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ABSTRACT Continual learning aims to enable neural networks to learn new tasks without catastrophic
forgetting of previously learned knowledge. Orthogonal Gradient Descent algorithms have been proposed
as an effective solution tomitigate catastrophic forgetting. However, these algorithms often rely on theNeural
Tangent Kernel regime, which imposes limitations on network architecture. In this study, we propose a novel
method to construct an orthonormal basis set for orthogonal projection by leveraging Catastrophic Forgetting
Loss. In contrast to the conventional gradient-based basis that reflects an update of model within an
infinitesimal range, our loss-based basis can account for the variance within two distinct points in the model
parameter space, thus overcoming the limitations of the Neural Tangent Kernel regime. We provide both
quantitative and qualitative analysis of the proposed method, discussing its advantages over conventional
gradient-based baselines. Our approach is extensively evaluated on various model architectures and datasets,
demonstrating a significant performance advantage, especially for deep or narrow networks where the Neural
Tangent Kernel regime is violated. Furthermore, we offer a mathematical analysis based on higher-order
Taylor series to provide theoretical justification. This study introduces a novel theoretical framework and
a practical algorithm, potentially inspiring further research in areas such as continual learning, network
debugging, and one-pass learning.

INDEX TERMS Catastrophic forgetting, continual learning, neural tangent kernel, orthogonal gradient
descent, orthogonal projection.

I. INTRODUCTION
Continual learning is an essential building block of real-time
learning [1], [2], [3], [4] and artificial general intelligence [5].
Unlike the conventional batch learning (also referred to as
offline learning in some contexts [6]), wherein neural net-
works are trained exclusively during the training phase and
remain unaltered during the test time, continual learning
involves the incremental training of a non-independent and
identically distributed (Non-IID) sequence of tasks. How-
ever, fine-tuning neural networks for a new task with dif-
ferent distributions often results in a performance decline
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in previous tasks. This is a well-known catastrophic forget-
ting problem [7], [8]. Although retraining neural networks
from scratch with all past data can effectively mitigate the
forgetting, joint training every time a new data batch is
added incurs significant overhead. For this reason, extensive
researches have been undertaken to efficiently address the
forgetting problem in various deep learning domains, such as
robotics [9], natural language processing [10], image classi-
fication [11], [12], and others [6].
One notable algorithm in continual learning is Orthogonal

Gradient Descent (OGD) [13]. OGD is a projection-based
method founded on two key principles. First, during the
training of a new task, the model is restricted from moving
in the direction of large forgetting. This can be achieved by
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removing the directional component from the gradient vector
of the loss for the new task using orthogonal projection.
Second, in order to identify the direction of severe forgetting,
OGD computes the gradient vector of the model prediction
on the previous data. However, using the gradient of the
model function can only be justified under the Neural Tangent
Kernel (NTK) regime, where the network width is assumed
to be infinite [14], [15] in NTK Theory [16], [17]. In the
case of narrow or deep networks, the abrupt change in model
predictions leads to a violation of the NTK regime. Outside
the NTK regime, the gradient-based OGD algorithms result
in substantial performance degradation.

In this paper, we propose a novel method for discovering
the directions of large forgetting by training an orthonormal
basis set using Catastrophic Forgetting loss (CF loss). Intro-
ducing a loss function that accounts for the variance between
a pair of two distinct points eliminates the necessity for the
NTK regime condition, which we believe contributes to the
performance enhancement of our algorithm for both narrow
and deep networks. Our method facilitates overcoming archi-
tectural limitations of OGD, thereby paving the way for its
utilization in practical applications.

II. RELATED WORKS
A. REPLAY-BASED METHODS
The most straightforward continual learning algorithms are
replay methods. Experience replay [18], [19], [20] trains a
new task with replay data, which consists of exemplar sets
from past tasks stored in a fixed-sized memory. The main
interest in replay methods is to develop an effective selection
of core exemplars that most help defy catastrophic forgetting.
Maximally Interfered Retrieval (MIR) [21] ranks exemplars
based on the growth of loss during the virtual update phase.
Several variants based on the same underlying concept have
been proposed [22], [23], [24], [25], yet the direct use
of replay data under limited memory restricts obtaining a
comprehensive representation of the entire task. Generative
Replay [26] adopts pseudo-rehearsal data generated by gen-
erative adversarial networks, removing reliance on sample
selection. However, the efficacy of this technique depends on
the quality of the generative model. Latent Replay [26] rep-
resents a different attempt to bypass direct storage of replay
data, as it saves and replays latent vectors instead of the actual
data. Even though the encoding of data knowledge offers
an alternative solution to naive sample selection, individual
latent vectors still originate from single data points, which
fail to capture the task’s complete features.

