
Received 9 June 2023, accepted 9 July 2023, date of publication 12 July 2023, date of current version 19 July 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3294564

Efficient Human Activity Recognition Using
Lookup Table-Based Neural Architecture
Search for Mobile Devices
WON-SEON LIM 1, WANGDUK SEO 1, DAE-WON KIM 1, (Member, IEEE),
AND JAESUNG LEE 2
1School of Computer Science and Engineering, Chung-Ang University, Dongjak-gu, Seoul 06974, Republic of Korea
2Department of Artificial Intelligence, Chung-Ang University, Dongjak-gu, Seoul 06974, Republic of Korea

Corresponding authors: Dae-Won Kim (dwkim@cau.ac.kr) and Jaesung Lee (curseor@cau.ac.kr)

This work was supported in part by the Institute of Information and Communications Technology Planning and Evaluation (IITP) Grant
funded by the Korean Government (MSIT) (Development of Integrated Development Framework That Supports Automatic Neural
Network Generation and Deployment Optimized for Runtime Environment) under Grant 2021-0-00766; in part by the Chung-Ang
University Research Grants, in 2021; and in part by the National Research Foundation of Korea (NRF) Grant funded by the Korea
Government (MSIT) under Grant 2023R1A2C1006745.

ABSTRACT Mobile devices play a crucial role in human activity recognition as they enable real-time
sensing of user interaction for learning algorithms like neural networks. To facilitate human activity
recognition on mobile devices, it is important to deploy efficient neural network architectures due to the
limited computational capacity of these devices. However, conventional neural architecture search methods
often generate less effective architectures because they neglect the specific requirements of target devices
on which the neural network would operate in real-time. Moreover, these methods are impractical in the
mobile device environment due to their high computational cost for architecture search. To address these
challenges, we propose an efficient neural architecture search method based on a latency lookup table.
Our proposed method efficiently performs the network search process based on differentiable NAS while
considering the actual latency of mobile devices, which is stored in a lookup table. The experimental results
on public datasets provide evidence that the proposed method outperforms conventional methods in terms of
speed. We achieved a search time of under 1.5 hours on each dataset, which is more than seven times faster
on average compared to conventional methods. Furthermore, our in-depth analysis shows that the optimal
architecture can vary depending on the target mobile devices, such as Galaxy A31 and S10. By tailoring the
models to each device, optimized models achieved an additional 4-5% improvement in inference time for
each respective device.

INDEX TERMS Human activity recognition, deep learning, neural architecture search.

I. INTRODUCTION
Human activity recognition (HAR) using wearable and
mobile devices has attracted considerable research attention
for application in fields such as healthcare [1], surveil-
lance [2], smart Home [3]. Many studies have focused
on offline mobile device-based activity monitoring to
address challenges such as privacy, communication cost,
latency, and network traffic to the cloud [4]. However,
mobile devices have limited resources and diverse hard-

The associate editor coordinating the review of this manuscript and
approving it for publication was Chan Hwang See.

ware specifications, making the design of HAR-specific
models crucial for effective activity recognition on these
devices [5].

Deep learning algorithms have shown excellent perfor-
mance in most HAR studies, particularly the DeepCon-
vLSTM approach [6], which has achieved state-of-the-art
results. This approach combines the strengths of Convolu-
tional Neural Networks (CNNs) [7] and Recurrent Neural
Networks (RNNs) [8], creating a hybrid network architec-
ture. In particular, designing the CNN architecture effec-
tively to extract valuable features plays a crucial role in
performance [9].

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 71727

https://orcid.org/0000-0001-8069-5997
https://orcid.org/0000-0003-4806-1614
https://orcid.org/0000-0001-7124-1141
https://orcid.org/0000-0002-3757-3510


W.-S. Lim et al.: Efficient HAR Using Lookup Table-Based NAS for Mobile Devices

FIGURE 1. Mobile human activity recognition (HAR) neural architecture search (NAS) model consisting of the search and device look-up table
(LUT) modules. The architecture search module (top) performs architecture search by training an overparameterized network that includes all
possible architectures. In the over-parameterized network, the output feature of each node serves as the input to the LSTM-FC, which stands for
Long Short-Term Memory with Fully Connected layers and predicts activities as its output. The device LUT module (bottom) plays a role in
measuring and providing the latency on the device for the candidate operations required in the architecture search process in advance.

Only a few studies have been conducted to automate the
CNN design process using neural architecture search (NAS)
methods for human activity recognition [9], [10], [11], [12].
These studies are inspired by reinforcement learning and
evolutionary algorithms, which are commonly employed in
computer vision tasks [13], [14]. However, existing HAR
NAS methods often produce less effective architectures by
not considering the computational capacity of the target
devices and requiring computationally expensive architecture
searches.

To address these challenges, we propose a mobile HAR
NAS approach based on differentiable NAS (DNAS),
which incorporates the latency of real mobile devices
during the architecture search process. The DNAS-based
approach addresses [15] the computational expense asso-
ciated with exploring discrete search spaces in traditional
NAS approaches. To alleviate this issue, DNAS adopts a
strategy of relaxing the search space into a continuous
domain. This relaxation enables efficient optimization using
gradient-based methods, allowing for faster convergence
and exploration of architectural configurations. By using a
single training process, the architecture search time of the
proposed method was significantly reduced. Furthermore,

the effectiveness of the mobile device optimization method
was verified by deploying searched models on real
smartphones.

