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1. Introduction

Having fascinating properties of a geometric and analytic nature, convex functions are
of significant importance in mathematics, graph theory, optimization theory, statistics and
economics. Convex functions with smoothness properties can be characterized in various
ways. For applications of convex functions in different areas of research, we refer the readers
to [1–4]. In the study of discrete as well as integral inequalities, convex functions are equally
important, and many classical inequalities are direct consequences of convex functions.
Extensive investigations have been made to demonstrate a significant relationship between
convex functions and inequality theory, see [5–9]. In this paper, we aim to give inequalities
for integral operators applied to a general class of several convexities. The bounds of
operators having Mittag–Leffler functions in kernels are established in different forms.

First, we give definition of (α, h−m)-convex functions with respect to a strictly mono-
tonically increasing function along with important consequences. Then, we give the
Hadamard inequality for convex functions. Henceforth, there is given a brief introduction
of the Mittag–Leffler function, and associated integral operators are discussed.

Definition 1 (see [10]). A function ϕ is called (α, h − m)-convex with respect to a strictly
monotone function ψ, if ϕ ◦ ψ−1 is (α, h−m)-convex, i.e., we have

ϕ ◦ ψ−1(tv + m(1− t)y) ≤ h(tα)ϕ ◦ ψ−1(v) + mh(1− tα)ϕ ◦ ψ−1(y), (1)

for (α, m) ∈ [0, 1]2, v, y ∈ Image(ψ), t ∈ (0, 1) with Image(ψ) ⊆Domain(ϕ).
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From the above definition, by setting ψ(x) = xp; p ∈ R− {0}, x ∈ (0, ∞), one can
obtain the definition of (α, h− m)-p-convexity, (α, h− m)-convexity can be obtained by
taking ψ(x) = x, and (p, h)-convexity can be obtained by taking α = m = 1 along with
ψ(x) = xp; p ∈ R− {0}, x ∈ (0, ∞). Furthermore, definitions of (s, m)-convexity and
(α, m) − HA-convexity, along with almost all kinds of, convexities can be obtained by
convenient substitutions; for further detail, one can see [10]. The celebrated Hadamard
inequality is an equivalent representation of a convex function on [σ1, σ2] ⊂ R, given
as follows:

ϕ

(
v + y

2

)
≤ 1

y−v

∫ y

v
ϕ(ξ)dξ ≤ ϕ(v) + ϕ(y)

2
(2)

where v, y ∈ [σ1, σ2], v < y. Both of the inequalities in (2) will hold in reverse order if
ϕ is concave function. Several variants of the above inequality have been published by
analyzing various kinds of convexities; for instance, the reader can see [11–16] and the
references therein.

The well-known Mittag–Leffler function is the generalization of some important
special functions, including the exponential function. The role of the Mittag–Leffler function
in solutions of fractional differential equations is as vital as the role of the exponential
function in solving ordinary differential equations. In the theory of fractional calculus,
integrals and derivatives of fractional order are evaluated by fractional derivative/integral
operators, and the Mittag–Leffler function is also used in defining fractional integrals; for
detailed studies, we refer the readers to [17–21].

Next, we give a definition of the unified Mittag–Leffler function, suppose that the
convergence conditions are satisfied as they are given in [22], and skip them.

Definition 2 ([22]). The unified Mittag–Leffler function is given by;

Mλ,ρ,θ,k,n
α,β,γ,δ,µ,ν

(
z; a, b, c, p′

)
=

∞

∑
l=0

∏n
i=1 Bp′(bi, ai)(λ)ρl(θ)klzl

∏n
i=1 B(ci, ai)(γ)δl(µ)νlΓ(αl + β)

, (3)

where a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn), c = (c1, c2, . . . , cn), ai, bi, ci ∈ C; i =

1, 2, 3, . . . , n, Γ(µ) =
∫ ∞

0 e−zzµ−1dz, (θ)kl = Γ(θ+lk)
Γ(θ) and βp′ is the extended beta function,

defined by;

βp′(v, y) =
∫ 1

0
vv−1(1−v)y−1e

−
(

p′
v(1−v)

)
dv. (4)

Throughout the paper, the unified Mittag–Leffler function is considered to be valid.
The upcoming definitions are very useful for establishing the results of this paper.

Definition 3 (see [22]). Let ϕ ∈ L1[σ1, σ2]. Then, for v ∈ [σ1, σ2], the fractional integral
operator containing the unified Mittag–Leffler function Mλ,ρ,θ,k,n

α,β,γ,δ,µ,ν(z; a, b, c, p′) satisfying all the
convergence conditions is defined as follows:(

Υ
ω,λ,ρ,k,n
σ+

1 ,α,β,γ,δ,µ,ν
ϕ

)
(v; a, b, c, p′)=

∫ v

σ1

(v− τ)α−1 Mλ,ρ,k,n
α,β,γ,δ,µ,ν

(
ω(v− τ)µ; a, b, c, p′

)
ϕ(τ)dτ, (5)

(
Υ

ω,λ,ρ,k,n
σ−2 ,α,β,γ,δ,µ,ν

ϕ

)
(v; a, b, c, p′)=

∫ σ2

v
(τ −v)α−1 Mλ,ρ,k,n

α,β,γ,δ,µ,ν

(
ω(v− τ)µ; a, b, c, p′

)
ϕ(τ)dτ. (6)
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One can obtain the integral operator corresponding to generalized Q function by
setting ai = l, p′ = 0 and <(p′) > 0 in Definition 3 as follows (see [23]):(

