
sensors

Article

T-L Plane Abstraction-Based Energy-Efficient
Real-Time Scheduling for Multi-Core
Wireless Sensors
Youngmin Kim 1, Ki-Seong Lee 1, Ngoc-Son Pham 2, Sun-Ro Lee 1 and Chan-Gun Lee 1,*

1 Department of Computer Science and Engineering, Chung-Ang University, Heuksuk-ro 84, Dongjak-gu,
Seoul 156-756, Korea; remnant1120@gmail.com (Y.K.); goory00@gmail.com (K.-S.L.);
ssunno@cau.ac.kr (S.-R.L.)

2 School of Electrical and Electronics Engineering, Chung-Ang University, Heuksuk-ro 84, Dongjak-gu,
Seoul 156-756, Korea; phamngocson1408@gmail.com

* Correspondence: cglee@cau.ac.kr; Tel.: +82-2-820-5829; Fax: +82-2-820-5301

Academic Editor: Davide Brunelli
Received: 4 May 2016; Accepted: 4 July 2016; Published: 8 July 2016

Abstract: Energy efficiency is considered as a critical requirement for wireless sensor networks.
As more wireless sensor nodes are equipped with multi-cores, there are emerging needs for
energy-efficient real-time scheduling algorithms. The T-L plane-based scheme is known to be an
optimal global scheduling technique for periodic real-time tasks on multi-cores. Unfortunately,
there has been a scarcity of studies on extending T-L plane-based scheduling algorithms to
exploit energy-saving techniques. In this paper, we propose a new T-L plane-based algorithm
enabling energy-efficient real-time scheduling on multi-core sensor nodes with dynamic power
management (DPM). Our approach addresses the overhead of processor mode transitions and reduces
fragmentations of the idle time, which are inherent in T-L plane-based algorithms. Our experimental
results show the effectiveness of the proposed algorithm compared to other energy-aware scheduling
methods on T-L plane abstraction.

Keywords: energy efficiency; wireless sensor node; T-L plane; real-time scheduling; DPM

1. Introduction

A wireless sensor network (WSN) consists of spatially-distributed autonomous sensors to
measure/monitor various conditions and transmit the collected data using wireless communications.
WSNs are considered as a promising approach, enabling a wide spectrum of applications, such as area
surveillance, traffic flow measurement, object tracking, and environment monitoring.

Due to the emerging demands for advanced applications, such as video sensor networks with
image sensors and smart cameras, single-core embedded wireless sensor nodes face high-performance
computation challenges. Recent technological improvements rendered multi-core processors as a
viable and cost-effective option for coping with the computation challenges for sensor nodes [1]. Hence,
studies on multi-core sensor nodes have been actively conducted recently [2–4].

Such multi-core sensor nodes require energy-efficient real-time scheduling algorithms to meet
their timing requirements, accomplished by exploiting the multi-core processors, and to keep the
battery life long enough to achieve such a goal. Among the real-time scheduling algorithms, the T-L
plane-based scheme is known to be an optimal global scheduling technique for periodic real-time
tasks on multi-cores. Unfortunately, there has been a scarcity of studies on extending T-L plane-based
scheduling algorithms to exploit energy-saving techniques.

Voltage frequency scaling (VFS) [5] and dynamic power management (DPM) [6] are the most
frequently adopted techniques for saving dynamic power dissipation. VFS scales the voltage and

Sensors 2016, 16, 1054; doi:10.3390/s16071054 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors


Sensors 2016, 16, 1054 2 of 19

frequency of a processor in order to reduce the energy consumption. DPM exploits the idle time of
a processor and switches the processor to lower energy consumption modes, such as sleep or deep
sleep modes.

In this paper, we propose new events and associated algorithms to enable better energy
management for multi-core sensor nodes operating with a T-L plane-based scheduling algorithm.
More specifically, we extend the approach made previously [7] by considering the characteristics of
multi-core sensor nodes as follows.

‚ Generalization of the technique for prefetching the tokens originally scheduled to later planes; and
‚ Allocation of the minimum number of preprocessors at the beginning of each T-L plane.

The first extension is especially important for the T-L plane algorithm, which can frequently
generate a series of short idle blocks, as shown in Section 2. The previous technique [7] was generalized
to prefetch the tokens originally scheduled to the future planes, as well as the very next one, and then
execute them during an idle interval whose length is too short to switch the processor into sleep mode.
These efforts reduce the fragmented idle time durations and increase the chance of longer idle blocks
where the sensor processors can be placed into sleep mode.

The second extension is pursued due to the observation of work load distributions in some sensor
network applications. Note that the load of the task sets may significantly change in different time
frames, such as during the daytime and nighttime. An imbalance of load indicates that there is an
opportunity of turning some processors off during lighter load times. For example, a recent study [8]
on load monitoring stated that their system runs monitoring tasks heavily around midnight when the
frogs are active. However, the system experiences silence during the daytime. Another example is
energy-harvesting sensor networks, where day and night tasks must be different due to the availability
of sunlight. There is an abundance of similar situations in various sensor networks. The idea is
similar to the one used by chilled water plant engineers to solve chiller dispatching problems where
optimization algorithms decide when to turn the chillers on and off [9].

This paper is organized as follows: Section 2 introduces major previous work involving real-time
scheduling and energy management. In Section 3, a short review of T-L plane abstraction is presented.
In Section 4, we present new events and associated algorithms extending the T-L plane scheduling to
support the dynamic power management (DPM) technique. In addition, some theoretical findings are
discussed. In Section 5, we evaluate our algorithm by comparing it with other T-L plane-based
energy-efficient algorithms. In Section 6, we summarize the results of this study and suggest
future work.

2. Related Work

This section briefly introduces the topic of multi-processor scheduling. It also summarizes
previous major works on T-L plane-based real-time scheduling algorithms and associated
extension efforts toward energy-efficiency. Interested readers are referred to extensive surveys
of energy-efficient scheduling mechanisms on sensor networks [10] and energy-aware real-time
scheduling algorithms [11].

Research on real-time scheduling for multi-processors has largely been focused on the problem of
scheduling periodic tasks. The real-time scheduling algorithms on multi-processors for periodic tasks
are categorized into global or partitioning-based scheduling [12–14]. In global scheduling [15,16],
task migrations between the processors are allowed since all of the tasks waiting for execution
are in a single queue, where a task scheduler picks some tasks. In contrast, task migration is not
permitted in partition-based scheduling. Each processor has its own waiting queue and an independent
task scheduler.

The T-L plane-based scheme is an optimal global scheduling for independent real-time tasks on
a homogeneous multi-processor system [17]; there has been active research on the extension of this
scheme since its seminal paper was published. A study involving synchronization mechanisms for



Sensors 2016, 16, 1054 3 of 19

lock-based, lock-free, and wait-free schemes in largest nodal remaining execution-time first (LNREF)
scheduling was previously presented [18]. The extension of T-L plane scheduling to support sporadic
tasks was also performed [19]. An optimal work-conserving scheduling was proposed to reduce the
idle time in LNREF scheduling [20,21]. In addition, an approach to reduce task migrations in a T-L
plane was presented [22,23].

Recent advances in T-L plane-based scheduling have started to consider energy efficiency. Most
approaches propose to determine the frequencies and voltages of the processors rendering minimal
energy consumption [24–27]. According to supply voltages and operation frequencies in a CMOS
processor, the dynamic power consumption for charging and discharging switching capacity Pd can be
computed as shown in the following:

Pd “ αCV2 f (1)

where α is switching activity factor, C is switching capacitance, V is supply voltage, and f is frequency.
The VFS technique reduces dynamic power consumption by scaling supply voltage and operation
frequency of processors. It also reduces the power consumed by short circuit current appearing at rise
and fall time of input signal. In contrast, DPM turns out more effective than VFS when there is enough
idle time because DPM enables the shutdown of processors and decrease of supply voltage. DPM can
reduce the static power consumed by leakage current, too.

Unfortunately, there has been little effort to extend T-L plane-based scheduling algorithms to
support the DPM technique, despite the popularity of multi-processors and the issue of increasing
dynamic power. Zhang et al. [27] briefly mentioned the possibility of switching the processor’s mode
to utilize idle time. However, it focuses exclusively on DVFS. We argue that such a basic attempt to
apply the idea may not work, as shown in the following example.