This paper focuses on addressing the limitations of con-
ventional NAS methods in real-life mobile HAR systems.
The model’s latency is important in capturing changes in
human behavior using mobile devices. Each device has
unique hardware specifications, requiring optimal architec-
tures based on device characteristics. Conventional NAS
methods suffer from high architecture search time and
rely on indirect metrics instead of target device-specific
optimization. To overcome these limitations, the proposed
approach incorporates the latency measured on the tar-
get device into the objective function and facilitates fast
search using a DNAS-based approach. The goal is to find
an efficient HAR model that adapts quickly to different
edge devices. By doing so, this approach offers an effi-
cient and device-specific solution for mobile HAR NAS.
The main contributions of this paper are summarized as
follows:

1) We propose a mobile HAR neural architecture search
based on a differentiable NAS (DNAS) that reflects the

71728 VOLUME 11, 2023



W.-S. Lim et al.: Efficient HAR Using Lookup Table-Based NAS for Mobile Devices

latency of real mobile devices in the architecture search
process.

2) By using a single training process, the architecture
search time of the proposed method is significantly
reduced compared to previous methods.

3) The effectiveness of the proposed method is verified by
deploying searched models on real smartphones.

II. RELATED WORK
A typical choice for dealing with the time-series characteris-
tics of HAR can be an RNN, which is capable of addressing
the long-range time dependency of the given data [16].
In RNNs, a long short-term memory (LSTM) structure and
gated recurrent unit (GRU) are used to capture the long-range
dependency of sequence data. However, recent studies in
HAR have focused on CNNs because they are capable of cap-
turing human behaviors and hierarchically extracting features
from low-level to high-level features through multiple con-
volutional layers. In DeepConvLSTM [6], CNN and LSTM
structures of the RNNwere integrated to achieve state-of-the-
art performance on various public HAR datasets.

In conventional studies, deep learning architectures
have been designed manually, which is difficult and
time-consuming due to a series of factors involved in archi-
tecture design. These factors include operations, the number
of layers, the connection between layers, the target device,
and the recognition of activities. For example, the neural
network architecture may become dense or loose depend-
ing on the complexity of the activity and the target device.
Although designing a neural network architecture for various
image recognition tasks has been automated using neural
architecture search (NAS) [13], [14], [15], few studies have
considered NAS for human activity recognition. To the best
of our knowledge, there are two types of NAS methods,
namely reinforcement learning (RL)-based NAS [11] and
evolutionary algorithm (EA)-based NAS [12].

In these two methods, HAR neural architectures are used
to achieve a high F1-Score with low floating point operations
(FLOPs) or memory access cost (MAC). In the RL-based
NAS, a meta-controller is trained, in which an optimal archi-
tecture is generated to provide a reward feedback such as
F1-Score and FLOPs on HAR dataset to the meta-controller.
In the EA-based NAS, NSGA-II [17], a multi-objective opti-
mization method, is used to design a lightweight and fast
neural architecture. Finally, the generated model is a neural
architecture that achieves Pareto optimality for HAR tasks
with respect to three objective metrics: F1-Score, FLOPs,
and MAC.

III. MATERIALS AND METHOD
In this section, we explain the entire algorithm of the pro-
posed method, from search space to search strategy and the
way to reflect the latency of the target devices.

A. MOTIVATION
In HAR systems using a mobile device, the latency in
the inference phase is important because quickly capturing

FIGURE 2. Normal Convolution (left), Dilated Convolution (right).

changes in human behavior in fields such as fall detec-
tion for elderly people or rehabilitation exercise recognition
for patients [18], [19] is critical. In particular, each mobile
device exhibits distinct hardware specifications so that opti-
mal architectures can differ depending on the latency of
the mobile device. Conventional NAS methods exhibit two
disadvantages when applied to real-life mobile HAR NAS.
First, indirect metrics, such as FLOPs or MAC, are used
instead of a metric directly related to the target device. There-
fore, the target device-specific models may not be optimized
because conventional methods exploit the indirect metrics
during the NAS process; they do not optimize the actual
latency from the target devices. Second, in previous HAR
NAS studies, repeated architecture sampling, training, and
evaluation are required, considerably increasing the architec-
ture search time. For example, existing HAR NAS methods
spend considerable time searching only one convolutional
block architecture in the ConvLSTM baseline network. In the
empirical tests, RL-based NAS [11] required approximately
nine GPU hours on average for each of the well-known public
HAR datasets, and EA-based NAS [12] required approxi-
mately sevenGPU hours. The high architecture search time in
these methods can be attributed to the retraining of the sam-
pled architecture, which requires repeated sampling, training,
and evaluation of the procedures.

B. APPROACH
To address the limitations of conventional methods, we con-
structed an overparameterized network with a directed
acyclic graph (DAG) structure that encompasses all possible
architectures. We then conducted a DNAS-based architec-
ture search, as depicted in the architecture search module of
FIGURE 1. Utilizing the overparameterized network enables
a quick search for the optimal architecture, as the network
only needs to be trained once.

