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Abstract: The aim of this paper is to introduce a class of starlike functions that are related to Bernoulli’s

numbers of the second kind. Let ϕBS(ξ) =
(

ξ
eξ−1

)2
= ∑∞

n=0
ξn B2

n
n! , where the coefficients of B2

n are
Bernoulli numbers of the second kind. Then, we introduce a subclass of starlike functions z such that
ξz′(ξ)
z(ξ)

≺ ϕBS(ξ). We found out the coefficient bounds, several radii problems, structural formulas,
and inclusion relations. We also found sharp Hankel determinant problems of this class.

Keywords: starlike functions; subordination; Bernoulli’s number of second kind; radii problems;
inclusion results; coefficient bounds; Hankel determinants
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1. Introduction and Preliminaries

The Bernoulli numbers first appeared in the posthumous publications of Jakob Bernoulli
in (1713), and they were independently discovered by the Japanese mathematician Seki
Takakazu in 1712 [1]. We define the Bernoulli numbers of the k kind as follows:

ϕBS(ξ) =

(
ξ

eξ − 1

)k
=

∞

∑
n=0

ξnBk
n

n!
. (1)

Bernoulli numbers of the k kind are denoted by Bk
n. The function defined in (1) for k = 1 is

known as the Bernoulli function. The convexity of the function ϕBS given in (1), as well as
its reciprocal function

(
eξ − 1

)
/ξ are studied in [2,3]; see also [4].

Let H denote a class of analytic functions in E = [ξ ∈ C : |ξ| < 1]. Let An ⊂ H
represent the functions z having the series expansion z(ξ) = ξ + dn+1ξn+1 + dn+2ξn+2 +
· · · in E. The class A1 = A represents the function z with a power series representation:

z(ξ) = ξ +
∞

∑
n=2

dnξn, ξ ∈ E. (2)

The class S ⊂ A contains the univalent function z (i.e., z(ξ1) = z(ξ2), which implies
that ξ1 = ξ2 in E). Let z ∈ A. Then, z is in the S∗ of univalent starlike functions if, and
only if

Re
{

ξz′(ξ)
z(ξ)

}
> 0, ξ ∈ E.
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Let B ⊂ H represent a class of self maps v (Schwarz functions) in E with v(0) = 0.
Assume that z and g are analytic (holomorphic) in E. Then, z ≺ g and reads as z, which
is subordinated by g such that z(ξ) = g(v(ξ)) for ξ ∈ E and v ∈ B if the subordinating
function g is univalent. Then,

z(0) = g(0)⇔ z(E) ⊆ g(E).

In [5], the authors have introduced a subclass of S∗ defined by

S∗(ϕ) =

{
z ∈ A :

ξz′(ξ)
z(ξ)

≺ ϕ(ξ)

}
.

The function ϕ is one-to-one in E, and maps E onto a starlike domain with respect to
ϕ(0) = 1, with ϕ′(0) > 0 being symmetric about the real axis . We obtain subclasses of
S∗ by taking particular ϕ. The functions in class S∗[a, b] := S∗((1 + aξ)/(1 + bξ)) are
Janowski starlike functions [6]. Furthermore, S∗(λ) := S∗[1− 2λ,−1] represents starlike
functions of order λ ∈ [0, 1), whereas S∗(0) = S∗. The class

SS∗(β) := S∗[(1 + ξ)/(1− ξ)]β =
{
z ∈ A :

∣∣arg
(
ξz′(ξ)/z(ξ)

)∣∣ < βπ/2
}

, β ∈ (0, 1]

represents strongly starlike functions in E. The class SL∗ := S∗
(√

1 + ξ
)

contains starlike
functions related with a lemniscate of the Bernoulli; see [7]. The classes

S∗RL := S∗
(√

2−
(√

2− 1
)(

(1− ξ)/
(

1 + 2
(√

2− 1
)

ξ
))1/2

)
and S∗e := S∗(eξ) were studied in [8,9]. The class S∗C := S∗

(
1 + 4ξ/3 + 2ξ2/3

)
repre-

sents starlike functions related with a cardioid [10]. The classes S∗s := S∗(1 + sin ξ) and
S∗cos := S∗(cos ξ) are related with sine and cosine functions, respecitvely; see [11] and [12]
respectively. The class S∗∆ = S∗

(
ξ +

√
1 + ξ2

)
is related with the lune, see [13], whereas

the class BS∗(λ) := S∗
(
1 + ξ/

(
1− λξ2)), λ ∈ [0, 1] is related with the Booth lemniscate;

see [14]. The class S∗B := S∗(eeξ − 1) is related to the Bell numbers; see [15]. The class

S∗T = S∗(e(ξ+µ ξ2
2 )) is related to telephone numbers; see [16]. The class S∗BF = S∗

(
ξ/eξ − 1

)
contains starlike functions related with Bernoulli functions’ see [17].

For some recent work, we refer to [18–23] and the references therein.
We now define the class S∗BS associated with the Bernoulli numbers of the second kind.

Definition 1. Let z ∈ A. Then, z ∈ S∗BS if and only if

ξz′(ξ)
z(ξ)

≺
(

ξ

eξ − 1

)2
= ϕBS(ξ), ξ ∈ E.