Figure 1 shows the schedules produced by LNREF and global-EDF [14,28] on two processors. It is
noticeable that a series of idle times appear frequently in the schedule by LNREF compared to the
schedule generated by global earliest deadline first (global-EDF). More specifically, there are two idle
blocks with durations of 1 ms and 2 ms on every plane of the two processors, as shown in Figure 1a.
This is primarily due to the characteristics of T-L plane-based scheduling, where a task is broken
down into a token of each plane whose deadline is the end time of the plane. The reason why we care
about this issue is that such short durations of the idle time may not be long enough to exploit more
energy-efficient modes, such as sleep mode.

Sensors 2016, 16, 1054 3 of 18 

 

scheduling was previously presented [18]. The extension of T-L plane scheduling to support sporadic 
tasks was also performed [19]. An optimal work-conserving scheduling was proposed to reduce the 
idle time in LNREF scheduling [20,21]. In addition, an approach to reduce task migrations in a T-L 
plane was presented [22,23]. 

Recent advances in T-L plane-based scheduling have started to consider energy efficiency. Most 
approaches propose to determine the frequencies and voltages of the processors rendering minimal 
energy consumption [24–27]. According to supply voltages and operation frequencies in a CMOS 
processor, the dynamic power consumption for charging and discharging switching capacity  can 
be computed as shown in the following: =  (1) 

where  is switching activity factor,  is switching capacitance,  is supply voltage, and  is 
frequency. The VFS technique reduces dynamic power consumption by scaling supply voltage and 
operation frequency of processors. It also reduces the power consumed by short circuit current 
appearing at rise and fall time of input signal. In contrast, DPM turns out more effective than VFS 
when there is enough idle time because DPM enables the shutdown of processors and decrease of 
supply voltage. DPM can reduce the static power consumed by leakage current, too. 

Unfortunately, there has been little effort to extend T-L plane-based scheduling algorithms to 
support the DPM technique, despite the popularity of multi-processors and the issue of increasing 
dynamic power. Zhang et al. [27] briefly mentioned the possibility of switching the processor’s mode 
to utilize idle time. However, it focuses exclusively on DVFS. We argue that such a basic attempt to 
apply the idea may not work, as shown in the following example. 

Figure 1 shows the schedules produced by LNREF and global-EDF [14,28] on two processors. It 
is noticeable that a series of idle times appear frequently in the schedule by LNREF compared to the 
schedule generated by global earliest deadline first (global-EDF). More specifically, there are two idle 
blocks with durations of 1 ms and 2 ms on every plane of the two processors, as shown in Figure 1a. 
This is primarily due to the characteristics of T-L plane-based scheduling, where a task is broken 
down into a token of each plane whose deadline is the end time of the plane. The reason why we care 
about this issue is that such short durations of the idle time may not be long enough to exploit more 
energy-efficient modes, such as sleep mode. 

(a) (b)

Figure 1. Example of idle time fragmentation: (a) LNREF schedule and (b) global-EDF schedule. 

TL-DPM [7] recently addressed this issue and proposed the idea of executing ahead of time the 
tasks originally scheduled for the plane that immediately follows when the idle time duration is too 
short to switch to sleep mode. This approach is based on the rationale that such actions can contribute 
to reduce the fragmented idle time durations and render them into larger blocks. 

3. Review of T-L Plane Abstraction 

In this section, we briefly review the concept of the T-L plane abstraction. Some scheduling 
algorithms on multi-processors adopt the concept of fluid schedule to achieve optimality. The core 
idea behind fluid schedule is to execute each task at a constant rate. Such scheduling algorithms 

Figure 1. Example of idle time fragmentation: (a) LNREF schedule and (b) global-EDF schedule.

TL-DPM [7] recently addressed this issue and proposed the idea of executing ahead of time the
tasks originally scheduled for the plane that immediately follows when the idle time duration is too
short to switch to sleep mode. This approach is based on the rationale that such actions can contribute
to reduce the fragmented idle time durations and render them into larger blocks.



Sensors 2016, 16, 1054 4 of 19

3. Review of T-L Plane Abstraction

In this section, we briefly review the concept of the T-L plane abstraction. Some scheduling
algorithms on multi-processors adopt the concept of fluid schedule to achieve optimality. The core idea
behind fluid schedule is to execute each task at a constant rate. Such scheduling algorithms frequently
switch the context to satisfy the fluid schedule. Cho et al. [17] proposed T-L plane abstraction to
address this problem. In the T-L plane abstraction, a task is represented as a moving token. The x-axis
and y-axis represent time and tasks’ remaining execution time, respectively.

Figure 2 shows an example of T-L plane construction. For the jth job of a task τi with arrival at
ai,j and cost Ci, it should be executed and meet its implicit deadline before the arrival of the next job.
Each arrival of a job is indicated by a down-directed arrow, which is extended by a dotted vertical line
in the figure. The dotted slopes from

`

ai,j, Ci
˘

to
`

0, ai,j`1
˘

represent the fluid schedule of tasks. Note
that there are the same n isosceles triangles for n tasks given a pair of consecutive dotted vertical lines,
e.g., the ones extended from a3,5 and a2,3. The height of each isosceles triangle is same to the interval
length of the pair. Hence, the rightmost vertex of each isosceles triangle is an intersection point of its
fluid schedule and a dotted vertical line. Then, we overlap these triangles in the same time intervals to
construct a T-L plane. Figure 2 shows examples of constructing the k-1th, kth, and k+1th T-L planes.

Sensors 2016, 16, 1054 4 of 18 

 

frequently switch the context to satisfy the fluid schedule. Cho et al. [17] proposed T-L plane 
abstraction to address this problem. In the T-L plane abstraction, a task is represented as a moving 
token. The x-axis and y-axis represent time and tasks’ remaining execution time, respectively. 

Figure 2 shows an example of T-L plane construction. For the jth job of a task τ  with arrival at ,  and cost , it should be executed and meet its implicit deadline before the arrival of the next job. 
Each arrival of a job is indicated by a down-directed arrow, which is extended by a dotted vertical 
line in the figure. The dotted slopes from ( , , ) to (0, , ) represent the fluid schedule of tasks. 
Note that there are the same n isosceles triangles for n tasks given a pair of consecutive dotted vertical 
lines, e.g., the ones extended from ,  and , . The height of each isosceles triangle is same to the 
interval length of the pair. Hence, the rightmost vertex of each isosceles triangle is an intersection 
point of its fluid schedule and a dotted vertical line. Then, we overlap these triangles in the same time 
intervals to construct a T-L plane. Figure 2 shows examples of constructing the k-1th, kth, and k+1th 
T-L planes. 

 
Figure 2. Example of T-L plane construction. 

Figure 3 illustrates scheduling in the kth T-L plane. A token represents the status of the 
corresponding task in the plane. Throughout this paper, the start time and finish time of the kth plane 
are represented as  and , respectively. The occurrence time of each event on the kth plane is 
denoted as , where 0 ≤ ≤ . We shall use a simpler notation  to indicate the occurrence time 
of an event in the current plane. At time , a token corresponding to the task τ  is located on the 
left-most side of the kth T-L plane, and its height represents the local remaining execution time ( ). 
Assume that we have m processors. The tokens of tasks assigned to the processors move diagonally 
down as τ ,…,τ 	, or else horizontally as τ ,…,τ  at , as shown in Figure 3. 

In general, there are two time instants where the system has to reschedule tasks. One instant is 
when a token hits the “zero local remaining execution time bottom”, which means that the local 

Figure 2. Example of T-L plane construction.

Figure 3 illustrates scheduling in the kth T-L plane. A token represents the status of the
corresponding task in the plane. Throughout this paper, the start time and finish time of the kth
plane are represented as tk

0 and tk
f , respectively. The occurrence time of each event on the kth plane

is denoted as tk
j , where 0 ď j ď f . We shall use a simpler notation tj to indicate the occurrence time



Sensors 2016, 16, 1054 5 of 19

of an event in the current plane. At time tk
0, a token corresponding to the task τi is located on the

left-most side of the kth T-L plane, and its height represents the local remaining execution time lk
i

´

tk
0

¯

.
Assume that we have m processors. The tokens of tasks assigned to the processors move diagonally
down as τ1, . . . , τm , or else horizontally as τm`1, . . . , τn at tk

0, as shown in Figure 3.

Sensors 2016, 16, 1054 5 of 18 

 

remaining execution time of the task is completely consumed. The processor that has executed the 
task now becomes available to run another ready task with the highest local utilization. We refer to 
this as event-b. An example is shown at time  in the figure. In the kth T-L plane, the local utilization ( ) for a task τ  at time  can be calculated by the expression ( )/ − , which amounts to the 
processor capacity needed by the task. The other instant is when a token hits the “no local laxity 
diagonal”, which means that the local laxity of the task becomes zero and the corresponding task 
must be executed immediately. Such an event is referred to as event-c. Two examples are shown in 
the figure at times  and . Note that successful arrival of all of the tokens at the right apex means 
that the corresponding task set is locally feasible. 