In order to directly optimize the latency for each mobile
device instead of relying on FLOPs as an indirect measure
of latency, we employed a novel approach. The latency used
for optimization is measured in advance by the target mobile
device, as shown in FIGURE 1, and stored in a latency lookup
table (LUT). To generate the desired network, we utilized a
loss function that combines a latency term as an objective
metric with a cross-entropy term for learning accuracy.

VOLUME 11, 2023 71729



W.-S. Lim et al.: Efficient HAR Using Lookup Table-Based NAS for Mobile Devices

TABLE 1. Type of operations in the search space: each operation consists
of a pair of kernel, padding, and dilation values, and 13 candidate
operations.

FIGURE 1 provides an overview of our framework, which
consists of two main modules. The first module is the archi-
tecture search module responsible for the search process,
while the second module is the Device LUTmodule designed
to incorporate latency information specific to the target
device. The architecture search module includes a feature
extractor network that inputs behavioral data and outputs
useful features for prediction. Its primary role is finding the
optimal network architecture for feature extraction. On the
other hand, the Device LUT module measures the latency
of each operation defined in the search space on the target
device, storing the latency information in a lookup table.
During the search process, the Device LUT module provides
the stored latency information as needed.

C. SEARCH SPACE
To ensure the robust analysis of one-dimensional (1-D) time-
series sensor data on human behavior, it is essential to design
a search space with appropriate operations tailored for time-
series data. In this regard, 1-D convolution is a suitable
operation for extracting features from time-series data, as it
applies the kernel in a single direction. Additionally, 1-D
convolution can be categorized into two types of operations:
normal and dilated, based on the dilation size. Despite hav-
ing the same kernel size, the dilated convolution’s kernel
exhibits a wider receptive area than the normal convolution’s
kernel. As a result, the dilated convolution can extract more
temporal features while requiring less computation [20]. For
example, in FIGURE 2, the normal convolution recognizes
a kernel area of 3 × 1. However, the dilated convolution
expands the kernel by a dilation size of 2, resulting in a
recognition area of 5 × 1. Considering this, our search space
encompasses both normal convolutions with diverse kernel
sizes of {1, 3, 5, 7, 9} and dilated convolutions with kernel
sizes of {3, 5}. Additionally, we incorporate average and max
pooling operations for extracting higher-level features, skip
connection operation to transmit information from previous
layers to subsequent layers, and no connection operation
to disconnect nodes. Therefore, as summarized in Table 1,

FIGURE 3. Overparameterized network with the search space.
An overparameterized network is a DAG structure composed of nodes
and edges. Each edge is calculated through a weighted sum that applies
operations in the search space to the data. For instance, when the
probability of each operation on the edge from node1 to node3 is
provided, such as 0.61 for Conv_1, 0.10 for MaxPool_5, and so forth, the
output of each operation is multiplied by its corresponding probability
value. These multiplied outputs are then added together with the outputs
of other operations, enabling each operation to contribute in proportion
to its assigned probability value. Once the parameter update is complete,
each node, such as node3, ultimately selects the two operations with the
highest probability among all the edges.

the entire search space is primarily divided into six types
of operations based on the ‘‘Operation’’ column, with each
operation further categorized according to the kernel size.
In the case of the convolution operation, the operation type is
additionally subdivided based on the dilation size, resulting
in a total search space of 14.

D. SEARCH STRATEGY
The high cost of architecture search time in previous HAR
studies has been a bottleneck for modeling, as it involves
repeatedly searching for models during the search process.
To address this issue, we utilized the DNAS method [15] to
design a mobile HAR neural network architecture. We denote
an architecture space (S), in which we find an optimal
architecture (arch ∈ S) after training its weights (weight).
We formulated the neural network architecture search prob-
lem as follows:

min
arch∈S

min
weight

L(arch,weight) (1)

where L is a loss function to be defined. In order to employ
the differential-based architecture searchmethod, the discrete
search space consisting of individual operations needs to
be transformed into a continuous space. To achieve this,

71730 VOLUME 11, 2023



W.-S. Lim et al.: Efficient HAR Using Lookup Table-Based NAS for Mobile Devices

we initially conducted a process called continuous relaxation.
During this process, each operation is connected by archi-
tecture parameters, enabling a smooth transition within the
search space. A set of candidate operations is expressed as
O = {o1, o2, . . . , oM }, where M is the number of candidate
operations (M = 13, as listed in Table 1). The architec-
ture parameters corresponding to the candidate operations
for continuous relaxation of this search space are A =

{α1, α2, . . . , αM }. All operationswere connected by applying
the softmax function to the architecture parameter α cor-
responding to each operation. As shown in the example of
FIGURE 3, each edge is composed of a weighted sum of
operations within the search space in Table 1. The connection
of these edges forms a DAG structure, creating an overparam-
eterized network. Therefore, in each edge, a mixed operation
is represented as ō and defined as follows:

ō(x) =

M∑
i

Prob(i) · oi(x)

=

M∑
i

exp(αi)∑M
i exp(αi)

