo + Neos(g/ ) 1)
MpA* cos(¢/f)
- . 19
T T (Vo + Neos(/1) "
The number of e-foldings is also obtained as
1 (o 1
Yy Jo. V2
2
s [0 (57)) < (s ()
— (¢ = ¢.). (20)

where ¢., ¢, are the inflaton field values at the horizon exit
and at the end of inflation, respectively.

For V,, > A* for hybrid inflation, the slow-roll param-
eters and the number of e-foldings are approximated [8] as

2

A4
e ) e1)

’7*1—
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2 8

“=2 f2V0

sin®(¢./.f), (22)

Wt (20

A" \wn(g,/(2f)) (23)

As a result, the spectral index and the tensor-to-scalar ratio
can be determined by

ns - 1 + 2’1* - 66*7 (24)
r = 16e.. (25)
The CMB normalization, A, = =3 41” Z”;I/} ~2.1x1079,
leads to
V
r=32x10"--2. (26)
Mp

The observed spectral index from Planck data, n; =
0.967 +0.0037 [2], sets 25, ~—0.0033, because €, <
|7, in our case. We note that the critical value ¢, of the
inflaton should satisty ¢, < ¢, S f for the number of
e-foldings, N = 50-60, to solve the horizon problem.
Moreover, from the Planck bound on the tensor-to-scalar
ratio, r < 0.036 [3], we can constrain the Hubble scale
during inflation as H; < 4.6 x 10'3 GeV.

We can check the parameter space for inflation in
our model by writing Egs. (23), (24), and (26) with
H? ~V,/(3M%) in the parametrization

ng1+42p, ~1 —%COS(%/f) | (27)

A4
(/I|IF’

COS(¢*/f) tan(¢./(2f))
N= 1. ( b./ ) 29)

% =2.9 x 107*|n, tan(¢p, /f)|, (29)

together with Eq. (12). Equation (29) leads to the corre-
lation between the axion decay constant and the Hubble
scalar during inflation. Choosing |7.| = 0.033/2 to get a
consistent spectral index and cos(¢,/f) = 0.95, we get
f~6.4x 10°H,. Thus, the decay constant for the pPNGB
inflaton is much larger than the Hubble scale, so the U(1)
global symmetry associated with the inflaton is broken
during inflation. As we vary the Hubble scale during
mg|, and p ~ m,, to maintain

successful predictions for inflation while the waterfall
fields remain safely decoupled during inflation.

B. Waterfall field dynamics

The waterfall field in the direction with m < 0 starts

rolling fast at ¢p = ¢, and develops a nonzero background

field. Then, the effective inflaton mass squared from gd—‘f is

modified to
A4

mé_eff = ——5cos (W>
f f

where () denotes the background field values. As a result,
the inflaton settles down to a stable minimum near
¢/ f = x, which is the common minimum for the inflaton
potential and the waterfall-induced potential. On the other
hand, the waterfall field masses are of order u ~ m, even
after inflation ends, as will be shown below.

After inflation ends, we consider the post-inflation
dynamics using the Boltzmann equations for scalar fields
and the radiation energy density pg,

/"2 ) > . <¢>
) - %>>sm(2f),

(30)

§5+3H¢——F¢(]§+A—4$in(%) M—zcos( )()(2 23,

f 4f
(31)
. . f/) 2
F1+3Hy = =T, 71 +p*sin 27 1 M
— &2 = A0 = A3 (32)
. P . 2 - ¢ 2
¥»+3Hy, = —T, x, — p sin 2F X2 — M)
-’y - /1;()(3 - ’1;()(1)(2, (33)
p'R + 4HPR = F4)¢;72 + F}(])(.% + F;Q)('%» (34)
and the Friedmann equation,
P+ PR
H? = , 35
o (35)

where p; is the sum of energy densities for the inflaton and
the waterfall fields, given by

1,
5;45 + V. (36)

_la 1,

2¢ + 2)( 1+

Here, we maintain the homogeneity for scalar fields in

space, but quantum fluctuations can give rise to nontrivial

momentum modes of scalar fields during preheating or

nonperturbative reheating, as will be discussed in the
next section.