In other words, a function z ∈ S∗BS can be written as

z(ξ) = ξ exp
(∫ ξ

0

ϕ(s)− 1
s

ds
)

, (3)

where ϕ is analytic and satisfies ϕ(ξ) ≺ ϕBS(ξ) = ( ξ
eξ−1 )

2 (ξ ∈ E).
To give some examples of functions in the class S∗BS, consider

ϕ1(ξ) = 1 +
ξ

4
, ϕ2(ξ) =

5 + 2ξ

5 + ξ
, ϕ3(ξ) =

3 + ξeξ

3
, ϕ4(ξ) = 1 +

ξ cos(ξ)
4

.
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The function ϕ0(ξ) = ( ξ
eξ−1 )

2 is univalent in E, ϕi(0) = ϕ0(0) (i = 1, 2, 3, 4) and ϕi(E) ⊂
ϕ0(E); it is easy to conclude that ϕi(ξ) ≺ ϕ0(ξ). The functions zi ∈ S∗BS corresponding to
every ϕi. respectively, are given as follows:

z1(ξ) = ξeξ/4, z2(ξ) = ξ

(
1 +

ξ

5

)
,

z3(ξ) = ξ exp
(

eξ − 1
3

)
, z4(ξ) = ξ exp

(
sin(ξ)

4

)
.

In particular, if ϕ0(ξ) =
(

ξ
eξ−1

)2
, then (3) takes the form

z0(ξ) = ξ exp
(∫ ξ

0

ϕ0(s)− 1
s

ds
)
= ξ − ξ2 +

17ξ3

24
− 29ξ4

72

+
377ξ5

1920
− 11ξ6

120
+ · · · . (4)

The above function acts as an extremal function for S∗BS.
The following theorem gives the sharp estimates for ϕBS:

Lemma 1. The function ϕBS(ξ) =
(

ξ
eξ−1

)2
satisfies

min
|ξ|=`

Re ϕBS(ξ) = ϕBS(`) = min
|ξ|=`
|ϕBS(ξ)|

max
|ξ|=`

Re ϕBS(ξ) = ϕBS(−`) = max
|ξ|=`
|ϕBS(ξ)|,

whenever `∈ (0, 1).

2. Inclusion and Radius Problems

Theorem 1. The class S∗BS satisfies the following inclusion relations:

1. If 0 ≤ λ ≤ 1
(e−1)2 , then S∗BS ⊂ S∗(λ).

2. If β ≥ ( e
e−1 )

2, then S∗BS ⊂ RS∗(1/β) ⊂ M(β).
3. S∗BS ⊂ SS∗(β), where β0 ≤ β ≤ 1, wherein β0 = 2h(y2)/π ≈ 0.6454469651m and h is

defined in (5).

Proof. (1) If z ∈ S∗BS, then ξz′(ξ)
z(ξ)

≺ ( ξ
eξ−1 )

2. According to Lemma 1, we have

min
|ξ|=1

Re
(

ξ

eξ − 1

)2
< Re

ξz′(ξ)
z(ξ)

< max
|ξ|=1

Re
(

ξ

eξ − 1

)2
;

therefore,

Re
ξz′(ξ)
z(ξ)

>
1

(e− 1)2 .

(2) Similarly,

Re
ξz′(ξ)
z(ξ)

<
e2

(e− 1)2 .

Thus, z ∈ S∗
(

1
(e−1)2

)
∩M

(
e2

(e−1)2

)
. Now, we have the following:

Re
z(ξ)

ξz′(ξ) >

(
e− 1

e

)2
.
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This implies that z ∈ RS∗(β) for β ≤
(

e−1
e

)2
. Identically, z ∈ RS∗(1/β) for β ≥

( e
e−1
)2.

Also, z ∈ RS∗(1/β) if and only if ∣∣∣∣ ξz′(ξ)z(ξ)
− β

2

∣∣∣∣ < β

2
,

which leads to Re(ξz′(ξ)/z(ξ)) < β. Therefore, S∗BS ⊂ RS∗(1/β) ⊂ M(β) whenever
β ≥

( e
e−1
)2.

(3) If z ∈ S∗BS, then ∣∣∣∣arg
ξz′(ξ)
z(ξ)

∣∣∣∣ < max
|ξ|=1

arg
(

ξ

eξ − 1

)2

= max
0≤y<2π

arctan
(

V
U

)
.

Let

h(y) = arctan
(

V
U

)
, (5)

where U and V are given as

U = cos(2y)


(

ecos(y)
)2

(cos(sin(y)))2 − 2 ecos(y) cos(sin(y)) + 1

−
(

ecos(y)
)2

(sin(sin(y)))2


+ sin(2y)

(
2
(

ecos(y)
)2

cos(sin(y)) sin(sin(y))− 2 ecos(y) sin(sin(y))
)

,

V = sin(2y)


(

ecos(y)
)2

(cos(sin(y)))2 − 2ecos(y) cos(sin(y)) + 1

−
(

ecos(y)
)2

(sin(sin(y)))2


− cos(2y)

(
2
(

ecos(y)
)2

cos(sin(y)) sin(sin(y))− 2ecos(y) sin(sin(y))
)

.

Here, h′(y) = 0 has y1 ≈ 1.409746460 and y2 ≈ 4.873438847 roots in [0, 2π]. In addition,
h′′(y2) ≈ −1.0988577. Hence, max0≤y<2π h(y) = h(y2) ≈ 1.013865722, and

∣∣∣arg ξz′(ξ)
z(ξ)

∣∣∣ ≤
πβ
2 ; that is, β ≥ 0.645186552. This implies that S∗BS ⊂ SS∗β.

Now, we discuss some radii problems for the class S∗BS. The following definitions and
lemmas are needed to establish the results. The class P represents the functions p of the
form

p(ξ) = 1 +
∞

∑
n=1

pnξn (6)

that are analytic in E such that Rep(ξ) > 0, ξ ∈ E. Let

Pn[a, b] :=

{
p(ξ) = 1 +

∞

∑
k=n

cnξn : p(ξ) ≺ 1 + aξ

1 + bξ
, −1 ≤ b < a ≤ 1

}
.

In particular, Pn(λ) := Pn[1− 2λ,−1] , and Pn := Pn(0). Let S∗n[a, b] = An ∩ S∗[a, b], and
S∗n(λ) := S∗n[1− 2λ,−1]. Also, let

S∗BS,n := An ∩ S∗BS, S∗n(λ) := An ∩ S∗(λ), S∗L,n := An ∩ S∗L.

