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a b s t r a c t

This study forecasts electricity consumption in a smart grid environment. We present a bottom-up
prediction method using a combination of forecasting values based on time-series clustering using
advanced metering infrastructure (AMI) data, one of the core smart grid technologies. Remote data
metering every 15 min to 1 h is possible with real-time communication on power generation infor-
mation, consumption, and AMI development. Hence, its prediction is more challenging due to the large
variation of each household’s electricity. These issues were solved by time-series clustering methods
using Euclidean distances and Dynamic Time Warping distance. The auto-regressive integrated moving
average (ARIMA), ARIMA exogenous (ARIMAX), double seasonal Holt–Winters (DSHW), trigonometric,
Box–Cox transform, autoregressive moving average errors, trend and seasonal components (TBATS),
neural network nonlinear autoregressive (NNAR), and nonlinear autoregressive exogenous (NARX)
models were used for demand forecasting based on clustering. The result showed that the time-series
clustering method performed better than that using the total amount of electricity demand regarding
the mean absolute percentage error and root mean squared error.

Hence, various exogenous variables were considered to improve model accuracy. The model
considering exogenous variables—cooling degree day, humidity, insolation, indicator variables, and
generation power consumption performed better than that without exogenous variables.

© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Electricity generated from fossil fuels emits carbon dioxide
CO2), causing air pollution and global warming. Interest in re-
ewable energy has increased, including participation in RE100 to
se 100% new renewable energy to cope with global warming and
limate change. However, the power generation cost of renew-
ble energy is higher than that of other energy sources; hence,
xpanding the supply without considering demand is impossi-
le. Therefore, forecasting electricity consumption is essential for
nergy planning, management, and conservation (Amasyali and
l-Gohary, 2018).
Time series, machine learning, and other methods have been

sed to predict electricity consumption. Høverstad et al. (2015)
erformed load prediction by extracting the characteristics of
easonal elements—daily and weekly dates—and confirmed that
he performance of the double seasonal Holt–Winters (DSHW)
lgorithm was excellent at 6.3% based on the mean absolute
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percentage error (MAPE). Al-Musaylh et al. (2018) used multivari-
ate adaptive regression spline, support vector regression(SVR),
and autoregressive integrated moving average (ARIMA) models
for electricity demand forecasting. Furthermore, Rahid (Rashid,
2018) employed such techniques as ARMIA and external smooth-
ing to predict abundant electricity consumption accurately using
smart grids. Kim et al. (2019) used ARIMA and ARIMA gen-
eralized autoregressive conditional heteroskedasticity(-GARCH)
models, multiple seasonal exponential smoothing, and artificial
neural network (ANN) models. They demonstrated that the ANN
model with external variables (weather and holiday variables)
worked best from 1 h to 1 day prior to forecasting. Further-
more, Pallonetto et al. (2022) applied long short-term memory
(LSTM) and support vector machine (SVM)models for 1-h and
1-day-ahead load forecasting. Moreover, Hafeez et al. (2020) pro-
posed a modified mutual information (MMI) factored conditional
restricted Boltzmann machine (FCRBM) genetic wind-driven opti-
mization (GWDO) hybrid model that incorporated preprocessing
based on MMI, FCRBM for forecasting, and the GWDO algorithm
for optimization to supplement nonlinear electrical load data.

However, predicting electricity consumption is challenging
due to various factors, such as the physical properties of building,

installed equipment (e.g., heating ventilation and air-conditioning
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ystem), outdoor weather conditions, and energy-use behavior of
he building affecting consumption (Kwok and Lee, 2011). Several
tudies have investigated the relationship between electricity
onsumption and weather variables. Franco and Sanstad (2008)
ound that the effects of space cooling via air conditioners and
sing other appliances at high temperatures predominate. Fur-
hermore, electricity consumption during weekends and holidays
s lower than on weekdays. Hekkenberg et al. (2009) investi-
ated the electricity demand pattern in the relative temperate
limate of the Netherlands for possible changes regarding the
ncreased use of cooling applications. They revealed a signif-
cant increment in the temperature dependence of electricity
emand in May, June, September, October and during the sum-
er holidays between 1970 and 2007. Maia-Silva (Maia-Silva
t al., 2020) proposed that the AT-based models using tempera-
ure and humidity could predict electricity demand better during
he historical period and in a warmer climate. The AT-based
odels projected higher demand across all regions compared
ith the temperature-only-based models. Furthermore, studies
n the number of exogenous variables have also been recently
onducted. Moreover, Román-Portabales et al. (2021) analyzed
mart grid electrical load papers using ANN-based models. They
erified that the number of exogenous variables varies depending
n the prediction period.
As mentioned, many studies have used exogenous variables

o predict electricity consumption for electricity usage for several
easons. Jain et al. (Jain et al., 2014) used electricity consumption
or the previous two time steps, current temperature, current
olar flux, an indicator variable denoting the weekend/holiday
r weekday, sine of the current hour, and cosine of the current
our to predict the electricity consumption of a multi-family
esidential building. Georgescu (Georgescu et al., 2014) consid-
red various weather variables, such as outdoor air temperature,
elative humidity, solar radiation, wind speed, and wind direction
s input variables. Furthermore, Yang et al. (2005) predicted
nergy consumption by considering weather variables (outdoor
emperature, relative humidity, rainfall, wind speed, bright sun-
hine duration, and solar radiation) and the occupancy area and
ate to predict non-residential energy consumption. Moreover, Lai
t al. (2008) used the date, outdoor temperature/humidity, indoor
emperature/humidity (bedroom and living room), and water
emperature as input variables.