· oi(x) (2)

where Prob(i) denotes the probability of selecting the ith
operation, and oi(x) represents the parameter associated with
the ith operation for the given input x. The probability Prob(i)
is defined using the softmax function, where αi represents the
architecture parameter associated with the ith operation.
The architecture search process using an overparameter-

ized network is summarized in Algorithm 1. Therefore, all
edges are searched simultaneously by training architecture
parameters α of the overparameterized network. Finally, the
optimal architecture is generated by selecting the optimal
operation with a high probability at each edge. Our search
space has 13 candidate operations configured as presented in
Table 1 for four nodes and each edge in the DAG. Our overall
search space has 13 candidate operations for every 14 edges
from two stem nodes to four nodes of the DAG; therefore,
the possible architectures are 1314 ≈ 4× 1015. The architec-
ture search time is considerably reduced because these vast
possible architectures are relaxed into one overparameterized
network.

E. LATENCY METRIC OPTIMIZATION PROCEDURE
The loss function (1) should reflect not only the accuracy
of the architecture but also the latency of the target device.
Therefore, we define the following loss function:

L(arch,weight)

= λ · CE(arch,weight) + (1 − λ) ·

[
E[LAT]
Target

]θ

(3)

where θ is the weight factor defined as follows:

θ =

{
β, if E[LAT] ≥ Target
0, otherwise

(4)

Algorithm 1 The Search Algorithm
1: input: Datatrain,Dataval,O,A;
2: Create S with o ∈ O and α ∈ A
3: Initialize o and α in S
4: while Lval not converged do
5: Freezing α

6: Update weight by ▽weightLtrain(α,weight) with
Datatrain

7: Freezing weight
8: Update α by ▽αLval(α,weight) with Dataval
9: end while
10: output: S with trained parameters;
11: Extract the final architecture from S according to α

where β is the weight factor for E[LAT] versus Target. The
first term CE(arch,weight) denotes the cross-entropy loss of
the architecture with the weight parameters. The second term
E[LAT] denotes the estimated latency of the architecture on
the target device, where Target is the target latency specified
by the user. Coefficient λ is a scaling factor that adjusts the
scale of CE and E[LAT] of the loss function, respectively.
To calculate the E[LAT] term, we used a latency LUT to
estimate the overall latency of a network based on the actual
latency of each operation [21]. The latency of each operation
is measured on specific devices and stored in a LUT. This
LUT contains the actual latency values for each operation on
different target devices. During the search, the LUT is loaded
based on the target device being considered, and the latency
information is incorporated into the objective function. This
allows the search algorithm to evaluate and optimize the
architecture based on the measured latencies on the target
device.

The overall latency of an overparameterized network was
estimated by calculating the expectation values of each edge.
Here, Prob(i, j) denotes the probability of selecting o(i, j).
lat(o(i, j)) denotes the actual latency of o(i, j) when loaded
on the target device LUT of the ith edge and jth operation.

E[LAT] =

N∑
i

M∑
j

Prob(i, j) · lat(o(i, j)) (5)

Thus, we can estimate the overall latency of the overpa-
rameterized network.

IV. EXPERIMENTAL RESULTS
All the experimental results are composed of three parts.
Section A. introduces the details of comparison methods,
datasets, and implementations. Comparison results are dis-
cussed in Section B. For comparison of target devices,
in-depth analysis is discussed in Section C.

A. EXPERIMENTAL SETUP
We implemented state-of-the-art methods to compare the
performance against existing RL and EA-based methods,
as well as our proposed method. Our experiments were

VOLUME 11, 2023 71731



W.-S. Lim et al.: Efficient HAR Using Lookup Table-Based NAS for Mobile Devices

FIGURE 4. Comparison of architecture search time results for the proposed method and existing NAS methods [11], [12] on five HAR datasets.

FIGURE 5. Comparison of parameter size results for the proposed method and existing NAS methods [11], [12] on five HAR datasets.

71732 VOLUME 11, 2023



W.-S. Lim et al.: Efficient HAR Using Lookup Table-Based NAS for Mobile Devices

FIGURE 6. Comparison of F1-Score results for the proposed method and existing NAS methods [11], [12] on five HAR datasets.

conducted on five public HAR datasets, where we measured
the architecture search time, parameter size, and F1-Score as
comparison metrics with existing methods. The architecture
search time serves as an indicator of the search process
efficiency, while the parameter size and F1-Score provide
insights into the resulting architectures’ size and accuracy,
respectively. In addition to these evaluations, we conducted
experiments targeting various target devices, including the
Galaxy A31 and Galaxy S10, to assess the proposedmethod’s
optimization metric. Furthermore, to validate the effective-
ness of our approach, we measured the latency on the Galaxy
A31 with theMediatekMT676 CPU and the Galaxy S10 with
the Exynos 9820 CPU. In Section IV-B, we employed FLOPs
as the optimization metric for the RL-based method, FLOPs
and MAC for the EA-based method, and CPU latency for our
proposed method. Furthermore, in Section IV-C, we specifi-
cally focused on the latency of the Galaxy A31 and Galaxy
S10 devices as the optimization metric.