QΥ
ω,λ,ρ,k,n
σ+

1 ,α,β,γ,δ,µ,ν
ϕ

)
(v; a, b) =

∫ v

σ1

(v− τ)α−1Qλ,ρ,k,n
α,β,γ,δ,µ,ν(ω(v− τ)µ; a, b)ϕ(τ)dτ, (7)

(
QΥ

ω,λ,ρ,k,n
σ−2 ,α,β,γ,δ,µ,ν

ϕ

)
(v; a, b) =

∫ σ2

v
(τ −v)α−1Qλ,ρ,k,n

α,β,γ,δ,µ,ν(ω(τ −v)µ; a, b)ϕ(τ)dτ, (8)

where

Qλ,ρ,θ,k,n
α,β,γ,δ,µ,ν(z; a, b) =

∞

∑
l=0

∏n
i=1 β(bi, l)(λ)ρl(θ)klzl

∏n
i=1 β(ai, l)(γ)δl(µ)νlΓ(αl + β)

is a general form of Q function given in [24].
A further extended and general version of integral operators defined in the aforemen-

tioned definitions is given in the following definition.

Definition 4 ([25]). Let φ ∈ L1[σ1, σ2], 0 < σ1, σ2 < ∞ be a positive function, and let Ψ :
[σ1, σ2]→ R be a differentiable and strictly increasing function. Furthermore, let φ

v be an increasing
function on [σ1, ∞) and v ∈ [σ1, σ2]. The unified integral operator is given by:

(
φ
ΨΥ

ω,λ,ρ,θ,k,n
σ+

1 ,α,β,γ,δ,µ,ν
ϕ)(v; p′)=

∫ v

u
ϕ(τ)Λτ

v(Mλ,ρ,θ,k,n
α,β,γ,δ,µ,νΨ; φ)d(Ψ(τ)), (9)

(
φ
ΨΥ

ω,λ,ρ,θ,k,n
σ−2 ,α,β,γ,δ,µ,ν

ϕ)(v; p′) =
∫ v

v
ϕ(τ)Λv

τ (Mλ,ρ,θ,k,n
α,β,γ,δ,µ,νΨ; φ)d(Ψ(τ)), (10)

where

Λτ
v(Mλ,ρ,θ,k,n

α,β,γ,µ,ν, Ψ; φ) =
φ(Ψ(v)−Ψ(τ))

Ψ(v)−Ψ(τ)
Mλ,ρ,θ,k,n

α,β,γ,δ,µ,ν(ω(Ψ(v)−Ψ(τ))µ; a, b, c, p′). (11)

Definition 5 ([23]). By setting ai = l, p′ = 0 and <(p′) > 0 in (9) and (10), we obtain the
fractional integral operator associated with generalized Q function:(

Ψ
QΥ

φ,ω,λ,ρ,θ,k,n
σ+

1 ,α,β,γ,δ,µ,ν
ϕ

)
(v; a, b) =

∫ v

σ1

ϕ(τ)Λy
v(Q

λ,ρ,k,n
α,β,γ,µ,ν, Ψ; φ)d(Ψ(τ)), (12)

(
Ψ
QΥ

φ,ω,λ,ρ,θ,k,n
σ−2 ,α,β,γ,δ,µ,ν

ϕ

)
(v; a, b) =

∫ b

v
ϕ(τ)Λy

v(Q
λ,ρ,k,n
α,β,γ,µ,ν, Ψ; φ)d(Ψ(τ)), (13)

where Λτ
v(Q

λ,ρ,θ,k,n
α,β,γ,µ,ν, Ψ; φ) =

φ(Ψ(v)−Ψ(τ))

Ψ(v)−Ψ(τ)
Qλ,ρ,θ,k,n

α,β,γ,δ,µ,ν(ω(Ψ(v)−Ψ(τ))µ, a, b, p′).

It can be noted that, if Ψ and φ
v are increasing, then, for u < τ < v, u, v ∈ [σ1, σ2], the

kernel Λu
τ(Mλ,ρ,θ,k,n

α,β,γ,µ,ν, Ψ; φ) satisfies the upcoming inequality

Λu
τ(Mλ,ρ,θ,k,n

α,β,γ,µ,ν, Ψ; φ)Ψ′(τ) ≤ Λu
v(Mλ,ρ,θ,k,n

α,β,γ,µ,ν, Ψ; φ)Ψ′(τ). (14)

Keeping in view (14), the following inequalities hold for the kernel of unified operator
of Definition 5:

Λτ
v(Mλ,ρ,θ,k,n

κ,β,γ,δ,µ,ν, Ψ; φ)Ψ′(τ) ≤ Λσ1
v (Mλ,ρ,θ,k,n

κ,β,γ,δ,µ,ν, Ψ; φ)Ψ′(τ), τ ∈ (σ1, v) (15)
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Λv
τ (Mλ,ρ,θ,k,n