Consumer electricity usage patterns have been analyzed thro-
gh clustering using advanced metering infrastructure (AMI) data
esides introducing various exogenous variables and machine
earning techniques. The AMI, a key smart grid technology, en-
bles real-time remote metering between 15 min and 1 h using
wo-way communication technology. With the introduction and
pread of AMI, more detailed predictions are possible with hourly
sage information. However, this technology has developed sig-
ificant variability for each household due to detailed household
nformation. Accordingly, predictions have become difficult. his
roblem can be solved by analyzing and classifying patterns of
ousehold power usage through clustering to reduce volatility.
Various clustering analysis cases exist based on the spread of

MI. Rhodes et al. (2014) used k-means clustering on clustered
ouseholds with similar electricity usage patterns per hour for
ach season, varying each season. However, variables such as
elework status, television viewing time per week, and education
evel were significantly correlated with the average profile shape,
wing to comparing clustering results and questionnaire answers
hrough probit regression analysis. Bedi and Toshniwal (2019)
enerated seasons (summer, rainy, winter) through the k-means

clustering analysis, comparing the prediction results with the
ANN, recurrent neural network, and SVR models. Afterward, the

results of ANNs, cyclic neural networks, and SVR models were

4112
compared on a season-by-season basis, demonstrating the best
performance of LSTM.

Several other papers have analyzed the pattern of AMI users
using k-means clustering algorithms (Qiu et al., 2016; Quilumba
et al., 2014; Guerrero-Prado et al., 2020). Some studies have
considered a hierarchical clustering technique besides the k-
means. Son et al. (2020) proposed a demand prediction method
based on the time-series cluster analysis using smart meter
data. Normalized periodogram-based and autocorrelation-based
distances were used as a hierarchical cluster analysis method.
Electricity demand forecasting methods have been applied with
autoregressive moving average (ARMA) errors, TBATS, DSHW,
fractional ARIMA, ARIMAX, and NNAR. Moreover, Lee and Kim
(2020) clustered households using hierarchical clustering meth-
ods, such as dynamic time warping (DTW) and periodogram for
household AMI data. Power usage was then predicted in summer
and winter using the NN-AR and TBATS models. The research
found that predicting power usage by a cluster of households
with similar usage was better than predicting all power usage at
once. The DTW method displayed a stark visual between clusters
compared with the periodogram method.

This study compares the effectiveness of forecasting the res-
idential electricity consumption of a multi-family household us-
ing statistical and artificial intelligence-based models, including
exogenous variables, such as weather variables (outdoor temper-
ature, humidity, and solar radiation), and an indicator variable
(weekend/holiday or weekday). This study proposes a method
to cluster households using the time-series cluster analysis. We
fitted a prediction model for each cluster and predicted the elec-
tricity demand of clusters to consider the electricity usage pattern
of various households in predicting domestic housing AMI data.
A cluster analysis method suitable for time-series data should
be used (not a general cluster analysis method) for electricity
usage data to consider the time-series characteristics. Therefore,
this work performed calculations using the commonly used Eu-
clidean distance, and DTW, which exhibited good performance in
previous studies. Households were clustered using the k-means
method. Fig. 1 presents a flowchart which reflect the proposed
paradigm. The predictive performance of total residential power
usage was compared using the following time-series models:
ARIMA, ARIMAX, DSHW, TBATS, NN-AR, and NARX by cluster.

The contributions of this paper are presented as follows. A
comprehensive comparison of multiple statistical and artificial
intelligence-based models and result analysis applying time-series
clustering while considering various exogenous variables have
never previously been performed.

(1) The DSHW and TBATS, which are the univariate seasonal
time-series models, display excellent results without clus-
tering; however, the NARXmodel—the multivariate model—
has the best accuracy with clustering.

(2) Weather variables (temperature, humidity, and solar ra-
diation) and indicator variables (weekends, weekdays, or
weekdays) act as effective variables for forecasting electric-
ity demand, regardless of clustering.