The five public HAR datasets used in experiments are as
follows: UCIHAR [22], UniMiB-SHAR [23], WISDM [24],
OPPORTUNITY [25], and KU-HAR [26]. The data of these
datasets were collected by wearable sensors and mobile
devices, which are widely used in HAR. The UCI-HAR
dataset was collected from 30 subjects wearing a mobile
device on their waist for six daily activities. The UniMiB-
SHAR dataset was collected by recording 17 activities
performed by 30 participants using acceleration sensors on

mobile phones. The WISDM dataset was collected from
36 subjects wearing a mobile device on their pants and con-
sisted of six daily activities. The opportunity dataset was
collected by placing wearable devices on the upper body,
buttocks, and legs of four subjects, who were then asked
to perform 17 daily activities. The KU-HAR dataset was
collected by recording 18 activities performed by 90 subjects
by using acceleration and gyroscope sensors on their mobile
phones.

We divided each dataset into a training set and test set as
a proportion of 8:2, and the test set is also used to validate
the overparameterized network. The overparameterized net-
work was trained for 100 epochs with 256 batch sizes, and
SGD and Adam were used as optimizers for learning the
weights and architecture parameters, respectively. To balance
the cross-entropy and latency term in the loss function (3),
we set λ to 0.5, and β as 1 that are optimal setting values
in our experiments. The framework used in the experiment
was PyTorch deep learning library and was performed using
an RTX 2080Ti GPU 11GB. Target device experiments were
conducted on Android 10 OS systems.

B. COMPARISON RESULTS
FIGURE 4 displays the architecture search times for each
method using this dataset. As displayed in FIGURE 4 (a),
the proposed method exhibited the lowest architecture search
time (0.5 hrs, followed by 4 hrs for the EA method, and

VOLUME 11, 2023 71733



W.-S. Lim et al.: Efficient HAR Using Lookup Table-Based NAS for Mobile Devices

FIGURE 7. FLOPs comparison with A31 and S10 model (a) and Latency comparison deployed on Galaxy A31 (b) and Galaxy S10 (c) for the models
searched by the proposed method on the OPPORTUNITY dataset.

FIGURE 8. FLOPs comparison with A31 and S10 model (a) and Latency comparison deployed on Galaxy A31 (b) and Galaxy S10 (c) for the models
searched by the proposed method on the UCI-HAR dataset.

FIGURE 9. FLOPs comparison with A31 and S10 model (a) and Latency comparison deployed on Galaxy A31 (b) and Galaxy S10 (c) for the models
searched by the proposed method on the UniMiB-SHAR dataset.

6 hrs for the RL method). Thus, in all five datasets of
FIGURE 4, the proposed method exhibited the lowest archi-
tecture search time, and the RL method exhibited the highest
architecture search time. The architecture search time of the
proposed method is approximately (0.5−1.5 hrs), and it is
9−14 times faster than the RL method (6.0−14.0 hrs), and
7−12 times faster than the EA method (3.5−12.5 hrs).

FIGURE 5 and FIGURE 6 present the results based
on whether the optimization metric was accompanied by
multi-objective optimization. The ‘‘W/ Multi-Obj’’ category
represents optimization with the multi-objective function
set in each algorithm, while the ‘‘W/O Multi-Obj’’ cate-
gory focuses solely on optimizing the accuracy performance
metric.

71734 VOLUME 11, 2023



W.-S. Lim et al.: Efficient HAR Using Lookup Table-Based NAS for Mobile Devices

FIGURE 10. FLOPs comparison with A31 and S10 model (a) and Latency comparison deployed on Galaxy A31 (b) and Galaxy S10 (c) for the models
searched by the proposed method on the KU-HAR dataset.

FIGURE 11. FLOPs comparison with A31 and S10 model (a) and Latency comparison deployed on Galaxy A31 (b) and Galaxy S10 (c) for the models
searched by the proposed method on the WISDM dataset.

FIGURE 5 displays the parameter size of the search archi-
tecture for each method using the dataset. Consideration of
multi-objectives led to a decrease in parameter size in the
majority of datasets. This reduction in parameter size was
evident even in the results of the proposed method, which
integrated the latency term, across four datasets. Despite
having the shortest architecture search time, the proposed
method consistently produced architectures with the smallest
parameter size compared to the other two methods across
most datasets. In particular, in FIGURE 5 (a), the parameter
size of the RL and EA methods is 0.60 (MB), whereas the
proposed method generates a model that is approximately
three times lower with 0.23 (MB). These results revealed that
creating a lightweight model instead of FLOPs or MACs is
possible by optimizing latency.

FIGURE 6 displays the F1-Score of the searched archi-
tecture for each method by using the dataset. Without
considering multi-objectives, the F1-score is generally high
across different methods. Notably, in the OPPORTUNITY
dataset shown in FIGURE 6 (e), the proposed method
exhibited improved performance despite a reduction in
parameter size. In contrast, the EA method encountered
a decrease in performance despite an increase in parame-
ter size. In FIGURE 6 (c), the F1-Score of the proposed

method is 0.86, and the F1-Score of the RL and EA
methods are 0.85 and 0.87, respectively. The proposed
method has a similar F1-Score despite the much shorter
architecture search time than the RL and EA methods.
In the remaining datasets, the proposed method can search
architectures with similar performance to the RL and EA
methods with at least seven times less architecture search
time.