ϑ,β,γ,δ,µ,ν, Ψ; φ)Ψ′(τ) ≤ Λv
σ2
(Mλ,ρ,θ,k,n

ϑ,β,γ,δ,µ,ν, Ψ; φ)Ψ′(τ), τ ∈ (v, σ2) (16)

Λσ1
v (Mλ,ρ,θ,k,n

ϑ,β,γ,δ,µ,ν, Ψ; φ)Ψ′(v) ≤ Λσ1
σ2(Mλ,ρ,θ,k,n

ϑ,β,γ,δ,µ,ν, Ψ; φ)Ψ′(v), v ∈ (σ1, σ2) (17)

Λv
σ2
(Mλ,ρ,θ,k,n

κ,β,γ,δ,µ,ν, Ψ; φ)Ψ′(v) ≤ Λσ1
σ2(Mλ,ρ,θ,k,n

κ,β,γ,δ,µ,ν, Ψ; φ)Ψ′(v), v ∈ (σ1, σ2). (18)

The paper is organized in the following way: The upcoming section contains the
bounds of integral operators having the unified Mittag–Leffler function in their kernels
by using a generalized convexity. The Hadamard-type inequality is proven, which gener-
ates plenty of such inequalities in particular cases. The definition of (α, h−m)-convexity
with respect to a strictly monotone function is analyzed to obtain the desired inequali-
ties. The established results provide generalizations of several inequalities published in
current years.

2. Main Results

Theorem 1. Let I, J be intervals in R and ϕ : I → R be an (α, h−m)-convex function with respect
to ψ, where ψ : J → R is a strictly monotonic function and Image(ψ)⊂ I. If h(v)h(y) ≤ h(v + y);
then, for (α, m) ∈ (0, 1]2, we have the following inequality for integral operators (12) and (13):

(
φ
ΛΥ

ω,λ,ρ,θ,k,n
κ,β,γ,δ,µ,ν,σ+

1
ϕ ◦ ψ−1

)
(v; p′) +

(
φ
ΛΥ

ω,λ,γ,ρ,θ,k,n
ϑ,β,γ,δ,µ,ν,σ−2

ϕ ◦ ψ−1
)
(v; p′) (19)

≤ Λσ1
v (Mλ,ρ,θ,k,n

κ,β,γ,δ,µ,ν, Ψ; φ)(v− σ1)
(

φ(σ1)ζ
σ1
v (rα, h; Ψ′) + mϕ

(v

m

)
ζσ1

v (1− rα, h; Ψ′)
)

+ Λv
σ2
(Mλ,ρ,θ,k,n

ϑ,β,γ,δ,µ,ν, Ψ; φ)(σ2 −v)

(
ϕ(σ2)ζ

σ2
v (rα, h; Ψ′) + mϕ

(v

m

)
ζσ2

v (1− rα, h; Ψ′)

)
,

while ζσ1
v (rα, h; Ψ′) =

∫ 1
0 h(rα)Ψ′(v − r(v − σ1))dr and ζσ1

v (1 − rα, h; Ψ′) =
∫ 1

0 h(1 − rα)
Ψ′(v− r(v− σ1))dr.

Proof. Since ϕ is (α, h−m)-convex with respect to a monotonic function, one can have

ϕ ◦ ψ−1(τ) ≤ h
(

v− τ

v− σ1

)α

ϕ ◦ ψ−1(σ1) + mh
(

1−
(

v− τ

v− σ1

)α)
ϕ ◦ ψ−1

(v

m

)
, (20)

ϕ ◦ ψ−1(τ) ≤ h
(

τ −v

σ2 −v

)α

ϕ ◦ ψ−1(σ2) + mh
(

1−
(

τ −v

σ2 −v

)α)
ϕ ◦ ψ−1

(v

m

)
. (21)

From (15) and (20), one can obtain the incoming inequality:

∫ v

σ1

Λτ
v(Mλ,ρ,θ,k,n

κ,β,γ,δ,µ,ν, Ψ; φ)ϕ ◦ ψ−1(τ)d(Ψ(τ)) ≤ Λσ1
v (Mλ,ρ,θ,k,n

κ,β,γ,δ,µ,ν, Ψ; φ)

(
ϕ ◦ ψ−1(σ1) (22)

×
∫ v

σ1

h
(

v− τ

v− σ1

)α

d(Ψ(τ)) + mϕ ◦ ψ−1
(v

m

)∫ v

σ1

h
(

1−
(

v− τ

v− σ1

)α)
d(Ψ(τ))

)
.

By putting r =
v− τ

v− σ1
and using Definition 4, from (22) one can obtain

(
φ
ΛΥ

ω,λ,ρ,θ,k,n
κ,β,γ,δ,µ,ν,σ+

1
ϕ ◦ ψ−1

)
(v; p′) ≤ Λσ1

v (Mλ,ρ,θ,k,n
κ,β,γ,δ,µ,ν, Ψ; φ)(v− σ1)

(
ϕ ◦ ψ−1(σ1) (23)

×
∫ 1

0
h(rα)Ψ′(v− r(v− σ1))dr + mϕ ◦ ψ−1

(v

m

) ∫ 1

0
h(1− rα)Ψ′(v− r(v− σ1))dr

)
.
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From the inequality (23), one can yield(
φ
ΛΥ

ω,λ,ρ,θ,k,n
κ,β,γ,δ,µ,ν,σ+

1
ϕ ◦ ψ−1

)
(v; p′) ≤ Λσ1

v (Mλ,ρ,θ,k,n
κ,β,γ,δ,µ,ν, Ψ; φ)(v− σ1) (24)

×
(

ϕ ◦ ψ−1(σ1)ζ
σ1
v (rα, h; Ψ′) + mϕ ◦ ψ−1

(v

m

)
ζσ1

v (1− rα, h; Ψ′)
)

.

