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the results of many published articles.
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1. Introduction

Special functions, including trigonometric, hyperbolic, exponential, gamma, beta, and
many others, have fascinating and unique characteristics. They play very important role in
the fields of mathematical analysis, complex analysis, geometric function theory, physics,
and statistics. The well known Mittag-Leffler function introduced in [1] represents a vital
contribution to the class of special functions. It is very frequently used in applied sciences in
regard to the generalization and extension of classical concepts; for further details, readers
are referred to [2-5].

The Mittag-Leffler function is frequently utilized in the formation of generalizations
of fractional integral operators. Fractional integral operators lead to the theory of fractional
calculus, fractional analysis, fractional differential equations, and fractional dynamic sys-
tems; see [6-8]. The aim of this paper is to estimate fractional integral operators containing
a specific Mittag-Leffler function via various types of exponential convexities.

The Mittag-Leffler function is a generalization of exponential, trigonometric, and
hyperbolic functions, and is defined with the help of the gamma function. Likewise,
the beta function can be utilized to extend the Mittag-Leffler function. In the following,
we provide the definitions of the gamma function, beta function, @-beta function, and
pochhammer symbol.
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Definition 1 ([5]). The gamma function for ® > 0 is defined by:
(@)= /Ooo e Yw® tdw. 1)
Definition 2 ([5]). The beta function is defined by:
B(Y, ) = /01 w¥ (1 — w)® dw,

where R(Y), R(P) > 0.

Definition 3 ([9]). The definition of the w-beta function is defined by:

1 @
Bo (¥, P) :/0 w‘F_l(l—w)q)_le w(l-w) dyp,
where min{RN(¥), R(P)} > 0and RR(@) > 0.

Definition 4 ([5]). The pochhammer symbol for r € C is defined by:

I(r+nA)

) )

(r)n/\ =

By introducing additional parameters, almost all special functions can be extended and
generalized. For more detailed study, we refer readers to [9-11]. By using these extended
special functions, fractional integrals have been extended to k-fractional integral operators.
For instance, in [11], k-analogues of Riemann-Liouville fractional integrals were defined,
while in [12] k-analogues of Liouville-Caputo fractional derivatives were defined. For more
detailed study on further such extensions, see [13-15]. The k—analogue of the gamma
function [10] is defined by:

ok

I (®) = /Ooo w® e % dw, 3)

where z € C with R(®) > 0and k > 0.

Fractional integral operators (ZOs) are very frequently used when generalizing inte-
gral inequalities. Almost all classical integral inequalities have been published for different
integral operators. Due to the importance of ZOs, many researchers have defined the
several ZOs by adopting different approaches. By applying the Mittag-Leffler function (4),
Zhang et al. [15] defined the following generalized k-ZO which is directly linked with
many well-known ZOs:

Definition 5. Let Y be a positive and integrable function and let Z be a differentiable and strictly
increasing function such that Y, Z : [u,v] - Rwith 0 < y < v. Additionally, let ¢, ¢,p0,¥, 7,
neC,ge®>0withk >0and0 < A < e+ g. Then, for § € [u,v], we have:

Y)@0) = [ (2(@) - 26)! e (HE@) - 26)He) Yo ) @
Y)(@e) = | (2(0) - Z(@) F B (\P(Z(é) - z(w))i@)y((s)d(z((s)) (5)

which are called generalized k-7 Os, where the Mittag-Leffler function is provided by:

0EMT /. _ > ﬁp(p“rﬂ)t,f’—P) (r)n)x o
Eonon 0 ®) = L, = g o Rlen 1) (9hoe ©
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Remark 1. The ZOs (4) and (5) can reproduce several well-known ZOs which already exist in the
literature. For example, for k = 1, the ZOs defined in [16] are obtained. For k = 1 and Z(@) = @,
the ZOs defined in [17] are obtained. Fork =1, Z(@) = @ and ® = 0, the ZOs defined in [18] are
obtained. Fork =1, Z(@) = @ and e =¥ = 1, the ZOs defined in [19] are obtained. For k = 1,
Z(w)=w, ®=0,and e =Y =1, the ZOs defined in [20] are obtained. Fork =1, Z(w) = ®,
P =0,and A =€ =Y =1, the ZOs defined in [21] are obtained. Fork =1, Z(®) = %ﬂ, n >0,
and ¥ = ® = 0, the ZOs defined in [22] are obtained. Fork =1, Z(@) = In@ and ¥ = ® =0,
the ZOs defined in [23] are obtained. For Z(®w) = D and ¥ = & =0, the IOs defined in [14]

RS
are obtained. Fork =1, Z(w) = %}é and ¥ = & = 0, the ZOs defined in [24] are obtained. For
Z(@) = 2y s 0in (4), and Z(@) = — =2y > 0in (5) with ¥ = ® = 0, the TOs

Ui Ui
defined in [13] are obtained. For Z(@) = M, n > 0in(4),and Z(w) = —@ n>0
in (5)withk =1and ¥ = ® = 0, the ZOs defined in [25] are obtained. For ¥ = ® = 0, the ZOs
defined in [26] are obtained. For' ¥ = ® = 0and Z(w) = @, the ZOs defined in [11] are obtained.
ForY =® =0, Z(®) = @, and k = 1, the classical Riemann—Liouville TZOs are obtained.

From k-ZOs (4) and (5), for constant function we can write:

1) (@ ®)=K(2(@) - Z(0) B (H(Z(@) — Z00)550 )i= 7y (@00, %
1) (@;®)=k(Z(v) ~ Z(@)) FEL 1ok (m@) - z<w>>i;<1>) =Ty, (@), ®)

Next, we provide the definition of newly defined functions, namely, exponentially
(a0, h — m) — p-convex functions, as follows:

Definition 6 ([27]). A function ) : (0,v] — R is said to be exponentially (a, h — m) — p-convex
functions if Y is positive and
y ((W . 5)1/%’)%) < (@2 1 — 5 3:5]? 9

ewH

is valid, while ] C R is an interval involving (0,1) and h : | — R is a positive function with
1
(SuP + (1 =0)vP)? € (0,v], (,m) €[0,1>,0< 5 < 1,and w € R.

Remark 2. The function satisfying (9) produces various kinds of convex functions. For example,
for p =1, exponentially (x, h — m)-convex functions are obtained. For h(5) = §, exponentially
(a, m) — p-convex functions are obtained. For m = 1, exponentially («, h) — p-convex functions
are obtained. For « = 1, exponentially (h — m) — p-convex functions are obtained. For p = m = 1,
exponentially (a, h)-convex functions are obtained. For « = m = 1, exponentially (h, p)-convex
functions are obtained. For p = « = m = 1, exponentially h-convex functions are obtained. For
h(6) = 6, and p = 1, exponentially («x, m)-convex functions are obtained. For h(5) = 6 and
m = 1, exponentially («, p)-convex functions are obtained. For h(6) = 6 and « = 1, exponentially
(m, p)-convex functions are obtained. For h(6) = 6 and p = m = 1, exponentially a-convex
functions are obtained. For h(6) = 6 and p = a = 1, exponentially m-convex functions are
obtained. For h(8) = 6 and « = m = 1, exponentially p-convex functions are obtained. For
h(6) = d and p = & = m = 1, exponentially convex functions are obtained.

In recent years, many authors have derived the bounds of several ZOs for different
kinds of convex functions. For example, Farid [28] established the bounds of Riemann—
Liouville ZOs using convex functions. Mehmood and Farid [29] provided the bounds
of generalized Riemann-Liouville k-ZOs via m-convex functions. Yu et al. [30] proved
the bounds of generalized ZOs involving the Mittag-Leffler function in their kernels via
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strongly exponentially («, h — m)-convex functions. Inspired by these previous works,
the aim of this paper is to derive the bounds of generalized k-ZOs for exponentially
(a, h — m) — p-convex functions.