During the waterfall transition, the effective masses for

the Higgs fields and the waterfall fields vary with time due

to their couplings. We set the waterfall field y, to zero at the
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onset of the waterfall transition. Then, we find that the
effective masses for the Higgs field and the waterfall field
> take the following simple forms:

m%—],eff = m%[,o + k13 (1), (37)
m; e =m; o+ A21(1), (38)

where m%,_o,mf(z,o are the squared bare masses, being
independent of the field value of y;.

C. Vacuum structure

We discuss the vacuum structure for the inflaton and the
waterfall fields.

In the presence of a separate Z/, symmetry for y,, which
sets @ = f =y = X, = 0 in the waterfall sector potential,
the vacuum structure gets simplified due to the unique
minimum of the potential at (¢) = zf, (r;) = v,, and

(r2) = 0, with
2_ 2
> —m m
v, = =4/ (39)
g A Ay

Then, the cosmological constant during inflation
can be fine-tuned to the observed value in the true
vacuum, if

—

1
Vo= A= duf =0, (40)

thus constraining the parameters of the waterfall fields. We
note that in the situation where there is no Z, symmetry [8],
a # 0 gives rise to a nonzero VEV for the waterfall field y,,
s0, in general, the Z, symmetry is broken in the vacuum
because (y;) # (r»). Henceforth, we focus on the case with
the Z), symmetry for reheating and dark matter production.

There might be a concern regarding the domain-wall
problem in our model, because the Z, symmetry for the
waterfall fields is broken spontaneously in the vacuum.
Namely, the vacuum A with (¢) = zf, (v\) = v,, and
(x») = 0 is degenerate in energy with the vacuum B with
(¢) = —nf, (x1) = 0,and (y,) = v,. However, the inflaton
direction is chosen to take positive values during the hybrid
inflation and the Universe evolves only to the vacuum A
through the waterfall transition, as discussed above. Thus,
domain walls could be formed in the entire space, but the
regions evolving into the vacuum B are beyond the Hubble
horizon during the hybrid inflation and remain so at
present, so there is no observable signature of the domain
walls in the current Universe. As will be discussed later, the
reheating temperature is smaller than the tachyonic mass of
the waterfall field, the Z, symmetry is not restored, and a
domain-wall problem does not occur even after reheating.

Here we comment on the constraints on the parameters of
the waterfall fields from the vacuum structure. For V, > A%,
Egs. (39) and (40) give rise to 4Vy/4, = vy = m}/A.
Then, the quartic coupling and the VEV for the waterfall
fields are related to the dimensionful parameters of the
inflation as follows:

m? m 4 H 2
A, =—L = 1.4x10720 L ! , 41
* 7 4y, x <100H,> <105 GeV (41)

14V, 100H,
=,/—5=0.035M . 42
K m% P( my > (42)

Therefore, since H; < 1.6 x 10'° GeV for f < 10'® GeV,
the waterfall self-coupling A, is smaller than about 107! for
u 2 100H/, and the VEV of the waterfall field v, is not far
from the Planck scale.

Next, expanding around the VEV by ¢ = v + a and the
waterfall fields as y; = v, + ¥;, we obtain the inflaton
mass and the mass eigenvalues for the waterfall fields in the
true vacuum as

1 1
m2 = 7 <A4 + gﬂzvf{), (43)

2 2
ms, = 24,0,

=2(u* — mj), (44)
my, = W2+ my + vy

A
:ﬂ2+m§+f(ﬂ2—m§). (45)

V4

We also note that the vacuum stability for the waterfall field
potential requires 4, > 0 and 4, + /_11 > 0 for /_1)( < 0.

We find that the inflaton mass receives a tree-level
correction due to the waterfall field coupling. Using
In.| = A*cos(ih,/f)/(f*H}) = 0.033/2, with cos(g /f) =
0.95 at horizon exit, f = 6.4 x 10°H,, and r = u/m, > 1,
we can rewrite the effective inflaton mass as

2

H r2 m 2
2_0.0495— -1 10~° 1 2
ma = 00895 oy 310 )<r2—1> (100H,> g

(46)