On the other hand, multiplying (16) and (21), and adopting the same pattern as we
did for (15) and (20), the following inequality holds true:

(
φ
ΛΥ

ω,λ,ρ,θ,k,n
ϑ,β,γ,δ,µ,ν,σ−2

ϕ ◦ ψ−1
)
(v; p′) ≤ Λv

σ2
(Mλ,ρ,θ,k,n

ϑ,β,γ,δ,µ,ν, Ψ; φ)(σ2 −v)

(
ϕ ◦ ψ−1(σ2) (25)

×
∫ 1

0
h(rα)Ψ′(v− r(v− σ2))dr + mϕ ◦ ψ−1

(v

m

) ∫ 1

0
h(1− rα)Ψ′(v− r(v− σ2))dr

)
.

From the inequality (25), one can yield(
φ
ΛΥ

ω,λ,ρ,θ,k,n
ϑ,β,γ,δ,µ,ν,σ−2

ϕ ◦ ψ−1
)
(v; p′) ≤ Λv

σ2
(Mλ,ρ,θ,k,n

ϑ,β,γ,δ,µ,ν, Ψ; φ)(σ2 −v) (26)

×
(

ϕ ◦ ψ−1(σ2)ζ
σ2
v (rα, h; Ψ′) + mϕ ◦ ψ−1

(v

m

)
ζσ2

v (1− rα, h; Ψ′)
)

.

By adding (24) and (26), (19) can be achieved.

Remark 1. (i) If ψ(v) = v in (19), then the result for (α, h−m)-convex function is obtained;
(ii) If ψ(v) = v, κ = ϑ and h(τ) = τ in (19), then [26] (Theorem 2) is obtained;
(iii) If ψ(v) = v, α = 1, κ = ϑ and h(τ) = τs in (19), then the result for (s, m)-convex function

is obtained.

The following lemma is required for the next theorem.

Lemma 1. Let I, J be intervals in R and ϕ : I → R be a function, also let ψ : J → R be strictly
monotonic function and Image(ψ)⊂ I such that ϕ ∈ L1[σ1, σ2]. Furthermore, ϕ is (α, h− m)-
convex function with respect to ψ where (α, m) ∈ (0, 1]2; then. if

ϕ ◦ ψ−1(v) = ϕ ◦ ψ−1
(

σ1 + σ2 −v

m

)
, (27)

we have the following inequality:

ϕ ◦ ψ−1
(

σ1 + σ2

2

)
≤
(

h
(

1
2α

)
+ mh

(
2α − 1

2α

))
ϕ ◦ ψ−1(v). (28)

Proof. Since ϕ is (α, h−m)-convex function with respect to ψ, we have

ϕ ◦ ψ−1
(

σ1 + σ2

2

)
≤ h

(
1
2α

)
ϕ ◦ ψ−1

(
v− σ1

σ2 − σ1
σ2 +

σ2 −v

σ2 − σ1
σ1

)
+ mh

(
2α − 1

2α

)
ϕ ◦ ψ−1

( v−σ1
σ2−σ1

σ2 +
σ2−v
σ2−σ1

σ1

m

)
= h

(
1
2α

)
ϕ

(
(v)

1
p

)
+ mh

(
2α − 1

2α

)
ϕ

(
−v + σ1 + σ2

m

)
using the condition (27) in the above inequality, one can obtain the required inequality (28).

The subsequent result gives the Hadamard-type inequality.

Theorem 2. Under the assumptions of Theorem 1, if (27) holds, then we have
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ϕ ◦ ψ−1
(

σ1 + σ2

2

)
h
(

1
2α

)
+ mh

(
2α − 1

2α

)((φ
ΛΥ

ω,λ,ρ,θ,k,n
ϑ,β,γµ,ν,σ−2

1
)
(σ1; p′) +

(
φ
ΛΥ

ω,λ,ρ,θ,k,n
κ,β,γµ,ν,σ+

1
1
)
(σ2; p′)

)
(29)

≤
(

φ
ΛΥ

ω,λ,ρ,θ,k,n
κ,β,γ,δ,µ,ν,σ+

1
ϕ ◦ ψ−1

)
(σ2; p′)+

(
φ
ΛΥ

ω,λ,ρ,θ,k,n
ϑ,β,γ,δ,µ,ν,σ−2

ϕ ◦ ψ−1
)
(σ1; p′)

≤ (σ2 − σ1)(Λ
σ1
σ2(Mλ,ρ,θ,k,n

κ,β,γ,δ,µ,ν, Ψ; φ) + Λσ1
σ2(Mλ,ρ,θ,k,n

ϑ,β,γ,δ,µ,ν, Ψ; φ))
(

ϕ ◦ ψ−1(σ2)ζ
σ1
σ2 (r

α, h; Ψ′)

+mϕ ◦ ψ−1
(σ1

m

)
ζσ1

σ2 (1− rα, h; Ψ′)
)

.