The remainder of this paper is organized as follows. Section 2
explains the forecasting models and time-series cluster analysis
methodologies in this study. Section 3 discusses the AMI electric-
ity consumption data and preprocessing methods. Furthermore,
Section 4 compares the results of the time series cluster analysis
with predictive performance for each model. Section 5 details the
necessity of cluster analysis and prediction results in predicting
housing power demand. Finally, conclusions are drawn from an
excellent model and future research directions are presented.
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Fig. 1. Analysis process flowchart.
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2. Methodology

2.1. Time-series forecasting models

2.1.1. ARIMA
The ARIMA model is a time-series data-based analysis tech-

nique depending on actions based on past knowledge or expe-
rience. It was first introduced by Box and Jenkins in 1976 (Box
et al., 2015). It is a generalization of the ARMA model, which
uses past observations and errors to describe current time-series
values. Furthermore, it is an analysis technique used to predict
the following indicators quarterly, semester-wise, or annually,
review them weekly or monthly, and monitor trends for outliers.
The model can also be applied to the analysis target demonstrat-
ing unstable and non-stationary characteristics (Peter and Silvia,
2012). The general form of the ARIMA(p,d,q) model is as follows:

φp (B) (1 − B)d Yt = θq(B)ϵt ,

where φp (B) = 1 − φ1B − · · · − φpBp..

θq (B) = 1 − θ1B − · · · − θqBq, (1)

where φp (B) corresponds to the equation for the autoregressive
model, p denotes the order of the current model, θq (B) represents
the equation for the moving average model, q is the order of the
current model, d denotes the degree to which the first difference
was included, ϵt indicates an error term or white noise with a
mean of zero and a constant σ 2 value, and B corresponds to a
backward shift operator.

2.1.2. ARIMAX
The ARIMAX model adds exogenous variables to the ARIMA

model. It has been used as a prediction model in various fields,
like the ARIMA model. When the degree of ARIMA is p,d,q and
the number of exogenous variables is k, the exogenous variables
are denoted as xit , and the ARIMAX (p,d,q) model is as follows

φp (B) (1 − B)d Yt = θq (B) ϵt +

k∑
i=1

rixit , (2)

where φp (B) corresponds to the equation for the autoregressive
model, p denotes the order of the current model, θq (B) is the
equation for the moving average model, q represents the order
of the current model, d denotes the equation containing the first
difference, ϵt corresponds to an error term or white noise, and ri
is a coefficient of the exogenous variable, xit .

2.1.3. DSHW model
Taylor (2003) (Taylor, 2003) proposed the DSHW model with

two seasonal cycles. By adding one more seasonality, this model
has two seasonal cycles. This study implemented Holt–Winter’s
dual-seasonal version to consider the day-by-day pattern of hous-
ing AMI data. This dual-seasonal addition method is more suitable
4113
for one-step head forecasting than the multiplication method.
Finally, the DSHW model is defined as follows (Son et al., 2020).

Lt = α
(
yt − St−s1 − Dt−s2

)
+ (1 − α)(Lt−1 + Tt−1)

t = β (Lt − Lt−1)+ (1 − β)Tt−1

t = γ
(
yt − Lt − Dt−s2

)
+ (1 − γ )St−s1

t = δ
(
yt − Lt − St−s1

)
+ (1 − γ )Dt−s2

t+h = Lt + Tt × h + St+h−s1 + Dt+h−s2

+ φh
[yt − (Lt−1 − Tt−1 − St−s1 − Dt−s2 )]

s1 =
1
s1

s1∑
t=1

yt , Ls2 =
1
s2

s2∑
t=1

yt

Ts1 =

⎛⎝ 1
s21

2s1∑
t=s1+1

yt −

s1∑
t=1

yt

⎞⎠ , Ts2 =

⎛⎝ 1
s22

2s2∑
t=s2+1

yt −

s2∑
t=1

yt

⎞⎠
S1 = y1 − Ls1 , . . . , Ss1 = ys1 − Ls1

D1 = y1 − Ls2 , . . . , Ss2 = ys2 − Ls2 (3)

where yt represents the real data and St and Dt denote the
easonal component over time t . Furthermore, Lt and Tt indicate
the level and trend of the series at time t , respectively. In addition,
Ft+h describes the forecasting value of h ahead of time t . More-
over, α, β, γ , andφ correspond to smoothing parameters, which
can be user-specified or internally estimated (Høverstad et al.,
2015).

2.1.4. TBATS model
The TBATS model, introduced by De Livera et al. (2011), is a

triple seasonality model that complements several limitations of
previous models. First, we solved the nonlinearity problem of the
dependent variable and assumed that the error term could follow
the ARMA model without white noise. The periodicity of the non-
constant cycle that could not be resolved within the existing
model can be considered through this supplementation. It also
reduced the time to estimate the model by expressing periodicity
as a trigonometric function. The following formula represents this
model:

y(ω)t =

{
yωt −1
ω
, ω ̸= 0,

logyt , ω = 0,

lt = lt−1 + φbt−1 + αdt ,

t = (1 − φ) b − φbt−1 + βdt ,

s(i)t =

ki∑
j=1

s(i)j,t + γidt ,

s(i)j,t = s(i)j,t−1cosλ
(i)
j + s∗(i)j,t−1sinλ

(i)
j + γ

(i)
1 dt ,

s∗(i) = −s sinλ(i) + s∗(i) cosλ(i) + γ
(i)d ,
j,t j,t−1 j j,t−1 j 2 t
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p∑
i=1