Thus, as compared to the tachyonic mass for the waterfall
field, we recall that m{ = 4,07, with A, $107'%, so the
effective inflaton mass is much heavier than that of the
waterfall fields. Therefore, the inflaton rapidly settles down
to the minimum of the potential, so it does not influence the
reheating dynamics with the waterfall fields. It is also
possible to reheat the Universe from the inflaton energy

density in the presence of interactions between the inflaton

115019-5



HYUN MIN LEE and ADRIANA G. MENKARA

PHYS. REV. D 107, 115019 (2023)

and the SM particles, but reheating is dominated by the
waterfall fields because V, > A*.
For m; <2m,, namely, for (1+ 2ay)(u/m,)*+
3-2ayx < O, with ay = Z;( /2., the waterfall field 7, could
not decay into a y, pair. This is the case in most of the
parameter space where p > m, (waterfall condition) and
ayx > —1 (vacuum stability), so dark matter y, is not
produced from the decay of the waterfall field y;.
However, as will be shown below, dark matter y, can still
be produced abundantly during preheating.

Moreover, we find the leading interaction terms between
the inflaton a, the mass eigenstates of the waterfall fields
X1, and the Higgs boson /& as follows:

2
u _
Lo =2 v a7 a2 (72
t 8f2 U)(a 16f2 ()( )
- Lv s — kv h? + - (47)

Thus, we find that the inflation has no quadratic divergent
mass correction thanks to the Z, symmetry. The logarith-
mic radiative corrections to the inflaton mass are present
due to the cubic interactions in the first line of Eq. (47). We
note that the decay modes, y; — aa, y»x», are Kinemati-
cally blocked in most of the parameter space, but 7, — hh
is open for reheating.

IV. REHEATING AND DARK MATTER
PRODUCTION

We first discuss the preheating effects from the waterfall
transition and the reheating from the perturbative decay of
the waterfall field. Then, we show the time evolution of
the radiation energy density and determine the maximum
temperature and reheating temperature. We apply the
results to obtain the relic density for dark matter.

A. Preheating

After the end of inflation, the equations of motion for
scalars, w = H, y,, can be written in terms of the rescaled
field, ¢ = ay, as follows:

a//
o —az¢+( 2 @ + (65, — 1) >¢ 0, (48)

where ¢, is the nonminimal coupling of the scalar field y
and we define the conformal time 7 = [ dt/a(t), with a(t)
being the scale factor. In the case with ¢, = %, we get the

total number density of produced particles at the end of the
waterfall transition as

1 00
my =5 A dk k*n! | (49)

where

W=

2
> 2, a)—k + m?

(|vk|2+a)k|vk| ) yeff*

(50)

Here, v, is the mode function for the scalar field, and g,, is
the number of degrees of freedom for v = H,y,. For
Sy # %, the Hubble expansion also affects the evolution of
the scalar field.

We take the effective time-dependent scalar masses due
to the waterfall transition [10] as

1
mﬁ/,eff(t) y/0+4c'l/ ){( +tanh/1(t_t )) ’ (51)

where mﬁ,,o are the bare masses and c,, are the couplings of
the waterfall field y;, given by ¢, = k.4, for w = H, y»,
respectively. Here, A is the strength of the waterfall
transition, given by 1 = m,/2, with m; = \/’E”z being
the tachyonic mass of the waterfall field y;. 7, ~
In(327%/4,)/(2m;) is the duration time of the waterfall
transition [10], which is given by z, ~ 14/m; — 26/m, for
A, = 10720-1071%" As m; > H.,q, the waterfall transition
takes place in less than one Hubble time and finishes
rapidly. Thus, the Hubble expansion can be ignored during
the waterfall transition, allowing us to set the scale factor to
a = 1, so the situation does not change even for Zjv, * é.

For a scalar field y with the effective mass given in
Eq. (51), and following the general formalism for particle
production in Refs. [11-13], we obtain the number density
of produced particles with momentum k as

y  cosh(z(wy, —w, 1)/4) + cosh(2z9)
k= 2 sinh(zw,, 1 /4) sinh(zw,, , /)

(52)

2 2
where wwl—k +m? wz—k +mw0+cy,l, and

v.0°

0= 5 C“/’lf* — 1. Therefore, we obtain the energy density

of the produced particles at the end of the waterfall
transition as

g o0
o, (1) =2, /0 dkk2nw, ». (53)

As a consequence, the ratio of the produced energy
density to the initial vacuum energy density, V =~ 4/1 1)

is given by

t) 29,4 / m?
py(t:) = ng X/ dxk*nl —l— WO +a,, (54)
Vo 7= Jo

with x = k/m; and @, = ¢, /A,. In order to compare our
results with lattice calculations [10], for m 0 we quote

42’

w0 =

115019-6
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Inst. reheating
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FIG. 1. Analytic and numerical solutions for pg/V, from
preheating as a function of ay =x;/4, (red and blue lines,
respectively).