B. PARAMETER ISOLATION METHODS
Parameter isolation methods, which involve freezing certain
portions of model parameters, are conceptually similar to
dropout [27], [28], [29], [30], [31], [32]. Reference [27]
examines how dropout functions as a flexible gating mech-
anism, demonstrating that the allocation of distinct pathways
to separate tasks helps to alleviate interference between tasks

during parameter update. PackNet [29] implements con-
trolled version of network pruning. PathNet [28] introduces
an genetic algorithm that utilizes selection, replication, muta-
tion processes to search for optimal pathways. Progressive
Networks [31] design dynamically growing neural networks
with masking trained parameters, and Dynamically Expand-
able Networks (DEN) [32] establish criteria for determining
when and how many nodes or layers should be added. All
of these methods exhibit a binary state feature (on/off) for
constraints with individual parameter tuning, which in turn
limits the potential for more flexible constraints.

C. REGULARIZATION-BASED METHODS
The goal of regularization methods is to effectively balance
between learning new tasks (plasticity) and retaining prior
knowledge (stability). These methods penalize significant
changes in parameters in accordance with their importance
of previous tasks. The most popular regularizer is the L2
penalty loss, but it constraints all parameters based solely on
their magnitude and neglects their correlation with past tasks.
Elastic Weight Consolidation (EWC) [33], [34] assesses
per-parameter importance weights via the Fisher informa-
tion matrix, whereas Memory Aware Synapses (MAS) [35]
employs the model’s sensitivity to its changes. Similarly,
Synaptic Intelligence (SI) [36] measures the weight impor-
tance by tracking individual parameter contribution to a drop
in loss over the entire learning trajectory. Learning without
Forgetting (LwF) [37] applies distillation loss between the
current model (student) and the previous model (teacher) to
maintain consistency in their predictions on old tasks. Varia-
tional Continual Learning (VCL) [38] combines approximate
Bayesian inference with the Monte Carlo method. The soft
and parameter-adaptive constraints of regularization methods
are noteworthy. However, integrated nature of regularization
in penalty loss terms prevents the ability to deliberately
exclude diverse forgetting contributions from the loss gra-
dient.

D. PROJECTION-BASED METHODS
Elementary approach for minimizing interference among
multiple tasks would be breaking down model parameters
into several segments and exclusively training the specific
segment assigned to each task. A more advanced approach
is to map the knowledge of each task onto specific parameter
subspace orthogonal to each other. References [39] and [40]
proposed different projection operators to achieve the same
objective. Gradient Episodic Memory (GEM) [41], [42]
projects the loss gradient vector to the closest gradient that
minimizes the increase in loss for previous tasks stored
in memory. Contrastively, in Orthogonal Gradient Descent
(OGD) [13], the loss gradient is orthogonally projected
onto the gradient of the model’s predictions for past data.
OGD+ [16] builds the OGD basis by incorporating not
only the current task but also samples stored in memory.
PCA-OGD [17] proposes an alternative OGD basis based
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on the eigenvector set encoded from the gradient of the
model by principal component analysis (PCA) instead of
using the gradient itself. Reference [43] also improves OGD
exploiting incremental principal component analysis (IPCA)
and orthogonal recursive fitting (ORFit). Motivated by the
knowledge compression concept in PCA-OGD, our research
presents a further enhanced technique for distilling informa-
tion from large datasets into compact basis vectors.