Additionally,
Sn := {z ∈ An : z(ξ)/ξ ∈ Pn},
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and

CSn(λ) :=
{
z ∈ An :

z(ξ)

g(ξ)
∈ Pn, g ∈ S∗n(λ)

}
;

see [24].

Lemma 2 ([25]). If p ∈ Pn(λ), then for |ξ| = `,∣∣∣∣ ξ p′(ξ)
p(ξ)

∣∣∣∣ ≤ 2(1− λ)n`n

(1− `n)(1 + (1− 2λ)`n)
.

Lemma 3 ([26]). Let p ∈ P. Then,

|jp3
1 − kp1 p2 + lp3| ≤ 2|j|+ 2|k− 2j|+ 2|j− k + l|.

Lemma 4 ([27]). If p ∈ Pn[a, b], then for |ξ| = `,∣∣∣∣p(ξ)− 1− ab`2n

1− b2`2n

∣∣∣∣ ≤ (a− b)`n

1− b2`2n .

If p ∈ Pn(λ), then for |ξ| = `,∣∣∣∣p(ξ)− (1 + (1− 2λ))`2n

1− `2n

∣∣∣∣ ≤ 2(1− λ)`n

1− `2n .

In the following lemmas, we find disks centered at (ν, 0) and (1, 0) of the largest and
the smallest radii, respectively, such that fBS := ϕBS(E) lies in the disk with the smallest
radius and contains the largest disk.

Lemma 5. Let
(

1
e−1

)2
≤ ν ≤

( e
e−1
)2. Then,

{w ∈ C : |w− ν| < `ν} ⊂ fBS ⊂
{

w ∈ C : |w− 1| <
(

e
e− 1

)2
}

,

where

`ν =

 ν−
(

1
e−1

)2
, 1

(e−1)2 ≤ ν ≤ e2+1
2(e−1)2 ,( e

e−1
)2 − ν, e2+1

2(e−1)2 ≤ ν ≤
( e

e−1
)2.

Proof. Let cos(y) = $ and sin(y) = ς. Then, the square of the distance from the boundary
fBS to the point (ν, 0) is given by

ψ(y) =
(

A
(1− 2e$cos(ς) + (e$)2)2 − ν

)2
+

(
B

(1− 2e$cos(ς) + (e$)2)2

)2
,

where

A = cos(2y)
{

1− 2e$ cos(ς) + (e$)2 cos(2ς)
}
+ 2e${e$ cos(ς)− 1} sin(ς) sin(2y),

B = sin(2y)
{

1− 2e$ cos(ς) + (e$)2 cos(2ς)
}
− 2e${e$ cos(ς)− 1} sin(ς) cos(2y).

To show that |w− ν| <`ν is largest disk contained in fBS, it is enough to show that
the min

0≤≤2π
ψ(y) = `ν. Since ψ(y) = ψ(−y), it is enough to take the range 0 ≤ y ≤ π.
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Case 1: When 1
(e−1)2 ≤ ν < e2

(2e2−8e+9)(e−1)2 , then ψ′(y) = 0 has 0 and π roots. In

addition, ψ′(y) > 0 for y ∈ (0, π). Thus,

min
0≤`≤π

ψ(y) = min{ψ(0), ψ(π)} = ψ(0).

Hence,

`ν = min
0≤y≤π

√
ψ(y) =

√
ψ(0) =

1
(e− 1)2 − ν.

Case 2: When e2

(2e2−8e+9)(e−1)2 < ν ≤ e2

(e−1)2 , then ψ′(y) = 0 has 0, yν, and π roots, where

yν depends on ν. In addition, ψ′(y) > 0 for y ∈ (0, yν), and ψ′(y) < 0 when y ∈ (yν, π).
Therefore, ψ(y) has minima at 0 or π. We also see that ψ(0) < ψ(π) for e2

(2e2−8e+9)(e−1)2 <

ν ≤ e2+1
2(e−1)2 and ψ(0) > ψ(π) for e2+1

2(e−1)2 < ν ≤
( e

e−1
)2.

Thus, the first part of the proof is completed.
Now, for the smallest disc that contains fBS, the function ψ(y) for ν = 1 attains its

maximum value at π. Thus, the disk with the smallest radius that contains fBS has a radius
of
( e

e−1
)2.

Theorem 2. The sharp RS∗BS,n
for Sn is

RS∗BS,n
(Sn) =

(
e2 − 2e√

n2(e− 1)4 + (e2 − 2e) + n(e− 1)2

)1/n

.

Proof. Consider a function h̄(ξ) ∈ Pn such that h̄(ξ) = z(ξ)/ξ. Now, we have the
following:

ξz′(ξ)
z(ξ)

− 1 =
ξ h̄′(ξ)
h̄(ξ)

.

From Lemma 2, we have ∣∣∣∣ ξz′(ξ)z(ξ)
− 1
∣∣∣∣ = ∣∣∣∣ ξ h̄′(ξ)

h̄(ξ)

∣∣∣∣ ≤ 2n`n

1− `2n .

From Lemma 4, the map of |ξ| ≤` under ξz′/z lies in the fBS if the following is satisfied:

2n`n

1− `2n ≤ 1− 1
(e− 1)2 .

This is equivalently written as

((e− 1)2 − 1)`2n + 2n(e− 1)2`n + 1− (e− 1)2 ≤ 0.

Thus, the S∗BS,n-radius of the Sn is the root ` ∈(0, 1) of

((e− 1)2 − 1)`2n + 2n(e− 1)2`n + 1− (e− 1)2 = 0;

that is,

RS∗BS,n
(Sn) =

(
e(e− 2)

n(e− 1)2 +
√

1 + (n2 + 1)(e− 1)4 − 2(e− 1)2

)1/n

.