C. IN-DEPTH ANALYSIS
In previous HAR NAS studies, HAR architecture models
have been optimized for FLOPs. However, the objective of
this study is to create an optimized HAR architecture model
for each target device using the latency of the target device.
To demonstrate that the architecture of an optimal model can
vary depending on the specifications of the target device,
we configured an entry-level device (Galaxy A31, CPU:
Mediatek MT6768) and a high-end device (Galaxy S10,
CPU: Exynos 9820). We measured the latency of operations
in our search space on the Galaxy A31 and Galaxy S10
devices. To facilitate the optimization process, we created a
latency LUT by storing the measured latencies in advance.
In the proposed method, one of the objective functions
includes a term related to latency. During the optimization

VOLUME 11, 2023 71735



W.-S. Lim et al.: Efficient HAR Using Lookup Table-Based NAS for Mobile Devices

FIGURE 12. Block diagram illustrating the model for the Galaxy A31 on the OPPORTUNITY dataset.

FIGURE 13. Block diagram illustrating the model for the Galaxy S10 on the OPPORTUNITY dataset.

process, we utilize the latency LUT to search and incorpo-
rate the latency of each operation specific to each device.
By doing so, we can effectively consider and optimize for
the latency characteristics of both devices in our approach.
Since latency optimization depends on the device rather than
the dataset, we utilized the latency LUT from the OPPORTU-
NITY dataset to perform the architecture search on Galaxy
A31 and Galaxy S10. After the architecture search according
to the target device, each model was deployed on both mobile
devices for benchmarking the latency. Moreover, we revealed
the portability of the obtained model by migrating it to the
remaining four datasets. In FIGURE 7 to 11, (a) illustrates
the comparison of FLOPs between the A31-optimized model
and the S10-optimized model. (b) and (c) provide detailed
comparison results of the latency for the A31-optimized and
S10-optimized models on each respective device.

Comparing the FLOPs of each model in FIGURE 7 (a)
revealed that the FLOPs of the S10-optimized model is
0.05 MFLOPs lower than that of the A31-optimized model.
However, when the two models were deployed on the Galaxy
A31 and Galaxy S10, the latency differed depending on the
device. As displayed in FIGURE 7 (b), the latency of the
A31-optimized model is 10.08 ms, which is lower than that
of the S10-optimized model with fewer FLOPs, 10.45 ms.
By contrast, in FIGURE 7 (c), the latency of the S10-
optimized model was 6.24 ms, which is lower than that
of the A31-optimized model of 6.56 ms. Experimental
results revealed that the latency-based architecture search
method proposed in this study is more appropriate for
mobile device optimization than the FLOPs-based architec-
ture search method. Likewise, similar results were observed
when the model was migrated to other datasets. Although the
S10 model has higher FLOPs in those datasets, the optimized
model consistently shows lower latency on each respective
device. Specifically, in the KU-HAR dataset experiment,

FIGURE 14. Comparison of operation latency on each mobile
device(Galaxy A31, Galaxy S10) e.g., the latency of Conv3 has the most
prominent distinction between devices.

FIGURE 10 (b) and (c) illustrate a significant latency dif-
ference of nearly 1 ms between the two models for both the
Galaxy A31 and Galaxy S10.

Moreover, we conducted an investigation based on the
latency LUT to analyze the differences between architectures
using target mobile devices. We visualized the block dia-
grams of the model architectures optimized for each device
in FIGURE 12 and FIGURE 13. Additionally, we depicted
the latency LUT for candidate operations on Galaxy A31 and
Galaxy S10 in FIGURE 14. A noticeable difference can be
observed in the latency of each operation between Galaxy
A31 and Galaxy S10. While Galaxy S10 benefits from ample

71736 VOLUME 11, 2023



W.-S. Lim et al.: Efficient HAR Using Lookup Table-Based NAS for Mobile Devices

computational resources, Galaxy A31 exhibits more signif-
icant variations in operation latency. In particular, unlike
Galaxy S10, Galaxy A31 displays high latency in convolution
with a kernel size of three and max pooling with a kernel
size of five. Conversely, Galaxy S10 exhibits lower latency
in the convolution with a kernel size of three compared to
other operations, and the difference in latency between each
operation is smaller than that of Galaxy A31. By comparing
and interpreting the latency of each operation on each device,
it becomes evident that the model generated through the
proposed method was tailored to reflect the characteristics of
each device. FIGURE 12 shows that the convolution opera-
tion with a kernel size of three and the max pooling operation
with a kernel size of five, which exhibited the highest latency
on Galaxy A31, were not selected. Instead, operations with
relatively lower latency were chosen. Conversely, as shown
in FIGURE 13, on Galaxy S10, the convolution operation
with a kernel size of three was selected due to its relatively
low latency. This comparison highlights how the proposed
method adapts the model architecture to the specific latency
constraints of each device.

In summary, based on the additional experiments con-
ducted, it is evident that the optimal model for HAR can
vary across different devices due to variations in operation
latency. Consequently, an architecture design that takes into
direct consideration the hardware specifications of the target
device was confirmed to be effective in environments with
limited computational resources, such as smartphones.