III. PRELIMINARIES
A. PROBLEM DEFINITION OF CONTINUAL LEARNING
The objective of continual learning is to train a model fω :
X 7→ Y with a set of associated model parameters ω where
X denotes a feature space and Y denotes a label space. It is
assumed that a sequence of Non-IID tasks {T1,T2, · · · ,Tk}
is given to train the model where a temporal task Tk at time
k consists of (x, y) a pair of input x ∈ X and output y ∈ Y .
In the course of training for task Tk , any data (x, y) in the
previous tasks {Ts|s < k} is assumed to be unavailable unless
the use of reply buffer is introduced. The optimal set of model
parameters ω∗ for task Tk is obtained as an optimization
problem of the following empirical loss:

Lk (ω) =
1
|Tk |

∑
(x,y)∈Tk

ℓ(x, y), (1)

where |Tk | is the cardinality of task set Tk and ℓ(x, y) is a
discrepancy measure for a given pair (x, y) between label y
and prediction f (x;ω) = fω(x).

Before diving into the details of our proposed method,
it is crucial to briefly discuss the continual learning sce-
narios. Among the several well-known scenarios [12], [44],
this paper concentrates on task incremental and domain
incremental settings to highlight the performance advantages
of our method in comparison with other baselines. Task
incremental scenarios consist of multiple tasks with distinct
problems, whereas domain incremental scenarios assume all
tasks originate from the same problem with an identical num-
ber of classes but varying data distributions. Therefore, task
incremental scenarios necessitate task-specific multi-heads
and task-ids, whereas domain incremental scenarios only
require a single-head with no task-ids [45], as demonstrated
in Table 1. Note that in both scenarios, each data pair (x, y) in
a single task Tk is commonly assumed to be a data batch with
certain size, unless we are considering real-time continual
learning scenarios. When training each task, mini-batches are
randomly sampled from the data batch and then trained based
on usual Stochastic Gradient Descent (SGD).

B. ORTHOGONAL GRADIENT DESCENT
In this section, we provide brief introduction of OGD
algorithm in [13]. The OGD algorithm considers the modi-
fication of empirical gradient of the loss function during the
training using task Tk at time k as follows:

g̃ = g−
∑

u∈Sk−1

proju(g), (2)

where Sk−1 denotes the orthonormal basis set obtained from
the previous task Tk−1 at time k − 1, g = ∇ωLk (ω), and the
projection operator proj of gradient g in the direction of vector
u is defined by:

proju(g) =
gT u
uT u

u, (3)

where vT means the transpose of the vector v and vT u is the
inner product of the vector v and u. The gradient descent step
is performed in the modified gradient direction g̃ as follows:

ω← ω − η g̃, (4)

where η > 0 denotes a learning rate.
In the computation of orthonormal basis set Sk for task

Tk at time k , the original OGD method [13] computes the
gradient of the model prediction for each data in task Tk and
each class label c ∈ Y as follows:

Sk = Sk−1 ∪ {∇ωfc(x;ω∗k )}x∈Tk , c∈Y , (5)

where ω∗k denotes the optimal point of the model parameter
for the task Tk , ∇ωfc(x;ω∗k ) is the gradient of the c-th logit
with respect to the model parameter ω at point ω = ω∗k . The
total number of basis for each task is given by multiplying
the number of entities in task Tk and the number of classes
in the label space Y (OGD-ALL). An alternative option is
OGD-GTL [13], which selects a single output logit corre-
sponding to the ground truth label and thereby reduces the
number of basis in Sk . However, this method is essentially
an approximation based on empirical experiments without
theoretical guarantees. Even without using such empirical
approximations, our method still possesses its own memory
and computation-saving strategy.

C. NEURAL TANGENT KERNEL
Later theoretical studies on OGD [16], [17] argued that using
the gradient of the model for orthogonal projection can be
justifiedwithin the Neural Tangent Kernel (NTK) framework.
Stemming from the famous kernel trick, the kernel function
is defined by the inner product of the feature map φ(x),
described below:

K (xi, xj) = φ(xi)Tφ(xj), (6)

where φ(x) is a mapping function from a simple data space to
a complex feature space. In a nutshell, the kernel trick enables
classification of nonlinearly distributed data using a linear
classifier, without requiring direct computation of the feature
maps. When the width of the model network is assumed to
be infinite, the change of f with respect to ω occurs at a slow
pace, allowing the update of the network to be approximated
by a linear model as follows [14], [15], [16], [17]:

f (ω) = f (ω0)+ (ω − ω0)T∇f (ω0), (7)

where ω0 stands for the initial point of the model parameter
and∇f (ω0) = ∇ωf (x;ω0). For simplification, we are assum-
ing that f is a scalar function in the calculations. Letting the
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feature map φ(x) be ∇ωf (x, ω) allows us to define the Neural
Tangent Kernel as