Consider z0(ξ) = ξ(1+ ξn)/1− ξn. Then, h̄0(ξ) = z0(ξ)/ξ = (1+ ξn)/(1− ξn) > 0.
Thus, z0 ∈ Sn, and ξz′0(ξ)/z0(ξ) = 1 + 2nξn/(1− ξ2n). This is beacuse at ξ = RS∗BS,n

, we
have

ξz′0(ξ)
z0(ξ)

− 1 =
2nξn

1− ξ2n = 1− 1
(e− 1)2 .
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Therefore, z0 gives a sharp result. Hence, the proof is completed.

Theorem 3. Let

R1 =

(
4e− e2 − 1

2(e− 1)2(1− 2λ) + e2 + 1

) 1
2n

,

R2 =

(
(e− 1)2 − 1

(1 + n− λ)(e− 1)2 +
√

1 + (2n(1− λ) + λ2 + n2)(e− 1)4 − 2(e− 1)2λ

) 1
n

,

R3 =

(
e2

(1 + n− λ)(e− 1)2 +
√

1 + (1 + n− λ)2(e− 1)4 − (1− 2λ)e4

) 1
n

.

Then, a sharp S∗BS,n-radius for the class CSn(λ) is

RS∗BS,n
(CSn(λ)) =

{
R2, i f R2 ≤ R1,
R3, i f R2 > R1.

Proof. Define a function h̄(ξ) = z(ξ)/g(ξ), where g ∈ S∗n(λ). Then, h̄ ∈ Pn, and
ξg′(ξ)/g(ξ)∈ Pn(λ). From the definition of h̄, we have

ξz′(ξ)
z(ξ)

=
ξg′(ξ)
g(ξ)

+
ξ h̄′(ξ)
h̄(ξ)

.

From Lemmas 2 and 3, we see that∣∣∣∣ ξz′(ξ)z(ξ)
− 1 + (1− 2λ)`2n

1− `2n

∣∣∣∣ ≤ 2(1 + n− λ)`n

1− `2n . (7)

Now, we find the values R1, R2 and R3 for 0 < ` < 1 and 0 ≤ λ < 1. Firstly, we find
R1. For ` ≤ R1, this can be found if and only if

1 + (1− 2λ)`2n

1− `2n ≤ e2 + 1

2(e− 1)2 .

This implies that

` ≤
(

4e− e2 − 1

2(e− 1)2(1− 2λ) + e2 + 1

) 1
2n

.

Now, we obtain R2. For this, we must have

2(1 + n− λ)`n

1− `2n ≤ 1 + (1− 2λ)`2n

1− `2n − 1
(e− 1)2 .

This implies that

` ≤ (e− 1)2 − 1
(1 + n− λ)(e− 1)2 +

√
1 + (−2nλ + λ2 + 2n + n2)(e− 1)4 − 2(e− 1)2λ

.

For R3, we have
2(1 + n− λ)`n

1− `2n ≤
(

e
e− 1

)2
− 1 + (1− 2λ)`2n

1− `2n .

This implies that

` ≤ e2

(1 + n− λ)(e− 1)2 +
√

1 + (1 + n− λ)2(e− 1)4 − (1− 2λ)e4
.
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Theorem 4. The S∗BS,n-radius for S∗n[a, b] is

RS∗BS,n
(S∗n[a, b]) =

{
min{1; `1}, −1 ≤ b ≤ 0 < a ≤ 1,
min{1; `2}, 0 < b < a ≤ 1,

where

`1 =

(
2e− 1

(e− 1)2a− be2

)1/n

,

and

`2 =

(
e(e− 2)

a(e− 1)2 − b

)1/n
.

Proof. Let z ∈ S∗n[a, b]. Then, from Lemma 3, we can write∣∣∣∣ ξz′(ξ)z(ξ)
− C

∣∣∣∣ ≤ (a− b)`n

1− b2`2n , (8)

where

C =
1− ab`2n

1− b2`2n , |ξ| = `.

For b < 0, we see that C ≥ 1. Also by using Lemma 4, z ∈ S∗BS,n if

1 + (a− b)`n − ab`2n

1− b2`2n ≤ e2

(e− 1)2 ,

which is equivalent to

` ≤
(

2e− 1

(e− 1)2a− be2

)1/n

= `1.

Furthermore, if b = 0, then C = 1. From (8), we have∣∣∣∣ ξz′(ξ)z(ξ)
− 1
∣∣∣∣ ≤ a`n, (0 < a ≤ 1).

By using Lemma 4 with a = 1, this gives ` ≤
(

e(e−2)
a(e−1)2

)1/n
for z ∈ S∗BS,n. We see that

C < 1 for 0 < b < a ≤ 1. Thus, from Lemma 4 and (8), we have z ∈ S∗BS,n if

(a− b)`n

1− b2`2n ≤
1− ab`2n

1− b2`2n −
1

(e− 1)2 ,

or, equivalently, if

` ≤
(

e(e− 2)
a(e− 1)2 − b

)1/n
= `2.

This completes the result.

Theorem 5. Let −1 < b < a ≤ 1. If either

(a) (1− b) ≤ (e− 1)2(1− a) and 2(1− b2) ≤ (1− ab)(e− 1)2 < (1− b2)(1 + e2) or if
(b) (a + 1)(e − 1)2 ≤ e2(1 + b) and (1− b2)

(
1 + e2) ≤ 2(1− ab)(e − 1)2 ≤ 2e2(1− b2)

hold, then S∗n[a, b] ⊂ S∗BS,n.
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Proof. (a) Let p(ξ) = ξz′(ξ)/z(ξ). From Lemma 3, z ∈ S∗n[a, b] if∣∣∣∣p(ξ)− 1− ab
1− b2

∣∣∣∣ ≤ a− b
1− b2 .