 
Figure 3. Scheduling in the k-th T-L plane. 

4. Extending T-L Plane-Based Scheduling Algorithms to Exploit DPM 

In general, a DPM-enabled processor provides three different operating modes: active, idle, and 
sleep. The sleep mode consumes less energy than any other mode. In order to run a task, the processor 
should be in the active mode. However, it consumes the largest amount of energy. A basic strategy 
is to keep the processor in sleep mode as much as possible. Note that switching a processor mode 
requires additional energy. Hence, it would be wise to switch the processor to sleep mode only if the 
idle interval is longer than a threshold. Such a threshold is called the break-even time [29] and is 
denoted as  in this paper.  is defined as follows: = max , − ∙−  (2) 

where  and  denote transition energy overhead and recovery time, respectively. The idle 
power and sleep power are denoted as  and , respectively. 

Next, we describe our idea to extend T-L plane-based scheduling algorithms to exploit Dynamic 
Power Management (DPM). 

Figure 3. Scheduling in the k-th T-L plane.

In general, there are two time instants where the system has to reschedule tasks. One instant
is when a token hits the “zero local remaining execution time bottom”, which means that the local
remaining execution time of the task is completely consumed. The processor that has executed the
task now becomes available to run another ready task with the highest local utilization. We refer to
this as event-b. An example is shown at time tk

b in the figure. In the kth T-L plane, the local utilization
rk

i ptq for a task τi at time t can be calculated by the expression lk
i ptq {t

k
f ´ t, which amounts to the

processor capacity needed by the task. The other instant is when a token hits the “no local laxity
diagonal”, which means that the local laxity of the task becomes zero and the corresponding task must
be executed immediately. Such an event is referred to as event-c. Two examples are shown in the figure
at times tk

c and tk
c`1. Note that successful arrival of all of the tokens at the right apex means that the

corresponding task set is locally feasible.

4. Extending T-L Plane-Based Scheduling Algorithms to Exploit DPM

In general, a DPM-enabled processor provides three different operating modes: active, idle, and
sleep. The sleep mode consumes less energy than any other mode. In order to run a task, the processor
should be in the active mode. However, it consumes the largest amount of energy. A basic strategy
is to keep the processor in sleep mode as much as possible. Note that switching a processor mode
requires additional energy. Hence, it would be wise to switch the processor to sleep mode only if



Sensors 2016, 16, 1054 6 of 19

the idle interval is longer than a threshold. Such a threshold is called the break-even time [29] and is
denoted as Csleep in this paper. Csleep is defined as follows:

Csleep “ max

˜

tsw,
Esw ´ Psleep¨ tsw

Pidle ´ Psleep

¸

(2)

where Esw and tsw denote transition energy overhead and recovery time, respectively. The idle power
and sleep power are denoted as Pidle and Psleep, respectively.

Next, we describe our idea to extend T-L plane-based scheduling algorithms to exploit Dynamic
Power Management (DPM).

4.1. Processor Mode Transition Strategy

4.1.1. Mode Transition at the Beginning of the Plane

Typical T-L plane-based scheduling algorithms try to utilize all of the available processors at the
beginning of each T-L plane. We argue that this decision may negatively affect the energy efficiency.
For example, suppose we have five processors and the total local utilization is 1.5 for a specific T-L
plane that has six tasks. Then, the original T-L plane-based algorithm assigns the tasks to all of the five
processors. Note that the task set is schedulable with only two processors and we could have switched
the unused three processors to sleep mode during this plane. Therefore, we propose an algorithm to
execute the tasks with the minimum number of processors and keep unnecessary processors in sleep
mode as much as possible.

Algorithm 1 presents the logic for determining the minimum number of active processors upon
the occurrence of a task arrival event for the k plane. This algorithm is executed at the beginning of
each plane.

Algorithm 1 Mode Transition at Task Arrival Event

Sensors 2016, 16, 1054 6 of 18 

 

4.1. Processor Mode Transition Strategy 

4.1.1. Mode Transition at the Beginning of the Plane 

Typical T-L plane-based scheduling algorithms try to utilize all of the available processors at the 
beginning of each T-L plane. We argue that this decision may negatively affect the energy efficiency. 
For example, suppose we have five processors and the total local utilization is 1.5 for a specific T-L 
plane that has six tasks. Then, the original T-L plane-based algorithm assigns the tasks to all of the 
five processors. Note that the task set is schedulable with only two processors and we could have 
switched the unused three processors to sleep mode during this plane. Therefore, we propose an 
algorithm to execute the tasks with the minimum number of processors and keep unnecessary 
processors in sleep mode as much as possible. 

Algorithm 1 presents the logic for determining the minimum number of active processors upon 
the occurrence of a task arrival event for the k plane. This algorithm is executed at the beginning of 
each plane. 

Algorithm 1 Mode Transition at Task Arrival Event

In the algorithm, () is a function that switches a processor to sleep 
mode. Notice that  processors are enough to schedule the total utilization of . Hence, 
the algorithm uses, at most,  processors and places −  processors into sleep mode 
throughout the entire plane. 

Hereinafter, the computation capacity at time x is notated as ( ), which represents the number 
of processors in the active mode. For example,  indicates the available computation capacity 
at the end of the previous plane, where the current plane is the kth one. If it is smaller than or equal 
to the minimum number of processors for scheduling ∑ ( ) at  in the kth plane, which can be 
computed by ∑ ( ) , then P is assigned to ∑ ( ) . Otherwise, P is assigned to ∑ ( )  
or , depending on the comparison result between the size of the plane and . If the size 
of the plane is larger than or equal to , then we assign P to ∑ ( )  in order to exploit the 
energy saving of sleep mode. 

4.1.2. Mode Transition during Execution 

In case the total local utilization decreases as time lapses, the number of processors required for 
scheduling may be also reduced. Notice that we can switch the unnecessary processors to sleep mode 
for better energy management. Unfortunately, conventional T-L plane algorithms fail to exploit this 
opportunity. 

In order to address this problem, our approach triggers an event, which is called event-t 
hereafter, at  in the case ∑ ( ) < ( ) where − > . This event implies that the 

In the algorithm, processorTransitiontoSleeppq is a function that switches a processor to sleep
mode. Notice that rUtotals processors are enough to schedule the total utilization of Utotal . Hence,
the algorithm uses, at most, rUtotals processors and places M´ rUtotals processors into sleep mode
throughout the entire plane.

Hereinafter, the computation capacity at time x is notated as C pxq, which represents the number
of processors in the active mode. For example, Cptk´1

f q indicates the available computation capacity
at the end of the previous plane, where the current plane is the kth one. If it is smaller than or



Sensors 2016, 16, 1054 7 of 19

equal to the minimum number of processors for scheduling
řn

i“1 ri pt0q at t0 in the kth plane, which
can be computed by

P
řn

i“1 ri pt0q
T

, then P is assigned to
P
řn

i“1 ri pt0q
T

. Otherwise, P is assigned to
P
řn

i“1 ri pt0q
T

or Cptk´1
f q, depending on the comparison result between the size of the plane and Csleep.

If the size of the plane is larger than or equal to Csleep, then we assign P to
P
řn

i“1 ri pt0q
T

in order to
exploit the energy saving of sleep mode.

4.1.2. Mode Transition during Execution

In case the total local utilization decreases as time lapses, the number of processors required
for scheduling may be also reduced. Notice that we can switch the unnecessary processors to sleep
mode for better energy management. Unfortunately, conventional T-L plane algorithms fail to exploit
this opportunity.

In order to address this problem, our approach triggers an event, which is called event-t hereafter,
at tt in the case

P
řn

i“1 ri pttq
T

ă C ptt´1q where t f ´ tt ą Csleep. This event implies that the remaining
tasks can be scheduled with only

P
řn

i“1 ri pttq
T

processors. Hence, the other processors are put into
sleep mode.

Definition 1. An event-t occurs at tt if the following conditions are satisfied.

‚ t f ´ tt ą Csleep

‚
P
řn

i“1 ri pttq
T

ă C ptt´1q

Figure 4 shows an example of the occurrence of event-t. The following theorems and lemmas
hold for event-t.

Sensors 2016, 16, 1054 7 of 18 

 

remaining tasks can be scheduled with only ∑ ( ) 	processors. Hence, the other processors are 
put into sleep mode. 

Definition 1. An event-t occurs at  if the following conditions are satisfied. 

 − >  
 ∑ ( ) < ( ) 

Figure 4 shows an example of the occurrence of event-t. The following theorems and lemmas 
hold for event-t. 