ψidt−i +

q∑
i=1

θiϵt−i + ϵt ,

y(ω)t = lt−1 + φbt−1 +

T∑
i=1

s(i)t−mi
+ dt , (4)

where y(ω)t is the Box–Cox transformed observation for parameter ω
at time t. lt denotes the local level data, b represents the long-term
trend, bt is the short-term trend within period t, and φ denotes the
amping parameter for the trend. Furthermore, p and q correspond
o the orders of the ARMA error, ψi and θi represent the coefficients
f ARMA(p,q), b is the long-term trend value, and αandβ correspond
o the parameters for the level and trend, respectively. Moreover, γ (i)1
and γ (i)2 are smoothing parameters, λ(i)j = 2π/mi, ki is the number of
trigonometric functions consisting of the ith periodicity(s(i)t ), s(i)j,t rep-
resents the stochastic level of the ith seasonal component by s(i)t , and
s∗(i)j,t denotes the stochastic level of the ith seasonal component (Kim
et al., 2019).

2.1.5. NN-AR
The ANN is a mathematical model of biological neurons. It was

proposed by Warren McCulloch and Walter Pitts in 1943 (Mc-
Culloch and Pitts, 1943). In 1958, Frank Rosenblatt proposed
the structure used in ANNs today (Rosenblatt, 1958). The ANN
consists of interconnected artificial neurons that learn the rela-
tionship between the input and output by adjusting the weights
between the neurons through a backpropagation algorithm. Fig. 2
shows the common structure of ANNs. The ANN, a non-linear
modeling technique, was introduced to solve linear inaccurate
modeling issues, gaining popularity in the energy prediction
field (Mustapa et al., 2020). An input layer of the model is entered
with the data, and the result is output through an output layer via
one or more hidden layers. This model is called the feed-forward
neural network (FFNN) because information travels only in one
direction (i.e., forward, in this model). The NN-AR models were
designed to forecast a time series from past values. Lagged values
of the time series can be used as input to a neural network using
the time-series data, like those used in a linear autoregression
model. Additionally, the model used in this study is a single
hidden layer. The number of nodes in the hidden layer was
14, and a logistic sigmoid function was used as the activation
function. The NN-AR is applied to time-series data with discrete,
nonlinear, and autoregressive tendencies. It can be written as
follows (Ruiz et al., 2016):

y (t) = f (y (t − 1) , y (t − 2) , . . . , y (t − p)) , (5)

where p corresponds to the past values of the series, y represents
the predicted value at time t, and f (·) is a nonlinear function. This
model is easy to understand and applicable to many problems
because of its simple configuration.

2.1.6. NARX
This study used NARX to facilitate using exogenous variables

to predict housing AMI data. Like the NN-AR model, the NARX
model consists of an FFNN structure in which an input value and
a value multiplied by weight are combined after data are entered
into the input layer. Afterward, a resulting value is output through
the activation function. The structure of the NARX is represented
by the following equation (Lin et al., 1996):

y (t) = f [u (t − Du) , . . . , u (t − 1) , u (t) ,
y
(
t − Dy

)
, . . . , y (t − 1)]

= ψ[u t , y t − 1 , . . . , y t − D ], (6)
( ) ( ) ( )

4114
Fig. 2. Artificial neural network structure.

where u corresponds to the value of the exogenous variables and
y is the predicted value of the network at time t. Furthermore, Du
and Dy denote the order of the exogenous variables and predicted
values. Moreover, f is a nonlinear function, which can be approx-
imated using a multilayer perceptron. The resulting system is
called a NARX. This study expressed the function corresponding
to the mapping performed by the multilayer perceptron as ψ .
The number of hidden layers was designated as a single layer.
The number of nodes of the hidden layer was set to 16, and the
activation function was a logistic sigmoid function.

2.2. Time series clustering algorithm

2.2.1. Euclidean distance
The Euclidian distance formula is the most widely used dis-

tance function in the clustering context; it determines the dis-
tance between two points in n-dimensional space (Bouhmala,
2016). The distance between the two points, q and c, with co-
ordinates, (q1, q2, . . . , qn) and (c1, c2, . . . , cn), respectively, is ex-
pressed by the following Euclidean distance formula:

Dist (Euclidean) =

√
(q1 − c1)2 + (q2 − c2)2 + · · · + (qn − cn)2

=

√ n∑
i=1

(qi − ci)2 , (7)

Specifically, Euclidean distance is the simplest method of clus-
tering, where the distance between two points is calculated. The
points are considered to be in the same cluster if the distance is
less than or equal to a certain distance.