In connection with Lemma 4, z ∈ S∗n[a, b] if

a− b
1− b2 ≤

1− ab
1− b2 −

1
(e− 1)2 ,

and
1

(e− 1)2 ≤
1− ab
1− b2 ≤

1
2

1 + e2

(e− 1)2 ,

which, upon simplification, reduce to (a).
(b) Let p(ξ) = ξz′(ξ)/z(ξ). Since z ∈ S∗n[a, b], thus, in the view of Lemma 3,∣∣∣∣p(ξ)− 1− ab

1− b2

∣∣∣∣ ≤ a− b
1− b2 .

By using Lemma 4, we note that z ∈ S∗n[a, b] if the following is satisfied:

a− b
1− b2 ≤

e2

(e− 1)2 −
1− ab
1− b2 ,

and
1
2

(
1 + e2

(e− 1)2

)
≤ 1− ab

1− b2 ≤
e2

(e− 1)2 ,

which reduced to the conditions (b).

Theorem 6. The sharp radii for S∗L, S∗RL, S∗e , and S∗lim are

RS∗BS
(S∗L) =

(e−1)4−1
(e−1)4 ≈ 0.889,

RS∗BS
(S∗RL) =

(5+4
√

2)(e−1)4+(−6
√

2−8)(e−1)2+3+2
√

2
(5+4

√
2)(e−1)4+(8+4

√
2)(e−1)2+2+2

√
2
≈ 0.87193,

RS∗BS
(S∗e) = 2− 2 ln(e− 1) ≈ 0.917350,

RS∗BS
(S∗lim) =

√
2(e−2)
e−1 ≈ 0.591174.

Proof. (1) For z ∈ S∗L, we have

ξz′(ξ)
z(ξ)

=
√

1 + v(ξ).

By the Schwarz Lemma |v(ξ)| ≤ |ξ|, we thus have
∣∣∣√1 + v(ξ)− 1

∣∣∣ ≤ 1−
√

1− `. Thus,
for |ξ| = `, we have ∣∣∣∣ ξz′(ξ)z(ξ)

− 1
∣∣∣∣ ≤ 1−

√
1− `.

By Lemma 4, we have 1−
√

1− ` ≤ 1− 1
(e−1)2 . Consider z0(ξ) =

4ξ exp{2(
√

1+ξ−1)}
(1+
√

1+ξ)2 , which

is in S∗L and ξz′0(ξ)
z0(ξ)

=
√

1 + ξ = 1
(e−1)2 at RS∗BS

(S∗L). Hence, the sharpness is verified.
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(2) Let z ∈ S∗RL. Then, for |ξ| =`, we have∣∣∣∣ ξz′(ξ)z(ξ)
− 1
∣∣∣∣ ≤ 1−

√
2 + (

√
2− 1)

√
1 + `

1− 2(
√

2− 1)`

≤ 1− 1
(e− 1)2

provided that

` ≤ (5 + 4
√

2)(e− 1)4 + (−6
√

2− 8)(e− 1)2 + 3 + 2
√

2
(5 + 4

√
2)(e− 1)4 + (8 + 4

√
2)(e− 1)2 + 2 + 2

√
2

= RS∗BS
(S∗RL).

Consider the function z1 defined by

z1(ξ) = ξ exp
(∫ ξ

0

ϕ0(t)− 1
t

dt
)

,

where

ϕ0(ξ) =
√

2− (
√

2− 1)

√
1− ξ

1 + 2(
√

2− 1)ξ
.

At ξ = RS∗BS
(S∗RL), we have

ξz′1(ξ)
z1(ξ)

=
√

2− (
√

2− 1)

√
1− ξ

1 + 2(
√

2− 1)ξ
=

1
(e− 1)2 .

Hence, the sharpness is verified.
(3) z ∈ S∗e , so we have∣∣∣∣ ξz′(ξ)z(ξ)

− 1
∣∣∣∣ ≤ eξ − 1 ≤ e2

(e− 1)2 − 1.

The result is sharp for z2 such that ξz′2(ξ)
z2(ξ)

= eξ .

(4) Suppose that z ∈ (S∗lim); then ξz′(ξ)
z(ξ)

≺ 1 +
√

2ξ + ξ2

2 . Thus, for |ξ| =`, we can it
write as ∣∣∣∣ ξz′(ξ)z(ξ)

− 1
∣∣∣∣ = ∣∣∣∣1 +√2ξ +

ξ2

2
− 1
∣∣∣∣ ≤ √2`− `2

2
≤ 1− 1

(e− 1)2 ,

which is satisfied for ` ≤
√

2(e−2)
e−1 . Consider

z3(ξ) = ξ exp
4
√

2ξ + ξ2

4
.

Since ξz′3(ξ)
z3(ξ)

= 1+
√

2ξ + ξ2

2 , it follows that z3 ∈ (S∗lim) and at ξ = RS∗BS
(S∗lim), so we have

ξz′3(ξ)
z3(ξ)

= 1
(e−1)2 .

Consider the families:

F1 :=
{
z ∈ An : Re

(
z(ξ)

g(ξ)

)
> 0 and Re

(
g(ξ)

ξ

)
> 0, g ∈ An

}
,

F2 :=
{
z ∈ An : Re

(
z(ξ)

g(ξ)

)
> 0 and Re

(
g(ξ)

ξ

)
> 1/2, g ∈ An

}
,
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and

F3 :=
{
z ∈ An :

∣∣∣∣z(ξ)

g(ξ)
− 1
∣∣∣∣ < 1 and Re

(
g(ξ)

ξ

)
> 0, g ∈ An

}
.