K (xi, xj) = ∇ωf (xi, ω)T∇ωf (xj, ω). (8)

Due to the linearity of f (ω), the feature maps in the NTK are
constant with respect to ω: φ(x) = ∇ωf (x, ω) = ∇ωf (x, ω0).
We now introduce the gradient flow of the model parameter,
a useful theoretical concept for studying learning dynamics
of the networks:

dω(t)
dt
= −∇L(ω(t)), (9)

which is essentially a continuous form of the parameter
update equation. As we are interested in the model’s updates,
taking a look at the gradient flow of the model function
instead of the parameter would be more beneficial.

df (ω)
dt
= ∇f (ω)T

dω
dt
, (10)

where the right-hand side comes from the chain rule. Apply-
ing (9) and MSE loss L(ω) = 1

2∥f (ω)−y∥
2
2, (10) becomes

df (ω)
dt
= −∇f (ω)T∇f (ω)(f (ω)− y) = −K (f (ω)− y).

(11)

The conclusion of (11) is that the dynamics of neural net-
works can be tracked analytically by introducing the NTK.
Under this framework, [16] presented that continual learning
can be expressed as recursive kernel regression.

In this context, the NTK regime refers to the linearized
regime of the model function. For instance, given a suffi-
ciently large network width and a small learning rate, the
model is close to the linear function with negligible error
in comparison to infinitely wide networks. By setting ω =
ω∗k+1 and ω = ω∗k in (7), followed by substituting the two
equations, we get

f (ω∗k+1)− f (ω
∗
k ) = (ω∗k+1 − ω

∗
k )
T
∇f (ω0). (12)

(12) implies that the update of the model is linearly dependent
on its gradient. In conclusion, under the NTK regime, simply
computing the gradient of the model is sufficient to predict
the direction that will lead the model to the most significant
change. However, when networks have a smaller dimensional
width, the linear assumption is no longer valid. Additionally,
we empirically found that an increase in the number of layers
leads to faster model variation, which also breaks the NTK
regime. One potential solution of this problem is to reduce
the size of the learning rate [15]. Nonetheless, the deeper
the networks, the smaller the learning rates required, poten-
tially causing a considerable slowdown in network training.
In Section IV-B, we will discuss how to address this problem.

IV. ORTHOGONAL GRADIENT DESCENT BASED ON
CATASTROPHIC FORGETTING LOSS
In this section, we explain how to train an orthonormal basis
set (OGD basis) using Catastrophic Forgetting Loss (CF
Loss). We define necessary loss functions, summarize full

algorithm, and discuss how and under which condition our
algorithm can surpass gradient-based methods.

A. ORTHONORMAL BASIS BASED ON CATASTROPHIC
FORGETTING LOSS
Following the general form of the CF suggested in [17],
we define CF loss as follows:

φk (U ) = −
1

d |Tk |

∑
u∈U

∑
x∈Tk

∥f (x;ω∗k + u)− f (x;ω
∗
k )∥

2
2,

(13)

where u is a basis vector in an orthonormal basis set U =
(u1 u2 · · · ud ) with d bases, and ∥A∥2 is the L2 norm of the
vector A.

From this equation, our objective is to train U to minimize
the CF Loss φk , thereby maximizing CF. To achieve this,
we first initialize the basis vector by sampling from a normal
distribution: u ∼ N (0, I ). Subsequently, the magnitude of
u is normalized to designated length l. Then, u is updated
iteratively using gradient descent with φk . However, without
any constraints on the length of u, the CF loss can decrease
boundlessly (resulting CF divergence) as the point w∗k + u
moves farther away from w∗k . To address this problem during
training a direction of u, we introduce an additional loss term
to maintain u to the designated length l as follows:

ψk (U ) =
∑
u∈U

(∥u∥2 − l)2. (14)

We now consider an extra penalty loss term for the orthog-
onality condition between the basis vectors. We start with the
orthogonality condition between two vectors:

ui ⊥ uj if i ̸= j (15)

or

uTi uj = 0 if i ̸= j. (16)

When training three basis vectors, for example, we need to
consider all combination pairs of vectors in U = (u1 u2 u3),
which can be represented by the matrix form UTU as shown
in (17).