Proof. Since ϕ is (α, h−m)-convex function with respect to strictly monotonic function,
one can have

ϕ ◦ ψ−1(v) ≤ h
(

v− σ1

σ2 − ξ1

)α

ϕ ◦ ψ−1(σ2) + mh
(

1−
(

v− σ1

σ2 − ξ1

)α)
ϕ ◦ ψ−1

(σ1

m

)
. (30)

Multiplying (17) with (30) and integrating the resulting inequality over [σ1, σ2], we obtain:

∫ σ2

σ1

Λσ1
v (Mλ,ρ,θ,k,n

ϑ,β,γ,δ,µ,ν, Ψ; φ)ϕ ◦ ψ−1((v))d(Ψ(v)) ≤ Λσ1
σ2(Mλ,ρ,θ,k,n

ϑ,β,γ,δ,µ,ν, Ψ; φ)

(
ϕ ◦ ψ−1(σ2)

×
∫ σ2

σ1

h
(

v− σ1

σ2 − ξ1

)α

d(Ψ(v)) + mϕ ◦ ψ−1
(σ1

m

) ∫ σ2

σ1

h
(

1−
(

v− σ1

σ2 − ξ1

)α)
d(Ψ(v))

)
.

By setting r =

(
v− σ1

σ2 − ξ1

)
on right hand side and using Definition (4) on left hand

side of the aforementioned inequality, one can have

(
φ
ΛΥ

ω,λ,ρ,θ,k,n
ϑ,β,γ,δ,µ,ν,σ−2

ϕ ◦ ψ−1
)
(σ1; p′) ≤ Λσ1

σ2(Mλ,ρ,θ,k,n
ϑ,β,γ,δ,µ,ν, Ψ; φ)(σ2 − σ1)

(
ϕ ◦ ψ−1(σ2) (31)

×
∫ 1

0
h(rα)Ψ′(a + r(σ2 − σ1))dr + mϕ ◦ ψ−1

(σ1

m

) ∫ 1

0
h(1− rα)Ψ′(a + r(σ2 − σ1))dr

)
.

From the inequality (31), one can yield(
φ
ΛΥ

ω,λ,ρ,θ,k,n
ϑ,β,γ,δ,µ,ν,σ−2

ϕ ◦ ψ−1
)
(σ1; p′) ≤ Λσ1

σ2(Mλ,ρ,θ,k,n
ϑ,β,γ,δ,µ,ν, Ψ; φ)(σ2 − σ1) (32)

×
(

ϕ ◦ ψ−1(σ2)ζ
σ1
σ2 (r

α, h; Ψ′) + mϕ ◦ ψ−1
(σ1

m

)
ζσ1

σ2 (1− rα, h; Ψ′)
)

.

As we treated with (17) and (30), one can obtain the following inequality from (18)
and (30): (

φ
ΛΥ

ω,λ,ρ,θ,k,n
κ,β,γ,δ,µ,ν,σ+

1
ϕ ◦ ψ−1

)
(σ1; p′) ≤ Λσ1

σ2(Mλ,ρ,θ,k,n
κ,β,γ,δ,µ,ν, Ψ; φ)(σ2 − σ1) (33)

×
(

ϕ ◦ ψ−1(σ2)ζ
σ1
σ2 (r

α, h; Ψ′) + mϕ ◦ ψ−1
(σ1

m

)
ζσ1

σ2 (1− rα, h; Ψ′)
)

.
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By summing the inequalities (32) and (33), the following inequality can be obtained:(
φ
ΛΥ

ω,λ,ρ,θ,k,n
ϑ,β,γ,δ,µ,ν,σ+

1
ϕ ◦ ψ−1

)
(σ2; p′) +

(
ΛΥ

ω,λ,ρ,θ,k,n
κ,β,γ,δ,µ,ν,σ−2

ϕ ◦ ψ−1
)
(σ1; p′) ≤ (σ2 − σ1) (34)

× ((Λσ1
σ2(Mλ,ρ,θ,k,n

ϑ,β,γ,δ,µ,ν, Ψ; φ) + Λσ1
σ2(Mλ,ρ,θ,k,n

κ,β,γ,δ,µ,ν, Ψ; φ))

(
ϕ ◦ ψ−1(σ2)ζ

σ1
σ2 (r

α, h; Ψ′)

+ mϕ ◦ ψ−1
(σ1

m

)
ζσ1

σ2 (1− rα, h; Ψ′)

)
.

Multiplying both sides of (28) by Λσ1
v (Mλ,ρ,θ,k,n

κ,α,β,γ,δ,µ,ν, Ψ; φ)Ψ′(v), and integrating over
[σ1, σ2], one can obtain

ϕ ◦ ψ−1
(

σ1 + σ2

2

) ∫ σ2

σ1

Λσ1
v (Mλ,ρ,θ,k,n

κ,α,β,γ,δ,µ,ν, Ψ; φ)d(Ψ(v))

≤
(

h
(

1
2α

)
+ mh

(
2α − 1

2α

)) ∫ σ2

σ1

Λσ1
v (Mλ,ρ,θ,k,n

κ,α,β,γ,δ,µ,ν, Ψ; φ)ϕ ◦ ψ−1(v)d(Ψ(v)).