Pu/(t*)
Vo

function, f(a,y) = \/a+y* —y [10], as follows:

the numerical solution for

in terms of a fitting

Py (L)
Vo

=2 x1073g,4,f(a,, 1.3). (55)

Similarly, the numerical result for the number density at
the waterfall transition is given by [10]

n,(t.) =107 g, mif(a,.1.3)/a,. (56)

In Fig. 1 we depict the analytic and numerical results for
pu/V for the Higgs as a function of ayy = «; /A, as red and
blue lines, respectively. We set the bare Higgs mass to
my o = 0. The analytic result is based on the formula in
Eq. (54), while the numerical result is taken from Eq. (55).
For ay; Z 0.1, the analytic and numerical results agree. The
black dashed line corresponds to the case of instantaneous
reheating.

B. Reheating completion

At the end of preheating, the waterfall fields reach the
minimum of the scalar potential and start oscillating around
it. Then, if preheating is not efficient, we can determine the
reheating temperature from the perturbative decay of the
waterfall field condensate into an SM Higgs pair as

90 1/4
Tru = ( 5 ) VMpUy, _pns (57)

7T"grH

where gry is the number of relativistic degrees of freedom
at reheating completion and T’ _,,;, is the partial decay rate
for y; — hh.

Expanding the waterfall field as y, (1) = v, + y.(1), with
x.(1) being the waterfall condensate, we note that the total
decay rate of the waterfall condensate is

L = Cpmmn + Ty (58)
with
2,2 2
Kivy dmy
r, _..,= 1- , 59
x1—hh 27‘[171)(] m}(] ( )
1202 4m?>
r,_ =21z 1-—2 60
X172X2X2 27‘[]71)(1 m)2{| ( )

Then, ignoring the Higgs and y, masses, we obtain the
approximate reheating temperature as

90 1/4 K'2 1/2
Try =~ 1 M . 61
w= () (@) Vi o)

Therefore, for T, < H;~ m, , namely, K% < 4nk,, and
taking H; < 1.6 x 10'° GeV for f < 10'° GeV, we get the
reheating temperature as Try < 10'* GeV.

More concretely, from Eq. (61) with A, = m}/(12H}M?3)
in Eq. (41), we can rewrite the reheating temperature as

1/4 1/2
Tas = 0.04aym, <@> ! <ﬂ> / <@> (62)
9IrRH Mp Hy

Thus, taking m, ~ 100H; < M p, with H; < 4.6 x 10" GeV
[from the bound on the tensor-to-scalar ratio below Eq. (26)],
for ay <10, we find that the reheating temperature is
smaller than the tachyonic mass of the waterfall field, so
the domain-wall problem will not occur even after reheating,
as mentioned in Sec. III C.

The waterfall transition takes place faster than the
Hubble expansion, so preheating is instantaneous. But, if
the reheating during the waterfall oscillation is sizable and
it is not instantaneous, the number of e-foldings required to
solve the horizon problem [14,15] is modified to

1/4
1
N:61.1+AN—1n(VL> ——ln< IRH ) (63)

H, ) 12 \106.75

where the correction to the number of e-foldings due to the
noninstantaneous reheating is given by

1 B3w-—1 45p, (1.
N=L (D (Bea)) gy
12 W+1 T gRHTRH
Here, p, (t.) = Vo —pg(t.) is the energy density of

the waterfall field at the end of the waterfall transition
and w is the equation of state for the waterfall condensate.