In the upcoming section, we first derive the bounds of the k-ZOs provided in (4) and (5)
for functions satisfying (9) and derive a modulus inequality for these operators. Further,
an identity is proved to derive the Hadamard type inequality for k-ZOs via exponentially
(o, h — m) — p-convex functions. In particular cases, the presented results provide bounds
of various ZUs.

2. Main Results
First, we provide the bounds of k-ZOs via exponentially («,h — m) — p-convex functions:

Theorem 1. Let Y : [i,v] — R be a positive, integrable, and exponentially (a,h — m) — p-

convex functions with m € (0,1]. In addition, let Z be differentiable and strictly increasing with
Z' € Ly[u,v). Then, for,{ > kand w € R, we have:

( Dg;;;wyou)(w;cp) ( DIy - on/I)(cD;CD) (10)
;q>>

o2 +m3’((ﬁ>’l’>7g(h,l_w)]

o((2)7

taial

i1 A
<@-m(z@-2m) ey (HE@ - 20)

(o) o )

(1)) ((2)7)

'vs\»—'

where U (5) = ﬁ,"ﬂ‘ <h,R“;Z’) = [J (R Z (@~ R(@ — ))dR, T} <h,1—R“;Z’> =
J3h(1 =R Z' (@ — R(@ — p))dR.

Proof. Under the given assumptions, the following inequalities hold:

(Z(@) ~ Z2(0)* Bl (Y (2 (@) - 2(0)50) 2'(0) (1)
< (Z(@) - Z(u)F B (F(E (@)~ Z(0)F0) 20), p<i<a,

(2(5) - 2(@) i BN (V(200) - 2(2))10) 2(9) (12)
< (Z(v) - Z(co))”lEgg;Z(‘F(Z(v) - Z(w))%@)z’@), @<s<.

By utilizing the exponentially («,h — m) — p-convexity of ), we can obtain the following:

)+mh<1(@_5>a>y<(£);>’ (13)

PRI ARI()
v <h(G) Ty e

@=H/ ()

RS [N
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Y(8)7) < h(é_w)“y«v);) +mh(1 = (i_w)lx> y((iﬁ)). (14)

V=®) w(w)h)

From inequalities (11) and (13), the following inequality is valid:

==
~—
[
>

[(z@ - zep e (viz@ - 2e)he) e

< (2@ - 200) ZlEZ’Z:Z} (¥(z(@) - 20 3::(((?3 3
/; h(myz/(&)dﬂnj,(((z)l:))Kh(l _ (2:2)“)3/(5),15 ‘

By utilizing the integral operator (4) on the left-hand side and making the substitution
R = (@ — )/ (@ — p) on the right-hand side, we obtain:

=

(52 ) @09) < 00 (2000 - 200)

B (‘P(Z(c@) - Z(u))i;@b) {y((”);) /1 HRYZ (@ — R(@ — u))dR

0

R~

() ,
7 / h(1—RYZ (@ — R(@ — y))dR} .
e‘*’((%) v) 70
The above inequality can be written in the following form:

k ~OEAT .
(ZDg,ﬂ,so,‘Pwy ° u) (@; ) (15)

I
< (@ (z<w> - z<m) e (‘P<z<w> —Z(u)k;

taial
S
N———

i) A e

On the other hand, by multiplying (12) and (14) and adopting the same approach as we did
for (11) and (13), the following inequality can be obtained:

[
(5205, Y ott) @) < (v-a) (2() - 2(@) ) 1

9

E0S ok (‘I’(Z(v) - Z(w))k;d>) [y((”)? /01 H(RY)Z' (@~ R(@ —v))dR

my((2)7

d G
< ((3)7)
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The above inequality takes the following form:
EDEM Yol (@; ) (16)
27y !
¢_q
k 0,6\ 1 9
<w-a)(zw-z@) B (YEe) - 2@)he)
1
: (@)
PO 2 om0 12|
(V)P c(2)7)
By adding the inequalities (15) and (16), the inequality (10) is obtained. [J
Corollary 1. For ny = { in (10), the following inequality is valid:
£, €A,
(5P Y o) @) + (DG, Y otl) (@) St
n_
< k 0,€,A,1 9
@-w(2@) -2() EM(¥(2@) - 2o
1
1 my ((‘:1 )P )
ew((1)7) (