UTU =

uT1 u1 uT1 u2 uT1 u3uT2 u1 u
T
2 u2 u

T
2 u3

uT3 u1 u
T
3 u2 u

T
3 u3

 =
1 0 0
0 1 0
0 0 1

 (17)

Note that the diagonals are unit vector conditions. Since
the matrix is symmetric, all we need is an off-diagonal lower
triangular part to complete the orthogonality constraint loss
ρk .

ρk (U ) =
3∑
i=2

i−1∑
j=1

(uTi uj)
2

=
1
2
[∥UTU∥2F − tr((U

TU ) ◦ (UTU ))], (18)

where ∥A∥F is the Frobenius norm of the matrix A, tr(A) is
the trace of the matrix A, and A ◦ B is the Hadamard product
of the matrix A and B.
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Finally, our total objective function becomes the combina-
tion of all loss terms:

Ek (U ) = φk (U )+ λ1ψk (U )+ λ2ρk (U ), (19)

where λ1, λ2 are the distance and the orthogonality penalty
coefficient, respectively.

The full algorithm of the proposed method is summarized
in Algorithm 1.

Algorithm 1 Training of an OGD Basis via CF Loss
Input:Model parameters ω∗k , a data batch of the

current task (x, y) ∈ Tk , a learning rate ξ ,
distance l, epoch N , a number of bases d ,
penalty coefficients λ1, λ2, orthonormal basis
set for the previous task Sk−1

Output: orthonormal basis set for the current task Sk
Sk = {},U = {} (initialize empty sets)
Sk ← Sk ∪ Sk−1
for i = 1 to d do

u ∼ N (0, I )
u← l

∥u∥u
U ← U ∪ {u}

for n = 1 to N do
CF Loss:
φk (U ) =
−

1
d |Tk |

∑
x∈Tk

∑
u∈U
∥f (x;ω∗k + u)− f (x;ω

∗
k )∥

2
2

Distance Loss:
ψk (U ) =

∑
u∈U

(∥u∥2 − l)2

Orthogonality Loss:
ρk (U ) = 1

2 [∥U
TU∥2F − tr((U

TU ) ◦ (UTU ))]
Total Loss:
Ek (U ) = φk (U )+ λ1ψk (U )+ λ2ρk (U )
for u ∈ U do

u← u− ξ∇uEk (U )

for u ∈ U do
u← Gram-Schmidt(Sk , u) (Orthonormalize u)
Sk ← Sk ∪ {u}

B. COMPARATIVE THEORETICAL ANALYSIS OF PROPOSED
ALGORITHM
In the preceding section, we introduced a novel OGD
algorithm that trains an orthonormal basis set utilizing CF
loss. In this section, we explore the circumstances under
which this method can outperform conventional OGD algo-
rithms that rely on the model’s gradient. We begin with the
Taylor expansion of f (ω) at the point ω∗k :

f (ω) = f (ω∗k )+ (ω − ω∗k )
T
∇f (ω∗k )

+
1
2
(ω − ω∗k )

TH (ω∗k )(ω − ω
∗
k )+ · · · , (20)

where H (ωk ) represents the Hessian matrix of f at point ω∗k .
When ω = ω∗k + u, (20) transforms into:

f (ω∗k + u) = f (ω∗k )+ u
T
∇f (ω∗k )+

1
2
uTH (ω∗k )u+ · · · (21)

or

f (ω∗k + u)− f (ω
∗
k ) = uT∇f (ω∗k )+

1
2
uTH (ω∗k )u+ · · · .

(22)

The left-hand side is the drift term between the points
ω∗k + u and ω∗k , which is included in the CF loss formula
in (13). Comparing (22) with (12), the CF loss accounts
for higher-order Taylor series terms, whereas gradient-based
methods only consider the first order. The higher-order error
becomes significant when the variation of f across ω is rapid,
which is typical in narrow networks (with small width) or
deep networks (with a large number of layers). In such cases,
taking higher-order terms into account leads to a more precise
prediction of the desired basis set. Consequently, the CF
loss-based approach is generally more practical in a broader
range of model architectures.