2.2.2. DTW distance
Kruskal (1938) first addressed the DTW distance, which was

proposed to determine patterns of time series by Berndt and
Clifford (1994) (Berndt and Clifford, 1994). The DTW replaces the
one-to-one point comparison used in Euclidean distance with a
many-to-one (and vice-versa) comparison, as illustrated in Fig. 3.
The main feature of this approach is that it allows recognizing
similar shapes, even if they represent signal transformations (Ku-
mar and Baboo, 2017). Given that the two time-series sequences
Q = q1, q2, . . . , qi, . . . , qn, and C = c1, c2, . . . , cj, . . . , cm, are
given here, an n × m matrix is created through two time series,
and the (i, j)th element of this matrix indicates the Euclidean
distance (qi − ci)2 between the two points qi and ci, which is
used to search for the optimal wapping path. The warping path
(W = w ,w , . . . , w , . . . , w ,) is a set of wapping distances
1 2 k K
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Fig. 3. Difference between Euclidean and DTW distance.

epresenting the mapping between Q and C , and must be con-
tinuous. The kth element in W is defined as wk, which is called
the wapping distance. Finally, it can be expressed as a Dist (DTW )
equation because it is the same as finding a path in which the sum
of these warping distances (wk) is minimized (i.e. the cost of the
warping path is minimized):

Dist (DTW ) = min{

√ K∑
k=1

wk/K }, (8)

Part of the effectiveness of the DTW is due to the algorithm
‘‘searching’’ for better mapping. There are various step patterns
suited for different situations, and Eq. (9) can be considered a
standard step pattern and is used in conjunction with the DTW
algorithm in this paper (Ma and Angryk, 2017):

D (i, j) = (qi − cj)2 + min

{D(i − 1, j − 1)
D(i, j − 1)
D(i − 1, j)

}
, (9)

2.2.3. K-means clustering
The k-means algorithm belongs to unsupervised machine learn-

ing. It was introduced by Fames MacQueen in 1967 (MacQueen,
1967). The algorithm combines data into k clusters. k represents
the number of clusters and ‘‘means’’ implies the average of each
cluster by grouping data with similar characteristics. Specifically,
the average of each cluster is used and grouped into k clusters.
The average implies the center of each cluster and the average
distance of the data. The algorithm first determines the required
number of clusters, k, and sets the initial centroid. Afterward,
it traverses all data and allocates them to the cluster to which
the nearest centroid belongs. The centroid is then moved to
the center of the cluster. The process is repeated until no data
are left to be allocated to the cluster. The Euclidean distance is
selected as the similarity index for a given data set X containing
n multidimensional data points and the category k to be divided.
he clustering targets minimize the sum of the squares of the
arious types, that is, it minimizes the following:

=

k∑
k=1

n∑
i=1

∥(xi − uk)∥2, (10)

here k denotes the number of centers in the cluster, uk rep-
esents the kth center, and xi denotes the ith data in the data
et.
This study referenced the silhouette coefficient, calculated

y considering the mean intra-cluster distance a and the mean
4115
earest-cluster distance b for each data point, to determine the
umber of clusters (Shahapure and Nicholas, 2020). The value
f the silhouette coefficient s((i) for the ith x((i) is defined by
q. (11), as follows:

(i) =
b(i) − a(i)

max
(
a(i), b(i)

) , (11)

here a((i) represents data cohesion in a cluster and is the aver-
ge distance from the rest of the data in the same cluster as x(i).

A smaller distance indicates higher cohesion. Additionally, b((i)
epresents intercluster separation, which is the average distance
etween x((i) and all data in the closest cluster. Furthermore, b(i),
(i), and s((i) should be large, small, and close to 1, respectively,
o optimize the number of clusters.

When the k value is determined, the k-means algorithm ran-
omly specifies k centroids from the data set, and each data point
s allocated as a group of the nearest centroids. In the assigned
roup, the process is repeated until the centroids converge by
eassigning them. Furthermore, the group is the side closest to
he convergent final centroids. (Kim et al., 2022)

. Data

.1. Electricity consumption data

We collected empirical data from a building called Suwon
gumegreen, which comprised 32 17-story multi-family residen-
ial buildings in Suwon in the Republic of Korea. The Ggumegreen
ata set consists of electrical consumption data for 138 house-
olds with 1-h intervals. They agreed to collect data as a part of
he survey of AMI installation households. A set consists of 13
eeks of summer data from 00:00 on June 3, 2019, to 23:00 on
eptember 1, 2019, comprising hour-by-hour data.
The outliers were confirmed by examining the total power

alues by day and hour using box plots, as illustrated in Fig. 4(a
nd b). The daily total power consumption in Fig. 4(a) reveals
hat consecutive usage numbers up to 60 kW, breaking off, and
ong after, they reoccurred at more than 100 kW. A total of 136
ouseholds were analyzed, considering the average total daily
lectricity usage by household was less than 10 kW, and the
otal daily power consumption of 100 kW or more occurred in
nly two households, excluding cases where the sum of the daily
lectricity consumption of households was 100 kW or more or
ero (or missing). The ‘‘three-sigma rule’’ was used in hourly
otal power consumption. As a result of applying the three-sigma
ule, the range was from −6 to 7 kW. As depicted in Fig. 4(b),
o negative numbers are in the data, and when the number
xceeds 7 kW, it is a very small ratio of 0.097% of the total, so
he maximum value was set to 7 kW, and when it exceeds that,
t was converted to 7 kW.