[y«v)%)

(1))

81
N
F
a
\9
&
N—
+
3
<
~~
SIS
N
&1
N
;&
—_
\
S
\R
by
N——

Remark 3. From Theorem 1, a large number of new bounds for all kinds of ZOs (as identified in
Remark 1) via all kinds of convex functions (as identified in Remark 2) can be obtained.

In the following, we provide the modulus inequality for k-ZOs via exponentially
(a0, h — m) — p-convex functions:

Theorem 2. Let ) : [, v] — R be positive integrable and let |Y'| be an exponentially (a, h —
m) — p-convex function with m € (0, 1]. In addition, let Z be differentiable and strictly increasing
with Z' € Lq[p,v]. Then, for,{ > kand w € R, we have:

€M, €A,
‘ (’%Dg,;,(p;'w (Z%Y)o u) (@, w; D) + ("ZDE,;(P,IY,V, (ZxY)o u) (@, w; q>)‘ (18)

Er e
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where
(5P (Zx D)o u) (@,0;)
= (Z(@) — Z(6))F 152’;;2(11/(3(@_3(5))%,.@)3/(5)3,,((5)%)%
and

(500, (25 V) ol (@,w; @)
(Y(2() - 2(@)1;@) 2'(0)V((8)7)ds,

v F—1ppeAr
::/w(Z((S)—Z((D) B
— p-convexity of | )|, the follow-

Proof. By utilizing the strongly exponentially («, h — m)

ing inequality holds:
! 8\ Y ()] @0\ ()
Y@h<p(2=2) w1 (222)) 9)
@=1)  wl(w)?) @-—p ew((%)%)
The above inequality can be written in the following form
a0 1 N o)
(o2 ) V(07 +mh<1_<w—a) ) iEh 20
@R el @RS w()7)
1 ( l AN r(@y\:
@-# ew«m CTHS T w((5)7)

Now, by multiplying the inequality (11) with the first inequality of (20) and integrating

over [j, @], we obtain the following:

[ (2(@) - 2@) BN (¥(2(0) - 2(6)5@) 2/(0)Y (6)F )as (21)
M
11 e s (D] o, (@5
< (Z(@) = 2(m)* 1E§W;k(T(Z(w)Z(m)k'q>>( ew((m%) iz h((ﬂ—ﬂ)
mY'(2)7)] ,
(6)do + LR / ( ( ) )zww)
After simplifying the inequality (21), we have
(22)

L€,
(5005 (24 9) old) (0,20,

s@=p) (Z((D) - ZW)) . g,’niq)’,k
/ ' ((2)7 )]

By using the second inequality of (20) and following the same approach as we did for the

=

first inequality, we can obtain the following:
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(23)

[W((m%n 1) my (@) {(h1-rs2)|

()P

From inequalities (22) and (23), we have:
€A,
(D0, (25 V) olU) (@, ;@)
71
k €N 9
<@-n(z@-2(m) sy (¥E@ - 2)ke)
1
: v ((9)7)
|:|y ((l’l)l )|7Zg(h,Rtxlzl) 4 - 7'wlfl<h/1_RDclzl>:|
(1)) (()7)
Again, by utilizing the strongly exponentially (a, i — m) — p-convexity of |)’|, we have
oy (@)
)|+mh(1—(‘5 ‘D) > . (25

v=@) ) u((2)?)