V. EXPERIMENTS
In this section, we provide quantitative evaluation of the
proposed CF-loss based OGD algorithm in comparison to
the conventional gradient-based baselines. We conducted
three types of experiments: 1. Characteristic investigation,
2. Architectural investigation, 3. Comparative experiments.
For characteristic investigation, we examined the effect of
distance (length of u) and batch size to determine opti-
mal settings. In our architectural investigation, we studied
networks with diverse depths and widths to exhibit the influ-
ence of violating the NTK regime. Finally, we compared
our method with other baselines, such as SGD, OGD [13],
PCA-OGD [17]. Here, SGD stands for naive fine-tuning
without any continual learning algorithms. Following the
experimental setup in [17], the comparative experiments were
performed on three popular image benchmark datasets: Split
MNIST, Permuted MNIST, Split CIFAR-100. In our contin-
ual learning scenarios, we adopted task incremental for Split
MNIST and Split CIFAR-100, and domain incremental for
PermutedMNIST. Unlike the previous work [17], we selected
sufficiently long training epochs to ensure complete model
convergence, as early stopping based on future tasks is an
unrealistic assumption. In addition, we applied the full dataset
in PCA (e.g., 10,000 data for PermutedMNIST), as opposed
to the 3,000 data used by [17]. Both characteristic and archi-
tectural investigations were conducted based on the Split
MNIST setup. For the purpose of a fair comparison, we fixed
the basis set size to be consistent across all algorithms. The
specification of our experimental setup is outlined in Table 1.
In all experiments, we used a GeForce RTX 3090 with

24GB GPU memory. Every single test point was computed
via singleGPU.Across all experimental setups (SplitMNIST,
Permuted MNIST, Split CIFAR-100), the model training
computation time was less than 10 minutes for the initial
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task and under 30 minutes for the last task. Again, in all
experiments, the time elapsed for computing the OGD basis
for both OGD and PCA-OGD was negligible, as it took less
than a minute per task. On the other hand, our algorithm spent
around 20 to 30 minutes per task in all experiments. Compar-
ing memory usage accurately is challenging due to PyTorch’s
built-in matrix multiplication function, which dynamically
allocates and frees memory for parallel computation. All
three–OGD, PCA-OGD, and our algorithm–use matrix mul-
tiplication operations in the orthogonal projection, singular
value decomposition, and training of an orthonormal basis
set as a matrix form. Under this environment, we found that
OGD, PCA-OGD, and our algorithm all had comparable
memory consumption, with all algorithms effectively running
within a 24GB GPU memory in all test conditions.

For quantitative evaluation, we measured the test accuracy
for all tasks after training each task, and then computed the
average accuracy through the widely used formula [12]:

Ai =
1
i

i∑
j=1

aij, (23)

where aij is the accuracy of the j-th test set after completing
the learning of the i-th training set.

A. CHARACTERISTIC INVESTIGATION
Initially, we examined two hyperparameters newly intro-
duced in ourmethod (distance, batch size) in order to discover
the optimal values. As depicted in Fig. 1(a), the heuristically
determined best distance was found to be 0.2 for shallow
networks (2-3 layers) and 0.5 for deeper networks (4-6 lay-
ers). The fact that looking at farther distance yielded better
results for deeper networks fits well in our intuition. Dis-
tances smaller than 0.1 or larger than 1 led to a significant
drop in accuracy or even made training challenging due to
excessively small or large CF loss. Very small CF loss values
can lead the training too slow to converge, whereas too large
CF loss values can make the training diverge. To determine
whether training OGD basis has converged well, we followed
the process as described below: 1. Save a loss value for a
certain point. 2. When the updated loss changes less than a
specified threshold ratio (e.g. 0.05) compared to the reference
loss, we increment the stopping counter by one. 3. Should the
difference between the updated loss and the reference loss
exceed the threshold ratio, the stopping counter is reset. 4.
When the stopping counter hits a predetermined number, such
as 500 iterations, we consider the training to have converged.
Under these criteria, we obeserved all the loss curves of the
experiments performed in this section are well converged
within the iterations presented in Table 1.
Concerning the batch size, as illustrated in Fig. 1(b),

we observed that the peaks (indicated by circles in the plots)
emerged for batch sizes within the range of 50 to 200. Nev-
ertheless, no distinct trends in performance variations were
evident, leading us to conclude that employing mini-batch
gradient descent do not damage basis training. Even with the