Fig. 5(a and b) presents the entire power consumption box-
lots after preprocessing by day and hour, respectively. The
umber displays a natural continuous flow without breaking off.
ig. 6(a) and (b) depicts before and after outlier processing. The
ifficulty of observing the overall data distribution was solved
ue to the extreme outlier value.
The average electricity usage by the hour was examined by

ay of the week to determine the characteristics of the data
Fig. 7). Saturdays and Sundays were verified to display different
atterns compared to weekdays. Furthermore, electricity usage
as verified to be higher during the daytime on weekends than
n weekdays. Therefore, the average electricity usage was exam-
ned by the hour by dividing June 6 to August 15 into weekends
including holidays) and weekdays, considering the difference
etween the day on and day off (Fig. 8). We confirmed that
he electricity usage pattern on the day on and the day off was
oticeably different. Accordingly, the days were converted into
ategorical variables (the day on = 1 and the day off = 0) and
ere added to the exogenous variables.



H. Kim, S. Park and S. Kim Energy Reports 9 (2023) 4111–4121

3

k
w
r
p
d
s
T
s
a

H

C

T
w
r
t
i
d

4

4

a

Fig. 4. Total power consumption boxplots before preprocessing: (a) Daily and (b) Hourly.
Fig. 5. Total power consumption boxplots after preprocessing: (a) daily and (b) hourly.
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.2. Weather data

Weather information was obtained from a weather station 3
m away from a multi-family house whose power consumption
as observed. We extracted temperature, humidity, and solar
adiation data, which have frequently been used in previous
apers. We considered heating degree day (HDD) and cooling
egree day (CDD) instead of temperature because temperature
ignificantly depends on air-conditioning and heating devices.
he data were not affected because they were taken during the
ummer. Therefore, the temperature was converted to the CDD
s follows (Jung and Kim, 2014).

DD =

{
18 − Tt , if Tt ≤ 18

0, else

DD =

{
Tt − 24, if Tt ≥ 24

0, else (12)

he value of solar radiation for the time excluding 6 to 20 o’clock
as converted to zero for the solar radiation, considering the sun-
ise and sunset times in summer in Korea. The missing values of
he remaining meteorological elements were treated using linear
nterpolation considering the continuous flow of meteorological
ata.

. Application of the models

.1. Clustering results

Time-series cluster analysis was performed using Euclidean
nd DTW distance calculations. The complete data required a long
4116
ime to calculate the cluster distance. Therefore, the distance was
alculated using electricity every hour from 00:00 on Monday
o 23:00 on Sunday by extracting a week that best represents
he electricity usage cycle for housing. The silhouette score was
alculated after households were classified into clusters from 2 to
0 by Euclidean distance (Fig. 9). The score decreased for the first
ive clusters;, therefore, it increased slightly with six clusters and
hen decreased again. The closer the silhouette score is to 1, the
ore optimized the number of clusters. The silhouette score was

he best when the number of clusters was two, but the number
f clusters was judged too small to distinguish the pattern, and
he number of clusters was set to six. In addition, the DTW was
qually divided into six clusters to compare with the Euclidean
istance.
We searched for the number of households in each group

sing a histogram to examine the characteristics of the six groups
Fig. 10). The first and last groups consisted of three and 51
ouseholds, respectively. Fig. 11 presents the weekly power usage
y clustering. There is a difference in power usage for each time
one and on weekends between the six detected cluster patterns.
luster 2 started in the morning and peaked in the late after-
oon, then gradually decreased in the evening, demonstrating
ontinuous power use from morning to evening. Clusters 3, 4,
nd 5 displayed a flow of power consumption in the morning,
ut off, and resumed in the evening. Cluster 6 is rarely used in
he morning and consumes considerable power in the evening,
o it is estimated that Cluster 6 has a high commuting rate for
amily members. Furthermore, Clusters 2 and 5 were less used
n the weekends, whereas Clusters 4 and 6 were more used on
eekends. The power usage size indicates that Clusters 2, 5, and
have high power usage over time for the peak point, whereas
lusters 3, 4, and 5 revealed relatively low power consumption.
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Fig. 6. Hourly load demand boxplots: (a) before and (b) after preprocessing.
Fig. 7. Average daily load demand plot (by day of the week).
The number of households was examined by clustering six
TWs (Fig. 12). If the number of households in a cluster is too
mall, changing the power usage pattern of any one household
n such a cluster can result in overfitting, so caution is required.
or the Euclidean distance, Cluster 1 contains three households,
hereas DTW is more evenly distributed because there are more
han 10 households distributed in all clusters. Fig. 13 presents the
eekly power usage by clustering. As with the Euclidian distance
ethod, differences exist between the six detected cluster pat-

erns depending on the time zone, weekend, and power usage.
4117
Cluster 1 continues to consume power regardless of the time
zone. Clusters 2, 4, 5, and 6 used power in the morning and
late afternoon to evening. Among them, Cluster 4 seems to have
higher morning power usage than other clusters. Furthermore,
Cluster 2 used less power on weekends than on weekdays, but
Clusters 5 and 6 used more power than usual on weekends during
the afternoon. According to the power usage, in Cluster 3, house-
holds have various periods when power usage increases, but
they do not usually use substantial power, but the power usage
tends to increase suddenly. Cluster 3 demonstrated a significant
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Fig. 8. Average daily load demand (by day-off or on).
Fig. 9. Silhouette score using Euclidean distance.