By following the same approach as we did for (11) and (19), from (12) and (25) we can obtain:

(24)

==

==
==

Y(@h<n(2=2) W

V=®@) ()P

S

‘ (](ZDS:Z;\J:;,V_ (Z2+Y)o U) (@, w; ®) ’ (26)

==

[WV))'EE <h, RY; z’> + mD”((ﬁ);)IW (h,l — R”‘;Z')]-

T
ew((V)7)
By adding the inequalities (24) and (26), the required inequality (18) is obtained. [

Corollary 2. Forn = { in (18), the following inequality is valid:

€N, €A,
’ (kng;r e (ZxY)o u) (@,w; ®) + ("ZDZ;,(P;{,,V, (Z+Y)o u) (@, w; q>)’ @7)

Remark 4. From Theorem 2, the bounds for all ZOs (provided in Remark 1) via all kinds of convex
functions (provided in Remark 2) can be obtained.
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The following identity is useful to prove the Hadamard-type inequality:

Lemmal. Let Y : [u,mv] — R, u < mv, be an exponentially («, h — m) — p-convex function.

If the condition
y ( (}t’“rmv”f(ﬂ)% )
) (28)

1
) w ((;szrmt:’w)p )
e
holds for m € (0,1}, then we have

() 2N oo )

Proof. We use the following identity:

1 1
P +mvP\v |1 @ — b p, mvP —@ L\ P
( 2 ) N [2 mvP — uP (i ‘u?”y (30)

1

) 1

tmf(1-1 o+ ) !
2 m

By applying the exponentially (a, h — m) — p-convexity of ), we obtain:

1
mvf —@ P
mvp—yp ]’lp> )
r p b
@—U P mvl—@w . p
w (mvru,m VPt PP )

1
@—pP po mvP—o P\ P
mvp y”y +n —uP pmv
y
P v
s —@ 0P
mLV ;41”’ P PP "
w n
e

. y ( (M”+mzf—w)% >
h( 1) (1= 1) |
7 2% ( PP — ;>
w (n +m1;" @)
e

By using the assumption provided in (28), the required inequality (29) is obtained. O

Y((@)
)

ew((a)

T TN

@—uP
(7%/,,_#,, mvP 4
h

y< yi’—i-mulﬂ (1)

+mh 1——

In the following, we provide the Hadamarad type inequality for k-ZOs via exponen-
tially («, h — m) — p-convex functions:
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Theorem 3. With the same conditions on ), Z, and h as in Theorem 1, and additionally if (28) is
satisfied, then we have:

Q(w) )) P((;ﬂ’ —|—2m1/?7)117>(]__}z’y+(wq))+]:irv(V;q)))] (32)

< (o0 v ou)we)+ (5000 you) (o)

oA #%
; q>>

kN

< v-m((20) - 2B (Y(20) - 200)

P((”)j)#‘ (h,R"‘;Z’) + m))((,ﬁ;)i) T (h,l - R"‘;Z/ﬂ.

po)?
where U (5) = 57 and Q(w) = e“H for w > 0; Q(w) = e“" for w < 0.

Proof. Under the given assumptions, the following inequalities hold:

Esaial

(2(@) - 2()F B (¥(2(@) - 2()

;q>> Z'(@) (33)

< (2(0) - 2B (HE0) - 2)Ee) Z(@), @l

(20) - 2(@)F g (Y20 - 2(@)) ) 2(@) (34

< (20) - 2 By (Y(20) - 2)5@) 2@ @ )

By utilizing the strongly exponential («, h — m) — p-convexity of ), we obtain:

=
==

R e = D

p(1)P

From inequalities (33) and (35), the following inequality holds:

/:(Z(w) — Z(u) B (‘Y(Z(c@) — Z(y)ﬁ;cb) Z/(@)V((@)? )ded




Fractal Fract. 2023, 7, 617

11 0f 14

By utilizing the integral operator (5) on the left-hand side and making the substitution
R = (@ — u)/ (v — u) on the right-hand side, we obtain the following:

B

(%Dgglgri’vy oZ,{) (@) <(v—u)(ZWw)—Z(n)) -1 (36)

)
)