 
Figure 4. Example of the occurrence of an event-t. 

Theorem 1. In case event-t occurs at  where − > , then the following inequalities hold. 

 ∑ ( ) − ∑ ( ) ≤ ( )( )	
 1 − (∑ ( ) − ∑ ( ) ) ≤ ( ) ( )	
Proof: The occurrence of even-t at  requires that + (∑ ( ) − ∑ ( ) )( − ) 
should precede the moment where the local remaining execution time of the ( )th task becomes 
zero, which is + ( )( ). 

+ ( ) − ( ) − ≤ + ( )( ) (3) 

( ) − ( ) ≤ ( )( )−  (4) 

( ) − ( ) ≤ ( )( ) (5) 

In addition, it should precede the moment where the local laxity of the ( )+1th task becomes 
zero, which is + ( − − ( ) ( )). 

Figure 4. Example of the occurrence of an event-t.

Theorem 1. In case event-t occurs at tt where t f ´ tt ą Csleep, then the following inequalities hold.

‚
řn

i“1 ri ptt´1q ´
X
řn

i“1 ri ptt´1q
\

ď rCptt´1q
ptt´1q



Sensors 2016, 16, 1054 8 of 19

‚ 1´
`
řn

i“1 ri ptt´1q ´
X
řn

i“1 ri ptt´1q
\˘

ď rCptt´1q`1 ptt´1q

Proof. The occurrence of even-t at tt requires that tt´1 `
`
řn

i“1 ri ptt´1q ´
X
řn

i“1 ri ptt´1q
\˘

´

t f ´ tt´1

¯

should precede the moment where the local remaining execution time of the C ptt´1qth task becomes
zero, which is tt´1 ` lCptt´1q

ptt´1q.

tt´1 `

˜

n
ÿ

i“1

ri ptt´1q ´

[

n
ÿ

i“1

ri ptt´1q

_¸

´

t f ´ tt´1

¯

ď tt´1 ` lCptt´1q
ptt´1q (3)

n
ÿ

i“1

ri ptt´1q ´

[

n
ÿ

i“1

ri ptt´1q

_

ď
lCptt´1q

ptt´1q

t f ´ tt´1
(4)

n
ÿ

i“1

ri ptt´1q ´

[

n
ÿ

i“1

ri ptt´1q

_

ď rCptt´1q
ptt´1q (5)

In addition, it should precede the moment where the local laxity of the C ptt´1q+1th task becomes
zero, which is tt´1 `

´

t f ´ tt´1 ´ lCptt´1q`1 ptt´1q
¯

.

tt´1 `

˜

n
ÿ

i“1

ri ptt´1q ´

[

n
ÿ

i“1

ri ptt´1q

_¸

´

t f ´ tt´1

¯

ď tt´1 `
´

t f ´ tt´1 ´ lCptt´1q`1 ptt´1q
¯

(6)

n
ÿ

i“1

ri ptt´1q ´

[

n
ÿ

i“1

ri ptt´1q

_

ď
t f ´ tt´1 ´ lCptt´1q`1 ptt´1q

t f ´ tt´1
(7)

n
ÿ

i“1

ri ptt´1q ´

[

n
ÿ

i“1

ri ptt´1q

_

ď 1´ rCptt´1q`1 ptt´1q (8)

1´

˜

n
ÿ

i“1

ri ptt´1q ´

[

n
ÿ

i“1

ri ptt´1q

_¸

ě rCptt´1q`1 ptt´1q (9)

Lemma 1. (Total local utilization at event-t) At tt, an event-t occurs where
řn

i“1 ri,tt “ C ptt´1q ´ 1, only if
řn

i“1 ri ptt´1q ă C ptt´1q.

Proof. When an event-t occurs at tt, the time interval between event-t and the immediately previous
event, tt ´ tt´1, is computed as shown below:

tt ´ tt´1 “
´

t f ´ tt´1

¯

´

ˆ

C p tt´1q ´
n
ř

i“1
ri ptt´1q

˙

´

t f ´ tt´1

¯

“

´

t f ´ tt´1

¯

ˆ

1´
ˆ

C p tt´1q ´
n
ř

i“1
ri ptt´1q

˙˙ (10)

At tt´1, the total local remaining execution time is computed as follows:

n
ÿ

i“1

li,t´1 “
´

t f ´ tt´1

¯

˜

n
ÿ

i“1

ri ptt´1q

¸

(11)



Sensors 2016, 16, 1054 9 of 19

From tt´1 to tt, the total local remaining execution time is reduced by as much as
C ptt´1q ptt ´ tt´1q.

´

t f ´ tt

¯ n
ř

i“1
ri pttq

“

´

t f ´ tt´1

¯

ˆ n
ř

i“1
ri ptt´1q

˙

´C ptt´1q
´

t f ´ tt´1

¯

ˆ

1´
ˆ

C p tt´1q ´
n
ř

i“1
ri ptt´1q

˙˙

(12)

Since t f ´ tt´1{t f ´ tt “ 1{C ptt´1q ´
řn

i“1 ri ptt´1q, we can replace t f ´ tt´1{t f ´ tt with
1{C ptt´1q ´

řn
i“1 ri ptt´1q as follows:

n
ÿ

i“1

ri pttq “
t f ´ tt´1

t f ´ tt
pC ptt´1q ´ 1q

˜

C ptt´1q ´

n
ÿ

i“1

ri ptt´1q

¸

(13)

n
ÿ

i“1

ri pttq “
1

C ptt´1q ´
řn

i“1 ri ptt´1q
pC ptt´1q ´ 1q

˜

C ptt´1q ´

n
ÿ

i“1

ri ptt´1q

¸

(14)

Hence, the following equation holds:

n
ÿ

i“1

ri pttq “ C ptt´1q ´ 1 (15)

Lemma 2. If
řn

i“1 ri ptcurq “ C ptcur q at tcur, then the total local utilization is
řn

i“0 ri ptcurq constantly at any
time point, tcur ` ∆t, where ∆t ą 0.

Proof.
n
ÿ

i“1

ri ptcurq “ C ptcurq (16)

n
ÿ

i“1

li ptcurq

t f ´ tcur
“ C ptcurq (17)

n
ÿ

i“1

li ptcurq “ C ptcurq
´

t f ´ tcur

¯

(18)

n
ÿ

i“1

li ptcurq ´ ∆tC ptcurq “ C ptcurq
´

t f ´ tcur

¯

´ ∆tC ptcurq (19)

n
ÿ

i“1

li ptcur ` ∆tq ă C ptcurq
´

t f ´ tcur ´ ∆t
¯

(20)

řn
i“1 li ptcur ` ∆tq

t f ´ ptcur ` ∆tq
“ C ptcurq (21)

Hence, the following equation holds:

n
ÿ

i“1

ri ptcur ` ∆tq “ C ptcurq (22)



Sensors 2016, 16, 1054 10 of 19

Theorem 2. (The number of occurrences of event-t) Event-t occurs at most once in each plane.

Proof. Assume that an event-t occurs at time tt in a plane. Lemma 1 implies that
řn

i“1 ri pttq “

C ptt´1q ´ 1, which means that only C ptt´1q ´ 1 processors are needed to handle the task load. Note
that C pttq “

řn
i“1 ri pttq at tt and the total local utilization is fixed to C ptt´1q ´ 1 between the times tt

and t f by Lemma 2. Therefore, there cannot exist any other event-t in this plane.
Within any T-L plane, the total local utilization of the tasks is bounded as shown in the

following theorems.

Theorem 3. If
řn

i“1 ri ptcurq ă C ptcurq at tcur and there is no idle time until tcur ` ∆t where ∆t ą 0, then the
total local utilization at tcur ` ∆t is smaller than

řn
i“1 ri ptcurq, i.e.,

řn
i“1 ri ptcur ` ∆tq ă

řn
i“1 ri ptcurq.

Proof. Since
řn

i“1 ri ptcurq ă C ptcurq at tcur, the idle time after that is C ptcurq
´

t f ´ tcur

¯

´
řn

i“1 li ptcurq.
Since there is no idle time during ptcur, tcur ` ∆t), the idle time at tcur ` ∆t can be computed as shown
in the following:

idletcur`∆t “ C ptcurq
´

t f ´ tcur ´ ∆t
¯

´
n
ř

i“1
li ptcur ` ∆tq

“ C ptcurq
´

t f ´ tcur

¯

´
n
ř

i“1
li ptcurq

(23)

The total local utilization at tcur is computed as shown below:

n
ÿ

i“1

ri ptcurq “ C ptcurq ´
idletcur

´

t f ´ tcur

¯ (24)

The total local utilization at tcur ` ∆t is computed as follows:

n
ÿ

i“1

ri ptcur ` ∆tq “ C ptcurq ´
idletcur

´

t f ´ tcur ´ ∆t
¯ (25)

Since
´

t f ´ tcur

¯

ą

´

t f ´ tcur ´ ∆t
¯

holds, the following is satisfied as well:

n
ÿ

i“1

ri ptcur ` ∆tq ă
n
ÿ

i“1

ri ptcurq (26)

Algorithm 2 shows an algorithm to handle the event-t, which switches unnecessary processors to
sleep mode.