Theorem 7. The sharp radii for functions in the families F1, F2, and F3 respectively, are:

RS∗BS,n
(F1) =

(
e(e−2)

2n(e−1)2+
√

1+(4n2+1)(e−1)4−2(e−1)2

)1/n
,

RS∗BS,n
(F2) =

(
2e(e−2)

3n(e−1)2+
√

(9n2+4n+4)(e−1)4−4(n+2)(e−1)2+4

)1/n
,

RS∗BS,n
(F3) =

(
2e(e−2)

3n(e−1)2+
√

(9n2+4n+4)(e−1)4−4(n+2)(e−1)2+4

)1/n
.

Proof. (1) Let z ∈ F1 and define p, h̄ : E → C by p(ξ) = g(ξ)
ξ and h̄(ξ) = z(ξ)

g(ξ) . Then,
clearly, p, h̄ ∈ Pn, since z(ξ) = ξ p(ξ)h̄(ξ). By Lemma 2, and by combining the above
inequalities, we have ∣∣∣∣ ξz′(ξ)z(ξ)

− 1
∣∣∣∣ ≤ 4n`n

1− `2n ≤ 1− 1
(e− 1)2 .

After some simplification, we arrive at

` ≤
(

e(e− 2)
2n(e− 1)2 +

√
1 + (4n2 + 1)(e− 1)4 − 2(e− 1)2

)1/n

= RS∗BS,n
(F1).

To verify the sharpness of result, consider the functions defined by

z4(ξ) = ξ

(
1 + ξn

1− ξn

)2
and g0(ξ) = ξ

(
1 + ξn

1− ξn

)
.

Then, clearly Re
(
z4(ξ)
g0(ξ)

)
> 0, and Re

(
g0(ξ)

ξ

)
> 0. Hence, z0 ∈ F1. We see that at

ξ = RS∗BS,n
(F1)eiπ/n as follows:

ξz′4(ξ)
z4(ξ)

= 1 +
4nξn

1− ξ2n =
1

(e− 1)2 .

Hence, the sharpness is satisfied.
(2) Let z ∈ F2. Define p, h̄ : E → C by p(ξ) = g(ξ)

ξ and h̄(ξ) = z(ξ)
g(ξ) . Then, p ∈ Pn,

and h̄ ∈ Pn(1/2). Since z(ξ) = ξ p(ξ)h̄(ξ), then according to Lemma 2, we have∣∣∣∣ ξz′(ξ)z(ξ)
− 1
∣∣∣∣ ≤ 3n`n + n`2n

1− `2n ≤ 1− 1
(e− 1)2 ,

which implies that

` ≤
(

2e(e− 2)
3n(e− 1)2 +

√
9n2(e− 1)4 + 4[(n + 1)(e− 1)2 − 1][e(e− 2)]

)1/n

= RS∗BS,n
(F2).

Thus, z ∈ S∗BS,n for ` ≤ RS∗BS,n
(F2).

For sharpness, consider the following:

z5(ξ) =
ξ(1 + ξn)

(1− ξn)2 and g1(ξ) =
ξ

1− ξn .
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Then clearly Re
(
z5(ξ)
g1(ξ)

)
> 0, and Re

(
g1(ξ)

ξ

)
> 1

2 . Hence, z ∈ F2. Now, at ξ = RS∗BS,n
(F2)

ξz′5(ξ)
z5(ξ)

= 1 +
3nξn + nξ2n

1− ξ2n =
1

(e− 1)2 .

Hence, the sharpness is satisfied.
(3) Let z ∈ F3. Define p, h̄ : E→ C by p(ξ) = g(ξ)

ξ and h̄(ξ) = g(ξ)
z(ξ)

. Then, p ∈ Pn and∣∣∣∣ 1
h̄(ξ)

− 1
∣∣∣∣ < 1 ⇐⇒ Re(h̄(ξ)) > 1/2;

therefore, h̄ ∈ Pn(1/2). Since z(ξ)h̄(ξ) = ξ p(ξ), then according to Lemma 2, we have∣∣∣∣ ξz′(ξ)z(ξ)
− 1
∣∣∣∣ ≤ 3n`n + n`2n

1− `2n ≤ 1− 1
(e− 1)2 .

This implies that

` ≤
(

2e(e− 2)
3n(e− 1)2 +

√
(9n2 + 4n + 4)(e− 1)4 − 4(n + 2)(e− 1)2 + 4

)1/n

= RS∗BS,n
(F3).

Thus, z ∈ S∗BS,n for ` ≤ RS∗BS,n
(F3). For sharpness, consider the following:

z6(ξ) =
ξ(1 + ξn)2

1− ξn and g2(ξ) =
ξ(1 + ξn)

1− ξn .

We see that

Re
(

g2(ξ)

z6(ξ)

)
= Re

(
1

1 + ξn

)
>

1
2

,

and

Re
(
z6(ξ)

ξ

)
= Re

(
1 + ξn

1− ξn

)
> 0.

Therefore, z6 ∈ F3. A computation shows that at ξ = RS∗BS,n
(F3)eiπ/n, which comes

out to
ξz′6(ξ)
z6(ξ)

− 1 =
3nξn + nξ2n

1− ξ2n = 1− 1
(e− 1)2 .

Hence, the sharpness is satisfied.

3. Coefficient and Hankel Determinant Problems for the Class S∗BS

Pommerenke [28] was the first to introduce the qth Hankel determinant for analytic
functions, and it is stated as follows:

Hq,n(z) :=

∣∣∣∣∣∣∣∣∣
dn dn+1 . . . dn+q−1
dn+1 dn+2 . . . dn+q
...

... . . .
...

dn+q−1 dn+q . . . dn+2q−2

∣∣∣∣∣∣∣∣∣, (9)

where n, q ∈ N. We note that

H2,1(z) = d3 − d2
2, H2,2(z) = d2d4 − d2

3.