115019-7



HYUN MIN LEE and ADRIANA G. MENKARA

PHYS. REV. D 107, 115019 (2023)

Here, H; is the Hubble parameter evaluated at the horizon
exit for the Planck pivot scale, k = 0.05 Mpc~!, and w is
the averaged equation of state during reheating. Then,
taking w=0 for V, = pr(z,) and ggy = 106.75 in
Eq. (64), we obtain the number of e-foldings as

N =513 —lln A
3 \1.6 x 10! GeV

1 (1) 1 TRy
(=2 S CRE ) (s
12 n( Vo >+3n<1014 Gev) (8

As a result, we conclude that there is a wide range of the
parameter space for a successful inflation, and a sufficiently
large reheating temperature is achieved due to the decay of
the waterfall field.

C. Time evolution of radiation energy density

Here we discuss the time evolution of the waterfall and
radiation energy densities after preheating and determine
the reheating temperature.

After preheating, we consider the Boltzmann equations
in the presence of the coherent oscillation of the waterfall
field as follows:

ﬁR + 4HpR - Fﬂ—»hh/);(l 5 (66)
/})m +3Hp){l :_F)mp)m’ (67)
with
=" (68)
3M3

We take the initial condition for the waterfall energy density
at preheating as p,, (1.) = Vo — pg(t,), where pg(t,) = py
is the radiation energy density from preheating. For a
constant decay rate, I', ~T", _;;, we obtain the analytic
solutions to the above Boltzmann equations as [16]

P (1) = Py (1.) <a(t)> _36_1}1 ) (69)

L (e

Pr(1) = py, (1) (acgt)) i [% ’
‘ (70)

Here, u =T, t and u, =T, 1,.
Combining Eq. (68) and the effective continuity equation
for the total energy density, p = p,, + pg, given by

p+3Hp(1+w(1)) =0, (71)

with w(t) being the effective equation of state, we find the
total energy density as

p(t) = v0<1 + \E;O(] + ) ’];;*>_2, (72)

where

() = — / "t w(r). (73)

-1,

Here we used p, +pgr=~V, at the waterfall transition.
Then, for a slowly varying w, we also obtain the scale factor
as a function of time,

%): <1 1 \/%70(1 + ) t};j}f)%”‘ (74)

Setting w = 0 for the waterfall field oscillation near
the quadratic potential and using the results in Eqgs. (70)
and (74), we get the total radiation energy density after
preheating as follows:

v

o) = py 1) (145)

x %Jrﬂ‘(l +%>2/3e—v’dv'], (75)

where v =T, (t—1t,) and

D (3 Ve \T12
m)(l 4m§1M%’

2T v, \ !
= 4\[§A (M—X> . (76)
ny, P

m4 .
Here we used Vo =gz; and mi = A,v: =mZ /2 in the
second line of Eq. (76).

In Fig. 2 we depict the time evolution of p, ,pr as
functions of ', (1 —¢,) (blue and red solid lines, respec-
tively) for H;, = 10°,10'° GeV in the left and right plots.
We find that the reheating temperature Ty is determined
from pg = p,,, for which I, (# — ¢,) ~ 1. Thus, the results
are consistent with the identification of the reheating
temperature by Eq. (57) with ', ~T, _;,.

The second term from reheating in Eq. (75) is maximized
at Vpax = Iy, (tmax — £.) = 0.80A, resulting in the maxi-
mum radiation energy,

pR(tmax) = 1'8_8/3(pR(t*) + 1'0Ap)(] (t*)) (77)

Therefore, for pg(t,) < Vo and p, (t,) =V, we get the
maximum ratio of reheating to preheating contributions to
the radiation energy density as
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FIG. 2. p,, pg as functions of ', (# —¢,) (blue and red solid lines, respectively). Red dashed lines correspond to the reheating
completion. We take ay = 0.01 and m, = 100H, for both plots, and H; = 10°,10'® GeV in the left and right plots, respectively.
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Here we used Eq. (76) and the numerical result for
preheating with the Higgs coupling, ay = k;/4,, in
Eq. (55), and took Eq. (58) in the second equality. Thus,
from Eq. (78) and with Eq. (42), we find that

()!2 m
R. ~3700 H L), 79
‘h Flay. 1.3) (100H,> (79)

In Fig. 3 we show the fraction of the radiation energy in
the waterfall energy density at the end of inflation, pz/ V),
as a function of ay = k, /4, for preheating (blue solid line)
and the decay of the waterfall field (purple dashed line).
For comparison, we also show the case for instantaneous
reheating, pr/Vy =1 (black dashed line). Then, for
m, = 100H,, we get Ry, = 1 for ay = 2.6 x 107>, so the
decay of the waterfall field is dominant for reheating.