==

By (HEw - 2600 2

/1 WRYZ (4 + R(v — u))dR
(@) Jo

==

1
() |
b/ / W1 =R Z (i + R(v — y))dR} .
0
The above inequality takes the following form:

€A,
( 5Dy Y oU ) (1; ) (37)

< - w(z0) - 20 e (120 - 20k

{WTJ‘ (h, R"‘;Z’) + Wﬂ” (h,l - R”‘;Z’ﬂ :

cwo((1)P) po(1)?

m

Similarly, from inequalities (34) and (35), after simplification, the following inequality is obtained:

( EDPEM Yo u) (v; @) (38)

Z%c 0¥ ut

< - (EW) - 2B (F(Z () - zw»i;@)

=

my<(;‘1)> ,,”(h,l—R“;Z’)}

1
ENp
ew(ﬁ)p

[WTJ‘ (h, R“;Z’) +

po((v)?)

By adding the inequalities (37) and (38), we obtain:

( EpPet Y ou> (v; @) + ( KD Yo U) (1; @) (39)

276,99 ut 6 G Y v
<w-w(Ew -2t ey (HEW - 2)Ee)
H20) - 20 B (HEW - 20)0) )
()

)., ()]

1
ENp
ew(m)p

=

[WTJ‘ (h, R“;Z’) +

po((v)7)

Now, multiplying the inequality (29) with (Z(w@) — Z(y))%*lES’g’;'z <‘I’(Z((D) —Z(n))k;

Eaal
o
N———

Z' (@) and integrating over [, v], we have:
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y((W)%jZ(w)—z(u)) 1E§§2;(‘F(Z((D)—Z(y))i;@)z’(w)d@ (40)
<<h(21) *’”’“(1 B 21«))/?3@) - ZW))”ESEQZ(‘HZ(w) - zomi;cp)

de.

—~
—~
9
N
T =
~—

By utilizing the integral operator from (5) and (8), we obtain:

<h<1>+Qn(Z)<1_ 1>> <y<<#”+2"“/”)”);i/v(wq,)> < DSE%V—%U) (1 ®). (41)

v 2t

Similarly, by multiplying the inequality (29) with (Z(v) — 2 (a))) 1EZ ; /;2 (‘I’(Z(v) -

Z(w)) k; CD) Z'(@) and integrating over [y, v], then utilizing integral (4) and (7), we obtain:

1
Qw P+ mvP\ 7 oA
( ) (y((”z) )‘FZ#*(V;CD)) < (%Dg;@;/wj} ol/{) (V;cp)' (42)
<h ( ) + mh ( o5 ) )
By adding the inequalities (41) and (42), we obtain:

Q(w) )) P((W Jrzm”p);’)(Fz,w(v;CP)Jrfg,u—(V"q’))} (43)

() miis

€A, £,
< ( D Y o u> (v;®) + ( D Yo u) (u; @)

From inequalities (39) and (43), the required inequality (32) is obtained. [

Corollary 3. Forn = { in (32), the following inequality is valid:

0(w) l LA YP ]
e P Jretmen o]
< (ot vou) o)+ (Ao, you) o)
< (= W(EW) - ZW)EE (‘P(Z(v) - zw))i;@)

: my(()7)
{y((v)f)fryﬂ (hR"‘;Z’) +—— T/ (h,l — R”‘;Z’)].
() ew(8)?

<=

Remark 5. From Theorem 3, Hadamard-type inequalities for all kinds of ZOs (provided in Re-
mark 1) for all kinds of convex functions (provided in Remark 2) can be obtained.

3. Concluding Remarks

In this article, we have investigated the bounds of k-ZOs. These bounds were achieved
by applying thedefinition of exponentially («,h — m) — p-convex functions. The presented
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results provide a large number of new bounds of several ZOs for various kinds of con-
vexities using convenient substitutions. Further, an identity is established to prove the
Hadamard-type inequality for k-ZOs via exponentially («, h — m) — p-convex functions.
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