FIGURE 1. Average accuracy for Split MNIST over (a) the length of u and
(b) the batch size. Each max point is indicated by a circle, respectively.
(100 hidden dim, averaged over 8 seeds).

use of mini-batch training, the complete dataset is trained
eventually, guaranteeing that the task’s entire attribute is
embedded within the basis. Consequently, training the basis
set using a small batch size proves to be an effective tac-
tic for minimizing memory consumption and computational
expenses without sacrificing performance.

Taking these observations into account, we applied the
optimized hyperparameters for all subsequent experiments.

B. ARCHITECTURAL INVESTIGATION
In contrast to [13] and [17], which employed only a 2-
layer MLP, we tested MLPs ranging from 2 to 6 layers. The
results presented in Fig. 2(a) reveals that the average accuracy
of conventional methods descends rapidly as the number of
layer increases. We interpret this outcome as a consequence
of deep networks violating the NTK regime, as discussed in
Section IV-B. Our method exhibited a remarkable improve-
ment in accuracy, particularly for 4 and 5-layer cases.

Subsequently, we studied the impact of the network’s width
(Fig. 2(b)). The accuracy of baseline methods significantly
deteriorated for very narrow widths, whereas our method dis-
playedminimal change. Once again, this result is attributed to
the fact that a sufficiently large width is a necessary condition
for the NTK regime.

The comprehensive study on the impact of layer and
width are depicted in Fig. 3. In each heatmap, the preva-
lence of bright squares implies a lesser performance drop,
given an increase in layer size or a decrease in the hidden
dimension. As observed in the results, our algorithm sus-
tains a better average accuracy when compared to traditional
gradient-based OGD algorithms.

To Confirm the performance enhancement shown in Fig. 2
is a result of the higher-order effect discussed in section
IV.B, we conducted the following proof experiment. The
test was conducted under the single-task Permuted MNIST
setup. Once training the initial task had been concluded,
we measured CF loss φ0.1 at ∥u∥2=0.1 and φ1,real at ∥u∥2=1,
averaging over 1,000,000 random basis vectors u. As a next
step, we computed φ1,predict and φerror through the following
equations:

φ1,predict =
1
0.1
φ0.1 (24)
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TABLE 1. Experimental setup.

FIGURE 2. Average accuracy (in percent) for Split MNIST over (a) the size
of the layer (with a fixed 100 hidden dimension) and (b) the width (with a
fixed 4 layers). (averaged over 8 seeds) The curves with saturated color
represent the mean values and the translucent areas signify the range
within the standard deviation.

φerror = φ1,real − φ1,predict (25)

In the equations, φ1,predict indicates the estimated change in
the model function φ(u) when ∥u∥2=1, which is predicted
from φ0.1 under a linear change assumption. φ1,real signifies
the actual measured value at the same point and φerror is the
discrepancy between the actual and prediction values. When
φ(u) exhibits notably large non-linearity, it will be reflected
in the non-linear error φerror . This approach allows us to
assess the impact of higer-order factors on the non-linear
change in the model’s predictions. The schematics and the
experimental result are shown in Fig. 4(a) and (b), respec-
tively. We observed a substantial rise in the higher-order error
φ2error in deeper networks, which could explain the perfor-
mance falloff of OGD and PCA-OGD algorithms. For 2-layer
MLP network, the value of φ2error is negligible, on the order of
10−5, whereas for the 6-layer network, it becomes 7260 times
larger.

FIGURE 3. Average accuracy (in percent) for Split MNIST ranging over 2 to
6 layers and 20 to 100 in hidden dimension (width). (averaged over
8 seeds) The highest score among the algorithms for each condition is
displayed in red text.