V. CONCLUSION
In this study, we proposed a mobile HAR NAS based on
a differentiable neural architecture search to automatically
design the architecture of a HAR model for a mobile device.
Our experiments achieved a significant milestone by utilizing
a single training process incorporating an overparameter-
ized network encompassing all candidate operations. This
approach resulted in a remarkable reduction in search time
on each dataset, with a duration of under 1.5 hours. As a
result, the proposed method exhibited an average speed
improvement exceeding sevenfold compared to conventional
methods. Furthermore, our assessments on various target
devices revealed that the proposed method, utilizing the
target device’s latency instead of focusing on FLOPS opti-
mization like conventional HAR NAS methods, facilitates
the exploration of hardware-specific architectures. In addi-
tional experiments conducted with the Galaxy A31 and
Galaxy S10 smartphones as target devices, the latency of
the A31-optimized model was on average 2% faster than the
S10-optimized model on the A31 device. Specifically, when
running the OPPORTUNITY dataset on the A31, the A31
model showed a 4% improvement in latency compared to the
S10model. On the other hand, when running the same dataset
on the S10, the S10model exhibited a 5% reduction in latency
compared to the A31 model.

However, some concerns remain. The time and effort
required to construct the latency LUT were not considered,

which is not trivial if the number of devices and candidate
operations increase. This problem could be alleviated by
using a regression model trained from the latency LUT values
to predict the latency of other devices.

REFERENCES
[1] F. Demrozi, R. Bacchin, S. Tamburin, M. Cristani, and G. Pravadelli,

‘‘Toward a wearable system for predicting freezing of gait in people
affected by Parkinson’s disease,’’ IEEE J. Biomed. Health Informat.,
vol. 24, no. 9, pp. 2444–2451, Sep. 2020.

[2] A. Prati, C. Shan, and K. I.-K. Wang, ‘‘Sensors, vision and networks:
From video surveillance to activity recognition and health monitoring,’’
J. Ambient Intell. Smart Environ., vol. 11, no. 1, pp. 5–22, 2019.

[3] Y. Du, Y. Lim, and Y. Tan, ‘‘A novel human activity recognition and
prediction in smart home based on interaction,’’ Sensors, vol. 19, no. 20,
pp. 4474–4489, 2019.

[4] P. Agarwal and M. Alam, ‘‘A lightweight deep learning model for human
activity recognition on edge devices,’’ Proc. Comput. Sci., vol. 167,
pp. 2364–2373, Jan. 2020.

[5] K. T. Chitty-Venkata and A. K. Somani, ‘‘Neural architecture search
survey: A hardware perspective,’’ ACM Comput. Surv., vol. 55, no. 4,
pp. 1–36, Apr. 2023.

[6] M. H. M. Noor, S. Y. Tan, and M. N. A. Wahab, ‘‘Deep temporal conv-
LSTM for activity recognition,’’ Neural Process. Lett., vol. 54, no. 5,
pp. 4027–4049, Oct. 2022.

[7] A. Bevilacqua, K. MacDonald, A. Rangarej, V. Widjaya, B. Caulfield,
and T. Kechadi, ‘‘Human activity recognition with convolutional neural
networks,’’ in Proc. Eur. Conf. ECML PKDD, Dublin, Ireland, Sep. 2018,
pp. 541–552.

[8] S. Mekruksavanich and A. Jitpattanakul, ‘‘RNN-based deep learning for
physical activity recognition using smartwatch sensors: A case study of
simple and complex activity recognition,’’ Math. Biosci. Eng., vol. 19,
no. 6, pp. 5671–5698, 2022.

[9] W. N. Ismail, H. A. Alsalamah, M. M. Hassan, and E. Mohamed,
‘‘AUTO-HAR: An adaptive human activity recognition framework using
an automated CNN architecture design,’’ Heliyon, vol. 9, no. 2, Feb. 2023,
Art. no. e13636.

[10] X.Wang, M. He, L. Yang, H.Wang, and Y. Zhong, ‘‘Human activity recog-
nition based on an efficient neural architecture search framework using
evolutionary multi-objective surrogate-assisted algorithms,’’ Electronics,
vol. 12, no. 1, pp. 50–69, 2022.

[11] L. Pellatt and D. Roggen, ‘‘Fast deep neural architecture search for wear-
able activity recognition by early prediction of converged performance,’’
in Proc. Int. Symp. Wearable Comput., Sep. 2021, pp. 1–6.

[12] X. Wang, X. Wang, T. Lv, L. Jin, and M. He, ‘‘HARNAS: Human activity
recognition based on automatic neural architecture search using evolution-
ary algorithms,’’ Sensors, vol. 21, no. 20, pp. 6927–6950, 2021.

[13] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, ‘‘Learning transferable
architectures for scalable image recognition,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 8697–8710.

[14] Z. Lu, I. Whalen, V. Boddeti, Y. Dhebar, K. Deb, E. Goodman,
and W. Banzhaf, ‘‘NSGA-Net: Neural architecture search using multi-
objective genetic algorithm,’’ in Proc. Genet. Evol. Comput. Conf.,
Jul. 2019, pp. 419–427.