For Ry, 21 and A< v <1, we can approximate
Eq. (75) to

71'2

4
PR=73 (T, Mp)*v™" = 3—09*T4 (80)

and rewrite the scale factor in Eq. (74) as a function of the
radiation temperature 7 as

a3 v\? 2412 M3\ 2
a, “\a) ~ g mPATY ) (81)

So, choosing T' = Ty in the above result, we can take into
account the redshift factor from the waterfall transition to
the reheating completion.

In Fig. 4 we show the maximum and reheating temper-
atures as functions of ay = k;/4, (red solid and dashed
lines, respectively). We chose H, = 10°, 108, 10" GeV
from left to right. The lower bound on the reheating
temperature for BBN is set to Tggy = 10 MeV (blue
dashed lines) and the black dashed lines correspond to
instantaneous reheating, for comparison. Consequently, for
a relatively small Hubble scale as in the left plot, the
waterfall coupling to the Higgs field should be sizable for a
successful reheating; for instance, ay =5 x 107% for

0.017

1074t

PrIVo

1076t

1078t

107'%¢

1078 1076 107 0.01
Qay

FIG. 3. pg/V, as a function of ay = «/4,, from preheating
(blue solid line) and its maximum value from the decay of the
waterfall field (purple dashed line). We take m; = 100H;. The
black dashed line corresponds to the instantaneous reheating.
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FIG. 4. Maximum and reheating temperatures as functions of ay = «;/4, (red solid and dashed lines, respectively) for H; =
10°, 108, 10'° GeV from left to right. We take my, o = 0 and m; = 100H;. Black dashed lines correspond to the instantaneous reheating
and blue dot-dashed lines correspond to Try = 10 MeV, which is the lower bound from BBN.

H; = 10° GeV. However, for a high Hubble scale, as in the
middle and right plots, small waterfall couplings can be
compatible with BBN, for which the preheating effect as
shown in Fig. 3 becomes important for reheating.

D. Dark matter production

If the Z/, symmetry for the waterfall field y, is unbroken in
the vacuum, the waterfall field y, can be a dark matter
candidate. Dark matter can be produced from preheating, but
there is no production from the decay of the waterfall field y,
due to the kinematic blocking, namely, m; < 2m,, , from
Egs. (44) and (45).

From the result in Eq. (55), preheating leads to the
number density for dark matter X = y, as

nx(t.) = 107 mif(ax. 1.3)/ax. (82)

with ay = /_1)( /. Then, the number density produced from
preheating becomes redshifted at the reheating temperature
as follows:

3 2AT4 )2
e (% _ (92 Ru
ny (Tru) <a([RH)> ny(t,) (24F)2(1M%, nx(t.),
(83)

where Eq. (81) at the reheating temperature is used in the
second equality. As a result, the relic density for dark matter
o at present is given by

m;(an(IO)
pe/

n%" (Truy) m
=59 x106( X RH L) (84
8 < . J\icev) @Y

QDM]’Z2 -

my=1.2my H;=10%GeV, ay=107 Hi=10%GeV, ay=1072

101 L T Ty 10_2§, Ty 10-2E e B I AR A
’21: I N I N
10 107 3 107 3
1030 E ] ¥ ]
10 E - E
107 i ] i ]
3 & 105k 3 & 10 3
10k E E E E
6 1070 3 1070 3
107k E 3 E 3
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FIG. 5.

s(GeV)

ms(GeV)