Definition 4, along with the above inequality, gives the upcoming inequality:

1

h
(

1
2α

)
+ mh

(
2α − 1

2α

) ϕ ◦ ψ−1
(

σ1 + σ2

2

)(
φ
ΛΥ

λ,ρ,θ,k,n
κ,α,β,γ,δ,µ,ν,σ−2

1
)
(σ1; p′) (35)

≤
(

φ
ΛΥ

λ,ρ,θ,k,n
κ,α,β,γ,δ,µ,ν,σ−2

ϕ ◦ ψ−1
)
(σ1; p′).

Now, multiplying by Λv
σ2
(Mλ,ρ,θ,k,n

κ,β,γ,δ,µ,ν, Ψ; φ)Ψ′(v) on both sides of (28), then integrating
over [σ1, σ2], we obtain

1

h
(

1
2α

)
+ mh

(
2α − 1

2α

) ϕ ◦ ψ−1
(

σ1 + σ2

2

)(
φ
ΛΥ

ω,λ,ρ,θ,k,n
ϑ,α,β,γ,δ,µ,ν,σ+

1
1
)
(σ2; p′) (36)

≤
(

φ
ΛΥ

ω,λ,ρ,θ,k,n
ϑ,β,γ,δ,µ,ν,σ+

1
ϕ ◦ ψ−1

)
(σ2; p′).

From (34)–(36), inequality (29) can be achieved.

Remark 2. (i) If ψ(v) = v in (29), then then the result for (α, h−m)-convex function is obtained;
(ii) If ψ(v) = v, κ = ϑ and h(τ) = τ in (29), then [26] Theorem 1 is obtained;
(iii) If ψ(v) = v, α = 1, κ = ϑ and h(τ) = τs in (29), then the result for (s, m)-convex

function is obtained.

Theorem 3. Let I, J be intervals in R and ϕ : I → R be differentiable and |ϕ′| an (α, h− m)-
convex function with respect to ψ, where ψ : J → R is strictly monotonic function and Image(ψ)⊂ I.
If h(v)h(y) ≤ h(v + y), then for (α, m) ∈ (0, 1]2, we have the following inequality for integral
operators (12) and (13):
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∣∣∣∣(φ
ΛΥ

ω,λ,ρ,θ,k,n
κ,β,γ,δ,µ,ν,σ+

1
(ϕ ◦ ψ−1 ∗Ψ)

)
(v; p′) +

(
φ
ΛΥ

ω,λ,ρ,θ,k,n
µ,η,l,σ−2

(ϕ ◦ ψ−1 ∗Ψ)

)
(v; p′)

∣∣∣∣ (37)

≤ Λσ1
v (Mλ,ρ,θ,k,n

κ,β,γ,δ,µ,ν, Ψ; φ)(v− σ1)

(
|ϕ′(ψ−1(σ1))|ζσ1

v (rα, h; Ψ′) + m
∣∣∣ϕ′(ψ−1

(v

m

))∣∣∣
× ζσ1

v (1− rα, h; Ψ′)

)
+ Λv

σ2
(Mλ,ρ,θ,k,n

ϑ,β,γ,δ,µ,ν, Ψ; φ)(σ2 −v)

(
|ϕ′(ψ−1(σ2))|ζσ2

v (rα, h; Ψ′)

+ m
∣∣∣ϕ′(ψ−1

(v

m

))∣∣∣ζσ2
v (1− rα, h; Ψ′)

)
,

where

(
φ
ΛΥ

ω,λ,ρ,θ,k,n
κ,β,γ,δ,µ,ν,σ+

1
(ϕ ◦ ψ−1 ∗Ψ)

)
(v; p′) :=

∫ v

σ1

Λτ
v(Mλ,ρ,θ,k,n

κ,β,γ,δ,µ,ν,, Ψ; φ)ϕ′(ψ−1(τ))d(Ψ(τ)),

(
φ
ΛΥ

ω,λ,ρ,θ,k,n
ϑ,β,γ,δ,µ,ν,σ−2

(ϕ ◦ ψ−1 ∗Ψ)

)
(v; p′) :=

∫ σ2

v
Λv

τ (Mλ,ρ,θ,k,n
ϑ,β,γ,δ,µ,ν,, Ψ; φ)ϕ′(ψ−1(τ)d(Ψ(τ)).

Proof. Since |ϕ′| is (α, h−m)-convex function with respect to strictly monotonic function,
one can have

|ϕ′(ψ−1(τ))| ≤ h
(

v− τ

v− σ1

)α

|ϕ′(ψ−1(σ1))|+ mh
(

1−
(

v− τ

v− σ1

)α)∣∣∣ϕ′(ψ−1
(v

m

)∣∣∣. (38)

Inequality (38) can takes the following form:

−
(

h
(

v− τ

v− σ1

)α

|ϕ′(ψ−1(σ1))|+ mh
(

1−
(

v− τ

v− σ1

)α)∣∣∣ϕ′(ψ−1
(v

m

))∣∣∣)≤ ϕ′(ψ−1(τ)) (39)

≤
(

h
(

v− τ

v− σ1

)α

|ϕ′(ψ−1(σ1))|+ mh
(

1−
(

v− τ

v− σ1

)α)∣∣∣ϕ′(ψ−1
(v

m

))∣∣∣).