[15] H. Liu, K. Simonyan, and Y. Yang, ‘‘DARTS: Differentiable architecture
search,’’ 2018, arXiv:1806.09055.

[16] N. Dua, S. N. Singh, V. B. Semwal, and S. K. Challa, ‘‘Inception inspired
CNN-GRU hybrid network for human activity recognition,’’ Multimedia
Tools Appl., vol. 82, no. 4, pp. 5369–5403, Feb. 2023.

[17] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, ‘‘A fast and elitist
multiobjective genetic algorithm: NSGA-II,’’ IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2002.

[18] L. Schrader, A. V. Toro, S. Konietzny, S. Rüping, B. Schäpers,
M. Steinböck, C. Krewer, F. Müller, J. Güttler, and T. Bock, ‘‘Advanced
sensing and human activity recognition in early intervention and rehabili-
tation of elderly people,’’ J. Population Ageing, vol. 13, no. 2, pp. 139–165,
Jun. 2020.

[19] W. Zhang, C. Su, and C. He, ‘‘Rehabilitation exercise recognition and
evaluation based on smart sensors with deep learning framework,’’ IEEE
Access, vol. 8, pp. 77561–77571, 2020.

VOLUME 11, 2023 71737



W.-S. Lim et al.: Efficient HAR Using Lookup Table-Based NAS for Mobile Devices

[20] R. Xi, M. Li, M. Hou, M. Fu, H. Qu, D. Liu, and C. R. Haruna, ‘‘Deep
dilation on multimodality time series for human activity recognition,’’
IEEE Access, vol. 6, pp. 53381–53396, 2018.

[21] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda,
Y. Jia, and K. Keutzer, ‘‘FBNet: Hardware-aware efficient ConvNet design
via differentiable neural architecture search,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 10726–10734.

[22] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, ‘‘A public
domain dataset for human activity recognition using smartphones,’’ in
Proc. 21st Int. Eur. Symp. Artif. Neural Netw., 2013, pp. 437–442.

[23] D. Micucci, M. Mobilio, and P. Napoletano, ‘‘UniMiB SHAR: A dataset
for human activity recognition using acceleration data from smartphones,’’
Appl. Sci., vol. 7, no. 10, pp. 1101–1119, 2017.

[24] J. R. Kwapisz, G. M. Weiss, and S. A. Moore, ‘‘Activity recognition using
cell phone accelerometers,’’ ACM SIGKDD Explor. Newslett., vol. 12,
no. 2, pp. 74–82, Mar. 2011.

[25] D. Roggen, A. Calatroni, M. Rossi, T. Holleczek, K. Förster, G. Tröster,
P. Lukowicz, D. Bannach, G. Pirkl, A. Ferscha, J. Doppler, C. Holzmann,
M. Kurz, G. Holl, R. Chavarriaga, H. Sagha, H. Bayati, M. Creatura,
and J. del R. Millàn, ‘‘Collecting complex activity datasets in highly rich
networked sensor environments,’’ in Proc. 7th Int. Conf. Netw. Sens. Syst.
(INSS), Jun. 2010, pp. 233–240.

[26] N. Sikder and A.-A. Nahid, ‘‘KU-HAR: An open dataset for heterogeneous
human activity recognition,’’ Pattern Recognit. Lett., vol. 146, pp. 46–54,
Jun. 2021.

WON-SEON LIM received the B.S. and M.S.
degrees from Chung-Ang University, Seoul,
South Korea, where he is currently pursuing the
Ph.D. degree with the School of Computer Science
and Engineering. His research interests include
continual learning, neural architecture search, and
on-device AI.

WANGDUK SEO received the B.S. and M.S.
degrees from Chung-Ang University, Seoul,
South Korea, where he is currently pursuing the
Ph.D. degree with the School of Computer Science
and Engineering. His research interests include
feature selection, metaheuristic optimization, and
neural architecture search.

DAE-WON KIM (Member, IEEE) received the
B.S. degree from Kyungpook National Univer-
sity, Daegu, South Korea, and the M.S. and
Ph.D. degrees from the Korea Advanced Institute
of Science and Technology. He was a Post-
doctoral Researcher with the Korea Advanced
Institute of Science and Technology. He is cur-
rently a Professor with the School of Computer
Science and Engineering, Chung-Ang University,
Seoul, South Korea. His research interests include

advanced data mining algorithms with innovative applications to bioin-
formatics, music emotion recognition, educational data mining, affective
computing, and robot interaction.

JAESUNG LEE received the B.S., M.S., and Ph.D.
degrees in computer science from Chung-Ang
University, Seoul, Republic of Korea, in 2007,
2009, and 2013, respectively. He also studies
classification, feature selection, and especially
multilabel learning with information theory. He is
currently theHead and anAssociate Professor with
the Department of Artificial Intelligence, Chung-
Ang University. He is also the Chief of the AI/ML
Innovation Research Center, Chung-Ang Univer-

sity. His research interests include machine learning, multilabel learning,
model selection, and neural architecture search.

71738 VOLUME 11, 2023