Algorithm 2 Mode Transition at Event-t

Sensors 2016, 16, 1054 10 of 18 

 

( ) = ( ) − −  (24) 

The total local utilization at + ∆  is computed as follows: 

( + ∆ ) = ( ) − − − ∆  (25) 

Since − > − − ∆  holds, the following is satisfied as well: 

( + ∆ ) < ( ) (26) 

□ 
Algorithm 2 shows an algorithm to handle the event-t, which switches unnecessary processors 

to sleep mode. 

Algorithm 2 Mode Transition at Event-t

4.2. Prefetching Strategy 

Kim et al. [7] proposed an event-s that executes the tokens originally scheduled on the next plane 
to reduce fragmented short idle intervals. However, the event-s was limited to handle the tokens on 
the immediate next plane only. In this paper, we propose to extend the event-s to consider all of the 
future planes. A naive attempt may increase the computation complexity from ( )  to ( ) 
because we need to calculate the local execution time of each token on − 1 planes constructed by 

 tasks. In order to solve this problem, we propose a new event called event-r. The occurrence of 
event-r requires the calculation of the remaining execution times of  tasks only. Thus, the algorithm 
complexity is maintained at ( ). In the remainder of this section, we describe the new event in 
detail. 

Definition 2. An event-r occurs at  if the following conditions are satisfied. 

 − <  
 ∑ ( ) < ∑ ( ) 
 There exists no event-r during the time interval − ,  

Figure 5 shows an example of the T-L plane where an event-r occurs. From  to , the total 
processor time is ( )( − ). At , we reallocate the local remaining execution time to the 
future tokens originally scheduled to the next planes. The total local utilizations before and after 
reallocation at  are denoted as ∑ ( ) and ∑ ( ), respectively. The processor 
time required by the tokens before reallocation is ∑ ( ) ( − ). Therefore, ( ( ) −∑ ( ))( − )  is distributed to the tokens in a plane. The additional processor time 
reallocated to the tokens is computed by the following theorems. 



Sensors 2016, 16, 1054 11 of 19

4.2. Prefetching Strategy

Kim et al. [7] proposed an event-s that executes the tokens originally scheduled on the next plane
to reduce fragmented short idle intervals. However, the event-s was limited to handle the tokens on
the immediate next plane only. In this paper, we propose to extend the event-s to consider all of the
future planes. A naive attempt may increase the computation complexity from Θ pnq to Θ

`

n2˘ because
we need to calculate the local execution time of each token on n´ 1 planes constructed by n tasks. In
order to solve this problem, we propose a new event called event-r. The occurrence of event-r requires
the calculation of the remaining execution times of n tasks only. Thus, the algorithm complexity is
maintained at Θ pnq. In the remainder of this section, we describe the new event in detail.

Definition 2. An event-r occurs at tr if the following conditions are satisfied.

‚ t f ´ tr ă Csleep

‚
řn

i“1 ri ptrq ă
řn

i“1 ri ptr´1q

‚ There exists no event-r during the time interval
´

t f ´ Csleep, tr

¯

Figure 5 shows an example of the T-L plane where an event-r occurs. From tr to t f , the total

processor time is C ptr´1q
´

t f ´ tr

¯

. At tr, we reallocate the local remaining execution time to the future
tokens originally scheduled to the next planes. The total local utilizations before and after reallocation
at tr are denoted as

řn
i“1 rbe f ore

i ptrq and
řn

i“1 ra f ter
i ptrq, respectively. The processor time required by the

tokens before reallocation is
řn

i“1 rbe f ore
i ptrq

´

t f ´ tr

¯

. Therefore, pC ptr´1q ´
řn

i“1 rbe f ore
i ptrqq

´

t f ´ tr

¯

is distributed to the tokens in a plane. The additional processor time reallocated to the tokens is
computed by the following theorems.

Sensors 2016, 16, 1054 11 of 18 

 

 
Figure 5. Example of the occurrence of an event-r. 

Theorem 4. (Maximum additional processor time) The additional processor time  to be reallocated to a token 
of task  at event-r satisfies the inequality ≤ (1 − ( ))( − ). 
Proof. At , the maximum available processor time by a task τ  is − ,  and ( )  is ( )( − ). ( ) ≤ −  (27) ( ) + ≤ −  (28) ≤ − − ( ) (29) 

Therefore, the following inequality holds for the additional processor time : ≤ 1 − ( ) −  (30) 

□ 

Theorem 5. (Total maximum additional processor time) The total additional processor time  reallocated to 
the tokens in a plane satisfies the inequality ≤ ( ) − ∑ ( ) − . 
Proof. ( ) ≤ ( ) (31) 

( ) − ( ) ≤ ( ) − ( ) (32) 

Figure 5. Example of the occurrence of an event-r.



Sensors 2016, 16, 1054 12 of 19

Theorem 4. (Maximum additional processor time) The additional processor time ai to be reallocated to a token
of task τi at event-r satisfies the inequality ai ď p1´ rbe f ore

i ptrqq
´

t f ´ tr

¯

.

Proof. At tr, the maximum available processor time by a task τi is t f ´ tr, and lbe f ore
i ptrq is

rbe f ore
i ptrq

´

t f ´ tr

¯

.

la f ter
i ptrq ď t f ´ tr (27)

lbe f ore
i ptrq ` ai ď t f ´ tr (28)

ai ď t f ´ tr ´ lbe f ore
i ptrq (29)

Therefore, the following inequality holds for the additional processor time ai:

ai ď p1´ rbe f ore
i ptrqq

´

t f ´ tr

¯

(30)

Theorem 5. (Total maximum additional processor time) The total additional processor time A reallocated to the
tokens in a plane satisfies the inequality A ď pC ptr´1q ´

řn
i“1 rbe f ore

i ptrqq
´

t f ´ tr

¯

.

Proof.
n
ÿ

i“1

ra f ter
i ptrq ď C ptr´1q (31)

n
ÿ

i“1

ra f ter
i ptrq ´

n
ÿ

i“1

rbe f ore
i ptrq ď C ptr´1q ´

n
ÿ

i“1

rbe f ore
i ptrq (32)

n
ÿ

i“1

pla f ter
i ptrq ´ lbe f ore

i ptrqq ď

˜

C ptr´1q ´

n
ÿ

i“1

rbe f ore
i ptrq

¸

´

t f ´ tr

¯

(33)

Hence, the following inequality is obtained:

A ď

˜

C ptr´1q ´

n
ÿ

i“1

ri ptrq

¸

´

t f ´ tr

¯

(34)

The following theorem presents a sufficient condition for the occurrence of an event-r in a plane.

Theorem 6. There exists no event-r in a plane if an event-t occurs in the plane.

Proof. An event-t occurs at t where t0 ă t ď t f ´Csleep. Also, an event-r occurs at t where t f ´Csleep ă

t ă t f . Therefore, we will prove that there cannot be any event-r after the occurrence of an event-t.
Suppose that an event-r occurs in the plane after the occurrence of an event-t. When an event-t occurs
at tt, the total local utilization is

řn
i“1 ri,tt “ C ptt´1q ´ 1 according to Lemma 1 and the computation

capacity required for scheduling tasks is computed as C pttq “ C ptt´1q ´ 1. Since the total local
utilization is

řn
i“1 ri ptt`∆tq “

řn
i“1 ri pttq at tt ` ∆t where ∆t ą 0, according to Lemma 2, the second

condition of Definition 2 cannot be satisfied, which implies a contradiction.
Algorithm 3 presents the algorithm description for the processor time reallocation at the

occurrence of an event-r.



Sensors 2016, 16, 1054 13 of 19

Algorithm 3 Processor Time Reallocation at Event-r

Sensors 2016, 16, 1054 12 of 18 

 

( ( ) − ( )) ≤ ( ) − ( ) −  (33) 

Hence, the following inequality is obtained: 

≤ ( ) − ( ) −  (34) 

□ 

The following theorem presents a sufficient condition for the occurrence of an event-r in a plane. 