From inequality (39), we have

ϕ′(ψ−1(τ)) ≤ h
(

v− τ

v− σ1

)α

|ϕ′(ψ−1(σ1))|+ mh
(

1−
(

v− τ

v− σ1

)α)∣∣∣ϕ′(ψ−1
(v

m

))∣∣∣. (40)

Multiplying (15) with (40) and integrating over [a, x], we obtain:

∫ v

a
Λτ

v(Mλ,ρ,θ,k,n
κ,β,γ,δ,µ,ν, Ψ; φ)ϕ′(ψ−1(τ))d(Ψ(τ)) ≤ Λσ1

v (Mλ,ρ,θ,k,n
κ,β,γ,δ,µ,ν, Ψ; φ)

(
|ϕ′(ψ−1(σ1))|

×
∫ v

σ1

h
(

v− τ

v− σ1

)α

d(Ψ(τ)) + m
∣∣∣ϕ′(ψ−1

(v

m

))∣∣∣ ∫ v

σ1

h
(

1−
(

v− τ

v− σ1

)α)
d(Ψ(τ))

)
.

This gives(
φ
ΛΥ

ω,λ,ρ,θ,k,n
κ,β,γ,δ,µ,ν,σ+

1
(ϕ(ψ−1) ∗Ψ)

)
(v; p′) ≤ Λσ1

v (Mλ,ρ,θ,k,n
κ,β,γ,δ,µ,ν, Ψ; φ)(v− σ1) (41)

×
(
|ϕ′(ψ−1(σ1))|ζσ1

v (rα, h; Ψ′) + m
∣∣∣ϕ′(ψ−1

(v

m

))∣∣∣ζσ1
v (1− rα, h; Ψ′)

)
.
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By utilizing the second inequality of (39), working on the same pattern as we did for
the right hand inequality, one can obtain(

φ
ΛΥ

ω,λ,ρ,θ,k,n
κ,β,γ,δ,µ,ν,σ+

1
((ϕ ◦ ψ−1) ∗Ψ)

)
(v; p′) ≥ −Λσ1

v (Mλ,ρ,θ,k,n
κ,β,γ,δ,µ,ν, Ψ; φ)(v− σ1) (42)

×
(
|ϕ′(ψ−1(σ1))|ζσ1

v (rα, h; Ψ′) + m
∣∣∣ϕ′(ψ−1

(v

m

))∣∣∣ζσ1
v (1− rα, h; Ψ′)

)
.

From (41) and (42), following inequality is observed:∣∣∣∣(φ
ΛΥ

ω,λ,ρ,θ,k,n
κ,β,γ,δ,µ,ν,σ+

1
(ϕ ◦ ψ−1 ∗Ψ)

)
(v; p′)

∣∣∣∣ ≤ Λσ1
v (Mλ,ρ,θ,k,n

κ,β,γ,δ,µ,ν, Ψ; φ)(v− σ1) (43)

×
(
|ϕ′(ψ−1(σ1))|ζσ1

v (rα, h; Ψ′) + m
∣∣∣ϕ′(ψ−1

(v

m

))∣∣∣ζσ1
v (1− rα, h; Ψ′)

)
.

By applying (α, h−m)-convexity of function |ϕ′| with respect to strictly monotonic
function, one can obtain

|ϕ′(ψ−1(τ))| ≤ h
(

τ −v

σ2 −v

)α

|ϕ′(ψ−1(σ2))|+ mh
(

1−
(

τ −v

σ2 −v

)α)∣∣∣ϕ′(ψ−1
(v

m

))∣∣∣. (44)

Now on the same lines as we worked for (15) and (38), from (16) and (44), one can
have the following inequality:∣∣∣∣(φ

ΛΥ
ω,λ,ρ,θ,k,n
κ,β,γ,δ,µ,ν,σ−2

(ϕ ◦ ψ−1 ∗Ψ)

)
(v; p′)

∣∣∣∣ ≤ Λv
σ2
(Mλ,ρ,θ,k,n

ϑ,β,γ,δ,µ,ν, Ψ; φ)(σ2 −v) (45)

×
(
|ϕ′(ψ−1(σ2))|ζσ2

v (rα, h; Ψ′) + m
∣∣∣ϕ′(ψ−1

(v

m

))∣∣∣ζσ2
v (1− rα, h; Ψ′)

)
.

By adding (43) and (45), inequality (37) can be achieved.

Remark 3. (i) If ψ(v) = v in (37), then then the result for (α, h − m)-convex function
is obtained;

(ii) If ψ(v) = v, κ = ϑ and h(τ) = τ in (37), then [26] Theorem 3 is obtained;
(iii) If (α, p) = (1, 1), κ = ϑ and h(τ) = τs in (37), then the result for (s, m)-convex function

is obtained.

3. Applications in the Form of Hadamard-Type Inequalities

Here, we give Hadamard-type inequalities deducible from Theorem 2.