In this section, we focus on obtaining sharp coefficient bounds and bounds on H2,1(z)
and H2,2(z).

We will use the following results related to the class P.
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Lemma 6 ([5]). Let p ∈ P and be of the form (6). Then for v, a complex number

|p2 − vp2
1| ≤ 2 max(1, |2v− 1|).

Lemma 7 ([29,30]). Let p ∈ P and be of the form (6) such that |ρ| ≤ 1, and |η| ≤ 1. Then,

2p2 = p2
1 + ρ(4− p2

1), (10)

4p3 = p3
1 + 2(4− p2

1)p1ρ− (4− p2
1)p2

1ρ + 2(4− p2
1)(1− |ρ|2)η, (11)

Lemma 8 ([31]). Let v ∈ B be given by v(z) =
∞
∑

n=0
cnξn, and thus

ψ(u, v) =
∣∣∣c3 + µ1c1c2 + µ2c3

1

∣∣∣.
Then, ψ(u, v) ≤ |ν| if (u, v) ∈ D6, where

D6 =

{
(u, v) : 2 ≤ |µ| ≤ 4, ν ≥ 1

12

(
µ2 + 8

)}
.

Lemma 9 ([32]). Let E := {ρ ∈ C : |ρ| ≤ 1}, and, for j, k, and l ∈ R, let

Y(j, k, l) := max
{
|j + kρ + lρ2|+ 1− |ρ|2 : ρ ∈ E

}
. (12)

If jl ≥ 0, then

Y(j, k, l) =


|j|+ |k|+ |l|, |k| ≥ 2(1− |l|),

1 + |j|+ k2

4(1− |l|) , |k| < 2(1− |l|).

If jl < 0, then

Y(j, k, l) =


1− |j|+ k2

4(1− |l|) , −4jl
(
l−2 − 1

)
≤ k2 ∧ |k| < 2(1− |l|),

1 + |j|+ k2

4(1 + |l|) , k2 < min
{

4(1 + |l|)2,−4jl
(
l−2 − 1

)}
.

R(j, k, l), otherwise.

In such as case,

R(j, k, l) =



|j|+ |k| − |l|, |l|(|k|+ 4|j|) ≤ |jk|,

1 + |j|+ k2

4(1 + |l|) , |jk| < |l|(|k| − 4|j|) ≤ |jk|.

|l|+ |j|

√
1− k2

4jl
, otherwise.

Theorem 8. Let z ∈ S∗BS and be of the form (2). Then,

|d2| ≤ 1, |d3| ≤
17
24

, |d4| ≤
29
72

.

These bounds are the best possible.

Proof. If z ∈ S∗BS, then
ξz′(ξ)
z(ξ)

=

(
v(ξ)

ev(ξ) − 1

)2

,
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where v ∈ B. The class B consists of Schwarz functions v that are analytic in E, with
v(0) = 0, and |v(ξ)| ≤ |ξ|. Let p be of the form (6). Then,

v(ξ) =
p(ξ)− 1
p(ξ) + 1

.

Now by using (2), we can write out the following:

ξz′(ξ)
z(ξ)

= 1 + d2ξ + (2d3 − d2
2)ξ

2 + (3d4 − 3d2d3 + d3
2)ξ

3

+(4d5 − 2d2
3 − 4d2d4 + 4d2

2d3 − d4
2)ξ

4 + · · · . (13)

In addition,(
µ(ξ)

eµ(ξ) − 1

)2

= 1− 1
2

p1ξ +

(
29
96

p2
1 −

1
4

p2

)
ξ2 +

(
−109
576

p3
1 +

13
36

p1 p2 −
1
6

p3

)
ξ3

+

(
11011
92160

p4
1 −

215
576

p2 p2
1 +

25
96

p1 p3 +
23

192
p2

2 −
1
8

p4

)
ξ4 + · · · . (14)

From (13) and (14), we obtain

d2 =
1
2

p1, (15)

d3 =
29
96

p2
1 −

1
4

p2, (16)

d4 =
−109
576

p3
1 +

13
36

p1 p2 −
1
6

p3. (17)

From (15), we have |d2| = 1
2 |p1| ≤ 1. From (16), we can write out the following:

|d3| =
1
4

∣∣∣∣p2 −
29
24

p2
1

∣∣∣∣.
An application of Lemma 6 for v = 29

24 gives the required bound.
The function v ∈ B can be written as a power series:

v(z) =
∞

∑
n=1

cnzn, z ∈ E. (18)

Since p ∈ P, therefore,

p(z) =
1 + v(z)
1−v(z)

.

By comparing the coefficients at powers of z in

[1−v(z)]p(z) = 1 + v(z),

we obtain
p1 = 2c1, p2 = 2c2 + 2c2

1, p3 = 2c3 + 4c1c2 + 2c3
1.

By putting these values in (17), we obtain

d4 = −1
3

(
c3 + µ1c1c2 + µ2c3

1

)
,
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where µ1 = − 7
3 , and µ2 = 29

24 . Now, by using Lemma 8, we have 2 ≤ |µ1| ≤ 4, and
µ1 − 1

12 (µ2 + 8) = 19
216 ; therefore,

|d4| ≤
1
3
|µ2| =

29
72

.

The equalities in each coefficient |d2|, |d3|, and |d4| are respectively obtained by taking the
following:

z1(ξ) = ξ exp

(∫ ξ

0

( t
et−1 )

2 − 1

t
dt

)
= ξ − ξ2 +

17
24

ξ3 − 29
72

ξ4 + · · · . (19)

Theorem 9. Let z ∈ S∗BS and have the series representation given in (2). Then,

|d3 − d2
2| ≤

1
2

. (20)

Theorem 10. Let z ∈ S∗BS and have the series representation given in (2). Then,

H2,2(z) = |d2d4 − d2
3| ≤

521
576

. (21)

The equality is obtained by the z1 given in (19).