Parameter space satisfying the relic density (red lines). Left: H; vs ay with the relic density from dark matter y,. We choose

my = 1.2m,; and draw the with reheating temperature contours Try = 10%,10*,10° GeV (blue dashed, dotted, and dot-dashed lines,
respectively). The results are insensitive to ay = ZZ /%, aslong as ay < ay. Middle and right: mg vs ag with the relic density from dark
matter S. We choose a; = 1072 for both plots, but H; = 10°, 108 GeV in the middle and right plots, respectively. We take m; = 100H,

for all plots.
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In the left plot of Fig. 5 we show the parameter space for
H; vs ay =k, /A, satisfying the relic density for dark
matter y, (red line). We take the dark matter mass to be
myx = 1.2m; and m; = 100H,. The results are insensitive
to the dark matter coupling ay as long as ay < ay because
the numerical formula for the number density of dark
matter in Eq. (82) does not depend much on ay. We also
show the contours of the reheating temperature Try =
10%,10%, 10° GeV (blue dashed, dotted, and dot-dashed
lines, respectively). In this case, we find that the correct
relic density can be achieved for ay = 0.1-10~7 and
H, =2 x 10%-10'° GeV. Thus, we need a relatively high
reheating temperature for the relic density.

Suppose that there is a real scalar dark matter S that does
not participate in the waterfall transition, transforms by
S — —S under the Z} symmetry, and takes the following
effective squared mass:

M3 o = M3 + Asx1 (1), (85)

where mé’o is the squared bare mass and Ay is the coupling
between S and the waterfall field y,. Then, S particles can
be produced from not only preheating but also the decay of
the waterfall field y. The Boltzmann equation for the dark
matter density after preheating is given by

fis + 3Hng = 2B, T, 22, (86)

X1

where B, is the decay branching ratio for y; — SS. Then,
solving the above Boltzmann equation with Eq. (57), we
obtain the number density at the reheating temperature
from the decay of the waterfall field y; as [17]

g*(TRH)ﬂzB

deca 1
ng Y(Tru) = 18m “ T4RH' (87)
21

As a result, we obtain the relic density for the scalar dark
matter S at present as follows:

mgng(to)
pe/h?

n (TRH) mg
=59x%x106( =3 . (88
x ( T3, 1 GeV (88)

where the total number density for dark matter is given by
the sum of both the preheating and decay contributions,

QDMh2 -

ns(Tr) = 13 (Tra) + 15 (Trn)- (89)

Here nf*(Try) is the preheating contribution, obtained

from Egs. (82) and (83) with ay being replaced by ag.
In the middle and right plots of Fig. 5 we show the

parameter space for mg vs ag, satisfying the correct relic

density for S in the case with H; = 10°, 103 GeV, respec-
tively. We choose ay = 1072 and m; = 100H, for both
plots. As a result, we find that dark matter with masses up
to mg = 1-10% GeV can be produced with a correct relic
density for 107 > ag = 1073,

V. CONCLUSIONS

We have explored the inflation and post-inflationary
evolution of the Universe in the hybrid inflation with a
pNGB boson inflaton and two waterfall scalar fields. The
couplings between the inflaton and the waterfall fields were
introduced for the graceful exit, but the Z, symmetry for the
twin waterfall fields ensure that the quadratic divergent
loop corrections to the inflaton potential are canceled, so
the inflationary predictions of the hybrid inflation are
maintained at the quantum level for a wide range of the
parameter space.

The Z, symmetry is broken spontaneously in the vacuum
when the inflaton and the waterfall fields settle down to the
local minimum of the potential, but there is no domain-wall
problem during inflation or after reheating because the
domain walls could only form beyond the horizon of our
Universe during inflation, and the Z, symmetry is not
restored by reheating due to a low reheating temperature in
our model.

We showed that the Z,-invariant couplings between the
waterfall fields and the SM Higgs are responsible for
the reheating process via preheating and the perturbative
decay of the waterfall field. Thus, we achieved the post-
inflationary Universe with a sufficiently large reheating
temperature being compatible with BBN, depending on
the Higgs coupling to the waterfall field. On the other
hand, the inflaton receives a large mass in the Z,-breaking
minimum, with a large VEV for the waterfall field that is
larger than the VEV for the other waterfall field, so it
rapidly settles down to the minimum of the inflaton
potential without changing the results on reheating with
the waterfall fields.

In the presence of an extra Z, symmetry, one of the
waterfall fields or another singlet scalar field becomes a
dark matter candidate. Although the mass of the waterfall
dark matter is constrained to be comparable to the other
waterfall field by the Z, symmetry, we showed that the
correct relic abundance for dark matter can be produced
via preheating.
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