Corollary 1. Under the assumption of Theorem 2, the following inequality holds for (h, m)-convex
function ϕ with respect to strictly monotone function ψ:

ϕ

(
ψ−1

(
σ1 + σ2

2

))
h
(

1
2

)
(1 + m)

((
φ
ΛΥ

ω,λ,ρ,θ,k,n
ϑ,β,γ,δ,µ,ν,σ−2

1
)
(σ1; p′) +

(
ΛΥ

ω,λ,ρ,θ,k,n
κ,β,γ,δ,µ,ν,σ+

1
1
)
(σ2; p′)

)

≤
(

φ
ΛΥ

ω,λ,ρ,θ,k,n
κ,β,γ,δ,µ,ν,σ+

1
ϕ ◦ ψ−1

)
(σ2; p′) +

(
φ
ΛΥ

ω,λ,ρ,θ,k,n
ϑ,β,γ,δ,µ,ν,σ−2

ϕ ◦ ψ−1
)
(σ1; p′)

≤ (σ2 − σ1)(Λ
σ1
σ2(Mλ,ρ,θ,k,n

κ,β,γ,δ,µ,ν,, Ψ; φ) + Λσ1
σ2(Mλ,ρ,θ,k,n

ϑ,β,γ,δ,µ,ν,, Ψ; φ))

×
(

ϕ(ψ−1(σ2))ζ
σ1
σ2 (r, h; Ψ′) + mϕ

(
ψ−1

(σ1

m

))
ζσ1

σ2 (1− r, h; Ψ′)
)

.

Proof. By setting ψ(x) = xp, p ∈ R − {0}, and α = 1, from (29), one can obtain the
required inequality.
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Corollary 2. Under the assumption of Theorem 2, the following inequality holds for (α, h)-convex
function ϕ with respect to strictly monotone function ψ:

ϕ

(
ψ−1

(
σ1 + σ2

2

))
h
(

1
2α

)
+ h
(

2α − 1
2α

)((φ
ΛΥ

ω,λ,ρ,θ,k,n
ϑ,β,γ,δ,µ,ν,σ−2

1
)
(σ1; p′) +

(
φ
ΛΥ

ω,λ,ρ,θ,k,n
κ,β,γ,δ,µ,ν,σ+

1
1
)
(σ2; p′)

)

≤
(

φ
ΛΥ

ω,λ,ρ,θ,k,n
κ,β,γ,δ,µ,ν,σ+

1
ϕ ◦ ψ−1

)
(σ2; p′) +

(
φ
ΛΥ

ω,λ,ρ,θ,k,n
ϑ,β,γ,δ,µ,ν,σ−2

ϕ ◦ ψ−1
)
(σ1; p′)

≤ (σ2 − σ1)(Λ
σ1
σ2(Mλ,ρ,θ,k,n

κ,β,γ,δ,µ,ν,, Ψ; φ) + Λσ1
σ2(Mλ,ρ,θ,k,n

ϑ,β,γ,δ,µ,ν,, Ψ; φ))

×
(

ϕ(ψ−1(σ2))ζ
σ1
σ2 (r

α, h; Ψ′) + ϕ(ψ−1(σ1))ζ
σ1
σ2 (1− rα, h; Ψ′)

)
.

Proof. By setting m = 1, from (29), one can obtain the required inequality.

Corollary 3. Under the assumption of Theorem 2, the following inequality holds for (α, m)-convex
function ϕ, with respect to strictly monotone function ψ:

2α ϕ

(
ψ−1

(
σ1 + σ2

2

))
(1 + m(2α − 1))

((
φ
ΛΥ

ω,λ,ρ,θ,k,n
ϑ,β,γ,δ,µ,ν,σ−2

1
)
(σ1; p′) +

(
φ
ΛΥ

ω,λ,ρ,θ,k,n
κ,β,γ,δ,µ,ν,σ+

1
1
)
(σ2; p′)

)
≤
(

φ
ΛΥ

ω,λ,ρ,θ,k,n
ϑ,β,γ,δ,µ,ν,σ−2

ϕ ◦ ψ−1
)
(σ1; p′) +

(
φ
ΛΥ

ω,λ,ρ,θ,k,n
κ,β,γ,δ,µ,ν,σ+

1
ϕ ◦ ψ−1

)
(σ2; p′)

≤ (Λσ1
σ2(Mλ,ρ,θ,k,n

ϑ,β,γ,δ,µ,ν,, Ψ; φ))
((

ϕ(ψ−1(σ2))Ψ(σ2)−mϕ
(

ψ−1
(σ1

m

))
Ψ((σ1))

)
− Γ(α + 1)
(σ2 − σ1)α

(
ϕ(ψ−1(σ2))−mϕ

(
ψ−1

(σ1

m

)))
α Iσ−2

Λ(a)
)

.

Proof. By setting h(τ) = τ, from (29), one can obtain the required inequality.

Remark 4. Moreover, by setting ψ(x) = xp, p ≥ 1, the above theorems hold for (h, m)− p-convex,
(α, h)− p-convex and (α, m)− p-convex functions.

4. Concluding Remarks

This article investigated the bounds of fractional integral operators containing the
unified Mittag–Leffler function via a generalized class of functions named as (α, h−m)-
convex functions, with respect to strictly increasing functions. The established results
generalized many integral inequalities that have been provided in currently published
articles. At the end, the Hadamard-type inequalities for some new classes of convex
functions that are special cases of our main results are presented.
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