Theorem 6. There exists no event-r in a plane if an event-t occurs in the plane. 

Proof. An event-t occurs at  where < ≤ − . Also, an event-r occurs at  where −< < . Therefore, we will prove that there cannot be any event-r after the occurrence of an 
event-t. Suppose that an event-r occurs in the plane after the occurrence of an event-t. When an event-
t occurs at , the total local utilization is ∑ , = ( ) − 1 according to Lemma 1 and the 
computation capacity required for scheduling tasks is computed as ( ) = ( ) − 1. Since the 
total local utilization is ∑ ( ∆ ) = ∑ ( ) at + ∆t where ∆t > 0, according to Lemma 2, 
the second condition of Definition 2 cannot be satisfied, which implies a contradiction. □ 

Algorithm 3 presents the algorithm description for the processor time reallocation at the 
occurrence of an event-r. 

Algorithm 3 Processor Time Reallocation at Event-r
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  

5. Experimental Results and Analysis

In this section, we compare the performance of the proposed algorithm with major real-time
scheduling algorithms developed for efficient power management. For the experiments, we
implemented a simulator using the Ruby language in Windows. The simulator can calculate energy
consumption overheads associated with the state transitions for each scheduling algorithm, as well as
the consumption for task executions. The experimental parameters of the simulator are set to reflect the
characteristics of Marvell’s XScale-based processor PXA270 [30], which supports six voltage-frequency
levels and five processor modes, as shown in Tables 1 and 2. This particular processor is adopted in a
wireless multimedia sensor network platform called CITRIC [31] and was used in recent studies [32,33].
It is anticipated that more processors for high-end embedded systems will be equipped with VFS and
DPM [6,11].

Table 1. Voltage-frequency levels of the PXA270 processor [30].

Parameter Level1 Level2 Level3 Level4 Level5 Level6

Frequency (MHz) 624 520 416 312 208 104
Active Power

(mWatts) 925 675 468 301 279 116

Idle Power (mWatts) 260 222 186 154 129 64



Sensors 2016, 16, 1054 14 of 19

Table 2. Power states of the PXA270 processor [30].

States Power (mWatts) Recovery Time (ms)

Running 925 0
Idle 260 0.001

Standby 1.722 11.43
Sleep 0.163 136.65

Deep sleep 0.101 261.77

To measure the scalability of the algorithms, we varied the number of available processors from
4–32. For each trial, we generated 100 task sets of which the utilization is fixed to four, and the rate of
each task was varied in the range of [0.01, 0.99] by following the Emberson procedure [34]. Each task
period is uniformly distributed over a range of [15, 150] and simulations were run for 1000 system
time units.

The experiment includes the algorithms proposed by Funaoka et al. [24], which are referred to
as uniform RT-SVFS and independent RT-SVFS. They are known to be state-of-the-art SVFS-based
scheduling algorithms for both uniform and independent multiprocessors. The experiment also
includes earlier approaches to DPM enabled T-L plane-based scheduling algorithms, such as
TL-DPM [7] and LNREF with DPM [7]. As a baseline, the original LNREF was considered as well.
We implemented the models for these algorithms on the simulator, as well as the proposed algorithm.
Table 3 summarizes the characteristics of the algorithms. In case all the multiprocessors of a platform
are assumed to have the same characteristics, the platform is referred to as “identical” type. A “uniform”
type platform allows the processors at different speeds, but they are identical otherwise. Every job
receives the same speed-up when assigned to faster processors. An “independent” type platform has
independent computing characteristics on every processor. A job may experience different speed-up
when assigned to different processors. Such a platform is also referred to as “unrelated”.

Table 3. Summary of T-L plane based scheduling algorithms.

Algorithm Name Platform Type Power Management

LNREF Identical -
LNREF with DPM Identical DPM

TL-DPM Identical DPM
Proposed scheduling algorithm Identical DPM

Independent RT-SVFS Independent SVFS
Uniform RT-SVFS Uniform SVFS

All of the T-L plane abstraction based scheduling algorithms discussed here are global optimal
ones. Hence, there is no deadline miss as long as the total utilization is under the system capacity.
The computational complexity of every algorithm under discussion is Θ pnlognq due to the burden of
sorting tasks in the order of local remaining execution time.

Figure 6 shows the power consumption measures for the six algorithms mentioned above:
LNREF—the original LLREF algorithm without any power management; LNREF with DPM—a trivial
extension to LNREF for DPM [7]; TL-DPM—a recent extension to T-L plane-based scheduling [7];
our proposed scheduling algorithm, independent RT-SVFS [24]; and uniform RT-SVFS [24]. The
X-axis shows the number of available processors and the Y-axis represents the normalized power
consumption (NPC), which is the ratio of the power consumption of an algorithm to that of LLREF.
The task set sizes indicating the number of tasks in the task set are set to 5, 10, 15, and 20 in (a), (b), (c),
and (d), respectively.



Sensors 2016, 16, 1054 15 of 19

Sensors 2016, 16, 1054 15 of 18 

 

In addition, the proposed algorithm exhibits consistent performance with respect to the number 
of tasks, whereas the performance of the VFS-based approaches fluctuates with different task sets. 
More specifically, if each task set requires the same utilization, the proposed algorithm shows the 
same performance regardless of the other characteristics of the task sets, as shown in Figure 6. This 
is because the behavior of our proposed algorithm is mainly controlled by the total utilization of the 
task set. For example, if the proposed algorithm is given two task sets requiring the same utilization, 
then the two schedules produced by the algorithm have exactly the same mode transitions (i.e., active, 
idle, sleep, and deep sleep) during the same durations. 

 
(a)

 
(b)

 
(c)

Sensors 2016, 16, 1054 16 of 18 

 

 
(d)

Figure 6. Comparison of energy-efficient approaches for T-L plane abstraction. The number of tasks 
is (a) 5, (b) 10, (c) 15, and (d) 20. 

Tables 4 and 5 summarize the main results of the experiments. Table 4 shows that the percentage 
of power consumption saving from our proposed algorithm remained stable when the number of 
tasks are varied. This is due to the performance of the proposed algorithm is not affected by the 
number of tasks, but only by the total utilization. It is also notable that SVFS algorithms perform 
better when the number of tasks is high; however, our proposed algorithm outperforms them when 
the number of tasks are low. Table 5 clearly shows the advantage of the proposed algorithm. It can 
cope with the increased computing power and exploits the maximum energy saving among the T-L 
plane based algorithms. 

Table 4. Summary of experimental results on varying number of tasks. 

# of Processors # of Tasks Saved Norm. Power Consumption (%) 

 
(total 

utilization) 
LLREF with 

DPM 
TL-DPM 

Proposed 
algorithm 

Independent 
RT-SVFS 

Uniform  
RT-SVFS 

8 5(4) 16 19 22 15 0 
8 10(4) 4 17 22 32 6 
8 15(4) 0 14 22 39 15 
8 20(4) 0 14 22 43 24 

Table 5. Summary of experimental results on varying number of processors. 

# of Processors # of Tasks Saved Norm. Power Consumption (%) 

 
(total 

utilization) 
LLREF with 

DPM 
TL-DPM 

Proposed 
algorithm 

Independent 
RT-SVFS 

Uniform  
RT-SVFS 

8 20(4) 0 14 22 43 24 
12 20(4) 13 32 36 45 23 
16 20(4) 30 42 46 51 23 
20 20(4) 39 49 54 55 13 
24 20(4) 46 55 59 57 13 
28 20(4) 51 59 63 59 13 
32 20(4) 55 62 66 60 13 

6. Conclusions and Future Work 

There has been little work in the area of energy-efficient scheduling on T-L plane abstractions. 
In this paper, we present a new T-L plane-based scheduling algorithm for DPM-enabled multi-
processors, which considers mode transition overhead and reduces fragmentations of the idle time. 
The issue of fragmentations of the idle time is inherent in T-L plane-based algorithms and we solve this 
problem by introducing three new events: the arrival event, event-t (transition event), and event-r 
(reallocation event). We implemented a simulator to measure the power consumption of various 

Figure 6. Comparison of energy-efficient approaches for T-L plane abstraction. The number of tasks is
(a) 5, (b) 10, (c) 15, and (d) 20.



Sensors 2016, 16, 1054 16 of 19

Notice that the NPC of every algorithm reaches 100% when the number of available processors is
four because we intentionally adjusted the total utilization of each task set to four. It is observed that
the algorithms utilizing the DPM technique exhibit better performance when the size of the task set
(the number of tasks in the task set) is small and the task utilization is high, as shown in Figure 6a.
In contrast, the algorithms based on the RT-SVFS technique show better performance when the task
set size is large and the task utilization is low, as shown in Figure 6d.