Fig. 10. Histogram of the cluster using Euclidean distance.

variation in daily electricity usage. In addition, Cluster 5 has a
higher average power consumption than Cluster 6.

4.2. Forecasting results

The prediction result was calculated for each cluster after
fitting the prediction model using the corresponding value after
calculating the total power usage of households in each of the
six clusters. Finally, two weeks were predicted for all households
using electricity for housing by adding all the prediction results
by cluster. Furthermore, training data were used to train the
prediction model for 11 weeks from 00:00 on June 3, 2019 to
23:00 on August 18, 2019. Test data were used for two weeks
from 00:00 on August 19, 2019, to 23:00 on September 1, 2019,
to evaluate prediction performance. Furthermore, the ARIMA,
ARIMAX, DSHW, TBATS, NN-AR, and NARX models were used
4118
Table 1
Parameter estimations of the
ARIMA(2,1,3) model.
Parameter Estimates

φ1 1.5463
φ2 −0.7284
θ1 −2.1105
θ2 1.6597
θ3 −0.5421

to fit the prediction model of the households belonging to each
cluster. The predicted performance was evaluated by compar-
ing the predicted value using the total electricity consumption
data without clustering with the value calculated by adding the
predicted values for each cluster.

We chose the model with the lowest MAPE in each cluster.
Afterward, the forecasting values were compared using the root
mean squared error (RMSE) and MAPE. Performance evaluation
indices are widely used to evaluate model performance, espe-
cially for short-term load forecasting, and MAPE is defined as
follows:

MAPE =
100
n

n∑
t=1

⏐⏐⏐⏐yt − ŷt
yt

⏐⏐⏐⏐ . (13)

Furthermore, the RMSE is defined as follows:

RMSE =

√1
n

n∑
t=1

(ŷt − yt )2, (14)

where yt represents the actual value and ŷt corresponds to the
forecasted demand at time t.

Households were divided into six clusters using each cluster
analysis method. Furthermore, the optimal prediction model was
fitted for each cluster to predict two weeks (336 h) of data.
The prediction was made using the time-series cross-validation
method. Furthermore, all data on the day previous to the pre-
diction day were kept as learning data to maximize the learning
data (Fig. 14). The predictive results of the appropriate prediction
model were presented using the total usage without cluster-
ing to compare the predictive performance of the method of
fitting individual models by dividing households into clusters;
Tables 1 to 4 present the parameters estimated from the entire
non-clustered training set. Furthermore, the ARIMA and ARIMAX
models were implemented for forecasting in each cluster. The
parameters were automatically specified for each cluster using
auto.arima function in R (Hyndman and Khandakar, 2008). Table 5
provides the forecast results for the summer data.
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Fig. 11. Household electricity usage of six clusters by Euclidean distance during a week.
Fig. 12. Histogram of the cluster using DTW distance.

Table 2
Parameter estimations of the
ARIMAX(2,1,3) model.
Parameter Estimates

φ1 1.5819
φ2 −0.7987
θ1 −2.2065
θ2 1.8208
θ3 −0.6089
Humidity −0.0857
Solar radiation −5.9592
CDD 3.3915
Indication variable
(Day-off or not) 2.2029

Table 3
Parameter estimations of the DSHW
model.
Parameter Estimates

α (Level) 0.1250
β (Trend) 0.0038
γ (Seasonal 1) 0.0231
δ (Seasonal 2) 0.1123
4119
Table 4
Parameter estimations of the
TBATS model.
Parameter Estimates

α (Level) 0.0949

γ
(24)
1 −0.000057

γ
(168)
1 −0.000074

γ
(24)
2 0.000013

γ
(168)
2 0.000033

φ1 1.6542

φ2 −0.9035

θ1 −1.5454

θ2 0.8432

Table 5
Forecast performance evaluations in terms of RMSE and MAPE.
Model Cluster X Euclidean DTW

RMSE MAPE RMSE MAPE RMSE MAPE

ARIMA 14.793 26.199 12.769 22.391 13.055 23.320
ARIMAX 13.098 22.365 11.047 17.594 11.538 20.159
DSHW 6.828 9.055 6.663 8.981 6.626 8.849
TBATS 6.692 8.889 6.644 8.804 6.717 8.887
NN-AR 21.730 19.528 6.973 10.226 6.989 9.363
NARX 13.723 12.741 6.348 8.799 5.939 7.778