Proof. Using (15)–(17), we obtain

H2,2(z) = d2d4 − d2
3 = − 571

3072
p4

1 +
191
576

p2
1 p2 −

1
12

p1 p3 −
1

16
p2

2. (22)

As we can see that the functional H2,2(z) and the class S∗BS are rotationally invariant, we
may therefore take p := p1 such that p ∈ [0, 2]. Then, by using Lemma 7, and after some
computations, we may write out the following:

H2,2(z) = − 571
9216

p4 +
107
1152

p2(4− p2)ρ− 1
192

(4− p2)
(

12− 7p2
)

ρ2

− 1
24

p(4− p2)
(

1− |ρ|2
)

η,

where ρ and η satisfy the relation |ρ| ≤ 1 and |η| ≤ 1.

Firstly, we consider the case when p = 0. Then, |H2,2(z)| =
∣∣∣− 1

4 ρ2
∣∣∣ ≤ 1

4 . Next, we

assume that p = 2; then, |H2,2(z)| = 521
576 . Now suppose that p ∈ (0, 2); then,

|H2,2(z)| ≤ 1
24

p(4− p2)Φ(j, k, l),

where
Φ(j, k, l) =

∣∣∣j + kρ + lρ2
∣∣∣+ 1− |ρ|2, ρ ∈ E,

with j =
521p3

384(4− p2)
, k = − 107p

48 , and l =
(
12− 7p2)

8p
; then clearly,

jl =
521p2(12− 7p2)

3072(4− p2)
≥ 0, for p ∈

[√
12
7

, 2

)
. (23)
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In addition,

|k| − 2(1− |l|) = 23p2 − 96p + 144
48p

> 0 p ∈
[√

12
7

, 2

)

so that |k| > 2(1− |l|), and by applying Lemma 9, we can obtain

|H2,2(z)| ≤ 1
24

p(4− p2)(|j|+ |k|+ |l|) = g(p),

where
g(p) =

1
9216

p4 +
24
288

p2 +
1
4

. (24)

Clearly, g′(p) > 0, and so

max g(p) = g(2) =
521
576

.

We also see from (23) that

jl =
521p2(12− 7p2)

3072(4− p2)
< 0, for p ∈

(
0,

√
12
7

)
.

Thus,

k2 − 4jl
(

l−2 − 1
)
=

1
576

p2(889p2 − 20280)
7p2 − 12

< 0, p ∈
(

0,

√
12
7

)
.

This shows that −4jl
(
l−2 − 1

)
≤ k2 ∧ |k| < 2(1− |l|). In addition,

Φ(p) = 4(1 + |l|)2 + 4jl
(

l−2 − 1
)

=
(7p− 6)

(
1295p5 − 4266p4 + 2688p3 + 2073p2 + 2304p− 13824

)
p2(12− 7p2)

.

We see that Φ(p) > 0 for p ∈ (0, 0.76032) ∪
(

6
7 ,
√

12
7

)
, and Φ(p) < 0 for p ∈

(
0.76032, 6

7
)
.

Hence, we conclude that

min
{

4(1 + |l|)2,−4jl
(

l−2 − 1
)}

=

 −4jl
(
l−2 − 1

)
, p ∈ (0, 0.76032) ∪

(
6
7 ,
√

12
7

)
,

4(1 + |l|)2 (
0.76032, 6

7
)
.

As a result,

k2 − 4(1 + |l|)2 =

(
23p2 − 96p + 144

)(
191p2 + 96p− 144

)
2304

> 0 for
(

0.76032,
6
7

)
.

In addition,

k2 + 4(1 + |l|)2 =
p2(78365p2 − 96828

)
1152(7p2 − 12)

< 0 for

(√
96828
78365

,

√
12
7

)
.

This shows that k2 < min
{

4(1 + |l|)2,−4jl
(
l−2 − 1

)}
hold for p ∈

(√
96828
78365 ,

√
12
7

)
. By

applying Lemma 9, we arrive at the following:

|H2,2(z)| ≤ 1
24

p(4− p2)

(
1 + |j|+ k2

4(1 + |l|)

)
= g1(p),



Axioms 2023, 12, 764 17 of 18

where

g1(p) =
p
(
127p4 − 1364p3 − 1728p2 − 8064p + 6912

)
6912(6− 7p)

.

This attains its maxima at p =
√

12
7 . Hence,

|H2,2(z)| ≤

√
21
(
−4413 + 3034

√
21
)

−148176 + 49392
√

21
<

521
576

.

We are left with the case p ∈
(

0,
√

96828
78365

)
. We also see that

|l|(|k|+ 4|j|)− |jk| = 4171p4 − 55392p2 + 246528
18432(p2 − 4)

< 0 p ∈
(

0,

√
96828
78365

)
.

We conclude that |l|(|k|+ 4|j|) < |jk|. By applying Lemma 9, we arrive at the following:

|H2,2(z)| ≤ 1
24

p(4− p2)(|j|+ |k| − |l|) = g(p),

where g is given in (24), this giving us the required result. The function given in (19)
belongs to the S∗BS, as d2 = −1, d4 = −29/72, and d3 = 17/24, which yields the sharpness
of (21). Hence, the proof is done.

4. Conclusions

We have introduced a subclass of S∗ associated with Bernoulli numbers of the second
kind and studied some geometrical properties of the introduced class. These results include
radii problems, inclusion problems, coefficient bounds, and Hankel determinants. The new
defined class can further be studied for determining the bounds of Hankel and Toeplitz
determinants, and the same can also be found for logarithmic coefficients and for the
coefficients of inverse functions.
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