Notice that the uniform RT-SVFS guarantees meeting the deadlines of a task set with the total
utilization being less than or equal to αM and the maximum utilization of tasks being less than or
equal to α on M processors with a frequency of α. When the number of processors in the simulation is
increased from 8 to 32, the uniform RT-SVFS allows the processors to run with a frequency equal to
the maximum utilization of tasks. Therefore, the results from the uniform RT-SVFS are shown to be
constant even when there are more than eight processors, as shown in Figure 6b–d.

When scheduling a task set of which the total utilization is less than or equal to αM on M
processors running at a frequency of α, the dependent RT-SVFS algorithm classifies the tasks triggering
deadline misses into the heavy task set and allocates a dedicated processor to each heavy task
exclusively. Therefore, the NPC of the dependent RT-SVFS algorithm plummets until there are
eight available processors, as shown in Figure 6b–d. The NPC of dependent RT-SVFS monotonically
decreases as the number of available processors increases in all cases, unlike uniform RT-SVFS.

Since the LNREF with DPM approach produces schedules by utilizing all available processors,
even when not all of them are needed, increasing the number of tasks renders more fragmentations
of the idle time in general. This behavior was also confirmed in our experiments, where the NPC of
the LNREF with DPM approach increases as the number of tasks was increased, as shown in Figure 6.
In order to reduce fragmentation of the idle time, the TL-DPM algorithm steals the local execution
time of tokens originally scheduled to the next plane, which helps to prevent frequent occurrences
of idle time whose duration is not long enough to switch to sleep mode. We observe that TL-DPM
consumes less power compared to the LNREF with DPM approach, as shown in Figure 6.

Our proposed algorithm consumes the minimum number of processors needed to schedule a
task set and reallocates the local remaining execution time incurred by idle durations that are not
long enough to switch the processor to sleep mode. The experimental results show that the proposed
algorithm consistently provides better power management in every case compared to the LNREF
with DPM and TL-DPM, as shown in Figure 6. It should be noted that when the number of available
processors is large enough for the task load, our proposed algorithm outperforms the independent
RT-SVFS. We suspect that this is due to the limitations of the independent RT-SVFS, as it does not
consider the tokens scheduled to the future planes and wastes energy by letting unassigned processors
remain idle instead of switching them to sleep mode.

In addition, the proposed algorithm exhibits consistent performance with respect to the number
of tasks, whereas the performance of the VFS-based approaches fluctuates with different task sets.
More specifically, if each task set requires the same utilization, the proposed algorithm shows the
same performance regardless of the other characteristics of the task sets, as shown in Figure 6. This is
because the behavior of our proposed algorithm is mainly controlled by the total utilization of the task
set. For example, if the proposed algorithm is given two task sets requiring the same utilization, then
the two schedules produced by the algorithm have exactly the same mode transitions (i.e., active, idle,
sleep, and deep sleep) during the same durations.

Tables 4 and 5 summarize the main results of the experiments. Table 4 shows that the percentage
of power consumption saving from our proposed algorithm remained stable when the number of
tasks are varied. This is due to the performance of the proposed algorithm is not affected by the
number of tasks, but only by the total utilization. It is also notable that SVFS algorithms perform better
when the number of tasks is high; however, our proposed algorithm outperforms them when the
number of tasks are low. Table 5 clearly shows the advantage of the proposed algorithm. It can cope



Sensors 2016, 16, 1054 17 of 19

with the increased computing power and exploits the maximum energy saving among the T-L plane
based algorithms.

Table 4. Summary of experimental results on varying number of tasks.

# of Processors # of Tasks Saved Norm. Power Consumption (%)

(total
utilization)

LLREF with
DPM TL-DPM Proposed

algorithm
Independent

RT-SVFS
Uniform
RT-SVFS

8 5(4) 16 19 22 15 0
8 10(4) 4 17 22 32 6
8 15(4) 0 14 22 39 15
8 20(4) 0 14 22 43 24

Table 5. Summary of experimental results on varying number of processors.

# of Processors # of Tasks Saved Norm. Power Consumption (%)

(total
utilization)

LLREF with
DPM TL-DPM Proposed

algorithm
Independent

RT-SVFS
Uniform
RT-SVFS

8 20(4) 0 14 22 43 24
12 20(4) 13 32 36 45 23
16 20(4) 30 42 46 51 23
20 20(4) 39 49 54 55 13
24 20(4) 46 55 59 57 13
28 20(4) 51 59 63 59 13
32 20(4) 55 62 66 60 13

6. Conclusions and Future Work

There has been little work in the area of energy-efficient scheduling on T-L plane
abstractions. In this paper, we present a new T-L plane-based scheduling algorithm for DPM-enabled
multi-processors, which considers mode transition overhead and reduces fragmentations of the idle
time. The issue of fragmentations of the idle time is inherent in T-L plane-based algorithms and
we solve this problem by introducing three new events: the arrival event, event-t (transition event),
and event-r (reallocation event). We implemented a simulator to measure the power consumption of
various scheduling algorithms. The experimental results show that the proposed algorithm consistently
outperforms other DPM-based approaches for T-L plane abstraction. In addition, the proposed
algorithm provides better scalability to the number of available processors than VFS-based approaches.

Currently, our proposed algorithm can handle periodic tasks with implicit deadlines. In future
work, we plan to extend our approach to handle sporadic tasks with constrained deadlines as well.
It would also be very interesting to combine VFS and DPM approaches for T-L plane abstraction. We
are planning to extend our experiments on actual platforms. In addition, the studies on trade-offs
between power usage and the computational complexity, as well as performance evaluations on
overloaded situations, are interesting, potential future studies.

Acknowledgments: This research was supported by the Chung-Ang University Excellent Student Scholarship,
the National Research Foundation (NRF-2014R1A2A2A01005519), and the MSIP (Ministry of Science,
ICT and Future Planning) under the ITRC (Information Technology Research Center) support Program
(IITP-2016-H85011610120001002) supervised by the NIPA.

Author Contributions: Youngmin Kim and Chan-Gun Lee conceived and developed the algorithm; Sun-Ro Lee
and Ki-Seong Lee performed the experiments; Ngoc-Son Pham analyzed the data; Youngmin Kim and
Chan-Gun Lee verified the results and finalized the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Munir, A.; Gordon-Ross, A.; Ranka, S. Multi-Core Embedded Wireless Sensor Networks: Architecture and
Applications. IEEE Trans. Par. Dist. Syst. 2014, 25, 1553–1562. [CrossRef]

http://dx.doi.org/10.1109/TPDS.2013.219


Sensors 2016, 16, 1054 18 of 19

2. Braojos, R.; Dogan, A.; Beretta, I.; Ansaloni, G.; Atienza, D. Hardware/Software Approach for Code
Synchronization in Low-Power Multi-Core Sensor Nodes Design. In Proceedings of the Conference and
Exhibition on Design, Automation and Test in Europe, Dresden, Germany, 24–28 March 2014; pp. 1–6.

3. Zhao, J.; Lu, S.; Burleson, W.; Tessier, R. A Broadcast-Enabled Sensing System for Embedded Multi-core
Processors. In Proceedings of the IEEE Computer Society Annual Symposium on VLSI, Tampa, FL, USA,
9–11 July 2014; pp. 190–195.

4. Bortolotti, D.; Mangia, M.; Bartolini, A.; Rovatti, R.; Setti, G.; Benini, L. Rakeness-based Compressed Sensing
on Ultra-Low Power Multi-Core Biomedical Processors. In Proceedings of the Conference on Design and
Architectures for Signal and Image Processing, Madrid, Spain, 8–10 October 2014; pp. 1–8.

5. Herbert, S.; Marculescu, D. Analysis of Dynamic Voltage/Frequency Scaling in Chip-Multiprocessors.
In Proccedings of the 2007 ACM/IEEE International Symposium on Low Power Electronics and Design,
Portland, OR, USA, 27–29 August 2007; pp. 38–43.