First, the total electricity consumption of all households was
predicted by fitting the ARIMA, ARIMAX, DSHW, TBATS, NN-
AR, and NARX models without clustering households, resulting
in the MAPE error rates of 26.199%, 22.365%, 9.055%, 8.889%,
19.528%, and 12.741%, respectively. The introduction of regressors
(i.e., covariates) in extreme smooth (ETS) models is not feasible
because the DSHW and TBATS were ETS based models (fore-
castability is the ETS equivalent of the invertibility of the ARIMA
models) (Hyndman et al., 2008). Therefore, exogenous variables
were considered only in the ARIMA and NN-AR models. The
ARIMAX model, which added exogenous variables to the ARIMA
model, performed better than ARIMA in terms of the MAPE and
RMSE values, with an RMSE from 14.793 to 13.098. Similarly,
the NARX model, which added exogenous variables to the NN-
AR model, displayed a significant performance improvement for
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Fig. 13. Household electricity usage of six clusters using DTW distance during a week.
Fig. 14. Time-series cross-validation process.

MAPE and RMSE, with an RMSE from 21.730 to 13.723. The exoge-
nous variables (outdoor temperature, humidity, solar radiation,
and weekend indicator variable) affected the electricity demand
forecast, as better accuracy was calculated by adding exogenous
variables.

The univariate seasonal time-series models (DSHW and TBATS)
demonstrated more accurate predictive power without cluster-
ing. The prediction results clustered using the Euclidean or DTW
distance by fitting the model to each cluster were better than
non-cluster options in all predictive models. The results im-
proved significantly after clustering using the ARIMA, ARIMAX,
NN-AR, and NARX models. The performance was improved in
the case of ETS-based DSHW and TBATS although, the effect was
smaller than in the other models. Regardless of the Euclidian and
DTW distance calculation methods, both methods with clustering
demonstrated better performance compared to those without
clustering, but each model has a different optimal clustering dis-
tance calculation method. The best models for Euclidean distance
calculation were the ARIMA, ARIMAX, and TBATS model, whose
MAPE improved by 26.2% to 22.4%, 22.4% to 17.6%, 8.9% to 8.8%
and 9.1% to 8.8% respectively. Moreover, the optimal models for
the DTW distance calculation method were the DSHW, NN-AR,
and NARX models, and their MAPE values improved by 9.1% to
8.8%, 19.5% to 9.4%, and 12.7% to 7.8% respectively.

These results revealed that the forecasting performance after
classifying the households with similar power usage patterns
using cluster analysis was higher than when predicting the total

electricity usage without classification. The clustering effect based

4120
on the distance calculation was slightly different for each model.
However, in the case of NARX, which performed best among
several models, the RMSE was 6.348 for the Euclidean distance
calculation, but for DTW, it was 5.939, revealing a significant dif-
ference depending on the distance calculation method. In NARX,
the DTW distance calculation method is advantageous.

5. Conclusion

This study performed a time-series cluster analysis using 1-h
unit electricity consumption data gathered from 136 households
for household AMI data under a smart grid environment. Fur-
thermore, it predicted electricity consumption by cluster after
clustering each household. The Euclidean and DTW distance cal-
culation methods were used as time-series cluster analysis meth-
ods. All households were divided into six clusters. The prediction
performance of each model was compared by the time-series
cluster analysis method using the ARIMA, ARIMAX, DSHW, TBATS,
NN-AR, and NARX models.

Furthermore, the results were predicted and compared to
prove the excellence of the method of predicting the total elec-
tricity consumption for all households via a bottom-up method
using cluster analysis and predicting and summing the power
usage for each cluster. Regardless of the model, clustering house-
holds with similar electricity usage patterns and predicting elec-
tricity usage for each cluster was better than predicting the total
electricity usage for all households without clustering. The MAPE
and RMSE, indicators for evaluating predictive performance, per-
formed best, especially when the NARX model was used as a
cluster with the DTW distance calculation. Fig. 15 illustrates the
results of the NARX model with the DTW cluster, which had the
best performance with the actual value during the prediction
period of two weeks. Except for approximately four days, the
predicted value from the low point to the peak moved quite
similarly to the actual value.

Furthermore, this study primarily used derivative variables,
such as weather and dates. This study confirmed that perfor-
mance improved when exogenous variables (e.g., the CDD, hu-
midity, and solar radiation) and indication variables (day off or
on) were added compared to the basic model using only electric-
ity consumption. However, household electricity demands can be
affected by various factors, such as electrical consumer behavioral
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Fig. 15. Time series cross-validation process. Electricity demand forecasting plot
using NARX with DTW cluster.

patterns, and building information (e.g., the number of household
members, telecommuting status, residence type, and house size).
Therefore, future studies should classify households in further de-
tail using electricity consumption data, apartment characteristics
(e.g., space size and location), household characteristics (e.g., the
number of household members and telecommuting ratio), and
various climate factors in the region. If an analysis of the influence
of electricity consumption on various information is performed
for each finely clustered household, stable peak loads in summer
and winter can be predicted even in rapidly changing situations
(e.g., rapid climate change).
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