6. Benini, L.; Bogliolo, A.; Micheli, G.D. A survey of design techniques for system-level dynamic power
management. IEEE Trans. VLSI Syst. 2000, 8, 299–316. [CrossRef]

7. Kim, Y.; Lee, K.S.; Kwak, B.; Lee, C.G. T-L Plane Based Real-Time Scheduling Using Dynamic Power
Management. IEICE Trans. Inf. Syst. 2015, E98-D, 1596–1599. [CrossRef]

8. Hu, W.; Tran, N.V.; Bulusu, N.; Chou, C.T.; Jha, S.; Taylor, A. The Design and Evaluation of a Hybrid Sensor
Network for Cane-toad Monitoring. ACM Trans. Sens. Netw. 2009, 5. [CrossRef]

9. Lee, W.S.; Chen, Y.T.; Kao, Y. Optimal chiller loading by differential evolution algorithm for reducing energy
consumption. Energy Build. 2011, 43, 599–604. [CrossRef]

10. Lan, W.; Xiao, Y. A survey of energy-efficient scheduling mechanisms in sensor networks. J. Mob. Netw. Appl.
2006, 11, 723–740.

11. Bambagini, M.; Marinoni, M.; Aydin, H.; Buttazzo, G. Energy-Aware Scheduling for Real-Time Systems:
A Survey. ACM Trans. Embed. Comput. Syst. 2016, 15. [CrossRef]

12. Dhall, S.K.; Liu, C.L. On a real-time scheduling problem. Oper. Res. 1978, 26, 127–140. [CrossRef]
13. Lauzac, S.; Melhem, R.; Mosse, D. Comparison of Global and Partitioning Schemes for Scheduling Rate

Monotonic Tasks on a Multiprocessor. In Proceedings of the 10th Euromicro Conference on Real-Time
Systems, Berlin, Germany, 17–19 June 1988; pp. 188–195.

14. Baker, T. A comparison of global and partitioned EDF schedulability tests for multiprocessors. In Proceedings
of the International Conference on Real-Time and Network Systems, Castellón, Spain, 24–28 January 2005;
pp. 119–130.

15. Baruah, S.K. Techniques for Multiprocessor Global Schedulability Analysis. In Proceedings of the 28th IEEE
Real-Time Systems Symposium, Tucson, AZ, USA, 3–6 December 2007; pp. 119–128.

16. Bertogna, M.; Cirinei, M.; Lipari, G. Schedulability analysis of global scheduling algorithms on multiprocessor
platforms. IEEE Trans. Par. Dist. Syst. 2008, 20, 553–566. [CrossRef]

17. Cho, H.; Ravindran, B.; Jensen, E.D. An Optimal Real-Time Scheduling Algorithm for Multiprocessors.
In Proceedings of the 27th IEEE Real-Time Systems Symposium, Rio de Janeiro, Brazil, 5–8 December 2006;
pp. 101–110.

18. Cho, H.; Ravindran, B.; Jensen, E.D. Synchronization for an Optimal Real-time Scheduling Algorithm on
Multiprocessors. In Proceedings of the 2nd IEEE International Symposium on Industrial Embedded Systems,
Costa da Caparica, Portuga, 4–6 July 2007; pp. 9–16.

19. Funk, S.; Nadadur, V. LRE-TL: An optimal multiprocessor algorithm for sporadic task sets. J. Real Time Syst.
2010, 46, 332–359. [CrossRef]

20. Funaoka, K.; Takeda, A.; Yamasaki, N. Work-Conserving Optimal Real-Time Scheduling on Multiprocessors.
In Proceedings of the 20th IEEE Euromicro Conference on Real-Time Systems, Prague, Czech Republic, 2–4
July 2008; pp. 13–22.

21. Funaoka, K.; Takeda, A.; Yamasaki, N. New Abstraction for Optimal Real-time Scheduling on
Multiprocessors. In Proceedings of the 14th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications, Kaohsiung, Taiwan, 25–27 August 2008; pp. 357–364.

22. Cho, H.; Ravindran, B.; Jensen, E.D. T-L plane based real-time scheduling for homogeneous multiprocessors.
J. Parallel Distrib. Comput. 2010, 70, 225–236. [CrossRef]

http://dx.doi.org/10.1109/92.845896
http://dx.doi.org/10.1587/transinf.2014EDL8184
http://dx.doi.org/10.1145/1464420.1464424
http://dx.doi.org/10.1016/j.enbuild.2010.10.028
http://dx.doi.org/10.1145/2808231
http://dx.doi.org/10.1287/opre.26.1.127
http://dx.doi.org/10.1109/TPDS.2008.129
http://dx.doi.org/10.1007/s11241-010-9109-2
http://dx.doi.org/10.1016/j.jpdc.2009.12.003


Sensors 2016, 16, 1054 19 of 19

23. Alhussian, H.; Nordin, Z.; Hussin, F.A.; Bahboug, H.T. Reducing Tasks Migration in LRE-TL Real-time
Multiprocessor Scheduling Algorithm. In Proceedings of the 4th International Conference on Electrical
Engineering and Informatics, Selangor, Malaysia, 24–25 June 2013; Volume 11, pp. 235–242.

24. Funaoka, K.; Takeda, A.; Kati, S.N. Dynamic Voltage and Frequency Scaling for Optimal Real-Time
Scheduling on Multiprocessors. In Proceedings of the International Symposium on Industrial Embedded
Systems, La Grande Motte, France, 11–13 June 2008; pp. 27–33.

25. Zhang, D.; Chen, F.; Li, H.; Jin, S.; Guo, D. An Energy-Efficient Scheduling Algorithm for Sporadic Real-Time
Tasks in Multiprocessor Systems. In Proceedings of the 14th IEEE International Conference on High
Performance Computing and Communications, Banff, AB, Canada, 2–4 September 2011; pp. 187–194.

26. Moreno, G.; Dionisio, N. An Optimal Real-Time Voltage and Frequency Scaling for Uniform Multiprocessors.
In Proceedings of the 18th IEEE International Conference on Embedded and Real-Time Computing Systems
and Applications, Seoul, Korea, 19–22 August 2012; pp. 21–30.

27. Zhang, D.; Guo, D.; Chen, F.; Wu, F.; Wu, T.; Cao, T.; Jin, S. TL-plane-based multi-core energy-efficient
real-time scheduling algorithm for sporadic tasks. ACM Trans. Architect. Code Optim. 2012, 8. [CrossRef]

28. Baker, T.P.; Baruah, S.K. Schedulability analysis of global EDF. Real Time Syst. 2008, 38, 223–235.
29. Chen, G.; Huang, K.; Knoll, A. Energy optimization for real-time multiprocessor system-on-chip with optimal

dvfs and dpm combination. ACM Trans. Embed. Comput. Syst. 2014, 13. [CrossRef]
30. MARVELL Technology Group. Available online: http://www.marvell.com/application-processors/pxa-

family/assets/pxa_27x_emts.pdf (accessed on 16 September 2015).
31. Almalkawi, I.T.; Zapata, M.G.; Al-Karaki, J.N.; Morillo-Pozo, J. Wireless Multimedia Sensor Networks:

Current Trends and Future Directions. Sensors 2010, 10, 6662–6717. [CrossRef] [PubMed]
32. Chen, P.; Ahammad, P.; Boyer, C.; Huang, S.I.; Lin, L.; Lobaton, E.; Meingast, M.; Oh, S.; Wang, S.; Yan, P.; et al.

CITRIC: A low-bandwidth wireless camera network platform. In Proceedings of the Second ACM/IEEE
International Conference on Distributed Smart Cameras, CA, USA, 7–11 September 2008; pp. 1–10.

33. Chen, P.; Hong, K.; Naikal, N.; Sastry, S.S.; Tygar, D.; Yan, P.; Yang, A.Y.; Chang, L.C.; Lin, L.;
Wang, S. A Low-Bandwidth Camera Sensor Platform with Applications in Smart Camera Networks.
ACM Trans. Sens. Netw. 2013, 9. [CrossRef]

34. Emberson, P.; Stafford, R.; Davis, R.I. Techniques for the synthesis of multiprocessor tasksets. In Proceedings
of the 1st International Workshop on Analysis Tools and Methodologies for Embedded and Real-Time
Systems, Brussels, Belgium, 6–9 July 2010; pp. 6–11.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/2086696.2086726
http://dx.doi.org/10.1145/2567935
http://www.marvell.com/application-processors/pxa-family/assets/pxa_27x_emts.pdf
http://www.marvell.com/application-processors/pxa-family/assets/pxa_27x_emts.pdf
http://dx.doi.org/10.3390/s100706662
http://www.ncbi.nlm.nih.gov/pubmed/22163571
http://dx.doi.org/10.1145/2422966.2422978
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction 
	Related Work 
	Review of T-L Plane Abstraction 
	Extending T-L Plane-Based Scheduling Algorithms to Exploit DPM 
	Processor Mode Transition Strategy 
	Mode Transition at the Beginning of the Plane 
	Mode Transition during Execution 

	Prefetching Strategy 

	Experimental Results and Analysis 
	Conclusions and Future Work 