C. COMPARATIVE EXPERIMENTS
Lastly, we performed comparison tests on three datasets using
the continual learning setup shown in Table 1. Following the
previous work [17], in the Lenet architecture, only linear lay-
ers were updated except for the first task. The final accuracy
for individual tasks as well as their averages, are presented
in Fig. 5 and Table 2 for Split MNIST, Fig. 6 and Table 3 for
PermutedMNIST, Table 4 for Split CIFAR-100, respectively.
In Table 2-4, PCA stands for PCA-OGD. Note that Permuted
MNIST experiments are implemented as an 8-task test for
Fig. 6 and a 15-task test for Table 3. The setup used to
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FIGURE 4. The proof experiment demonstrating the impact of the
higher-order effect on the model function with respect to the number of
layers (b) , along with the associated schematics (a). The higher-order
terms induce a non-linear change, which is denoted as φerror in (a).

FIGURE 5. Final Accuracy (in percent) for Split MNIST. (5 tasks, averaged
over 8 seeds) The bar heights represent mean values, while the error bars
(shown as black I-beams) indicate the standard deviations.

FIGURE 6. Final Accuracy (in percent) for Permuted MNIST. (8 tasks,
averaged over 8 seeds) The bar heights represent mean values, while the
error bars (shown as black I-beams) indicate the standard deviations.

perform the 8-task Permuted MNIST experiment is exactly
the same as the one used for the 15-task test. Throughout
all experimental scenarios, our method achieved the highest
average accuracy, with an especially large margin for Per-
muted MNIST. Interestingly, the average accuracy depicted
in Fig. 6 indicates that conventional OGD and PCA-OGD
would perform worse than SGD when applied to deep net-
works. This finding suggests that gradient-based formation
of an OGD basis may be inappropriate for deep network
environments, due to the violation of the NTK regime.

Table 5 presents a comparison of various continual learning
algorithms applied to different datasets. The experimental

TABLE 2. Final Accuracy (in percent) for Split MNIST. (5 tasks, averaged
over 8 seeds) Each value is comprised of the mean (on the left) and the
standard deviation (on the right).

TABLE 3. Final Accuracy (in percent) for Permuted MNIST. (15 tasks,
averaged over 8 seeds) Each value is comprised of the mean (on the left)
and the standard deviation (on the right).

TABLE 4. Final Accuracy (in percent) for Split CIFAR-100. (20 tasks,
averaged over 8 seeds) Each value is comprised of the mean (on the left)
and the standard deviation (on the right).

setup for each dataset corresponds to the one described
in Table 1. We selected Elastic Weight Consolidation
(EWC) [33] as a representative for the regularization-based
method and Averaged Gradient Episodic Memory (A-GEM)
[42] for the replay-based method. Note that A-GEM can be
viewed as a hybrid of the replay and the projection method,
as it incorporates saving of the raw exemplar set for replay
and orthogonal projection for the parameter updates. In A-
GEM, 100 examplars for each task were randomly sampled
and saved into memory buffer. In EWC, the regularization
constant of the penalty loss term is tuned as 50 for Split
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TABLE 5. Average Accuracy (in percent) for various algorithms and
datasets. (averaged over 8 seeds) Each value is comprised of the mean
(on the left) and the standard deviation (on the right). The algorithms
marked with an asterisk (*) require storing the real data in memory.

MNIST, 10 for Permuted MNIST and Split CIFAR-100.
Other training hyperparameters are the same as shown in
Table 1. Our algorithm beat all other baselines for Split
MNIST and Split CIFAR-100 datasets, whereas A-GEM
showed better performance for Permuted MNIST. Although
the results imply that A-GEM may be a better option in
certain scenarios, it does require the storage of raw data,
which could be problematic for private personal data.

D. DISCUSSION
Before concluding this part, we would like to discuss a few
limitations associated with the proposed method. First, the
basis training takes considerably more time than the gradient-
based method. Although this longer (yet realistic) training
time may not be a concern for many deep learning applica-
tions, it could be problematic for real-time learning situations.
Second, our method demands the calibration of two hyper-
parameters (λ1, λ2) without any fundamental principle for
achieving optimal values. Further study is needed to develop
an advanced optimization trick for the basis training. We sug-
gest two possible solutions: firstly, inspired by OGD, we can
avoid using penalty loss terms by implementing orthogonal
projection for distance and orthogonality constraint; sec-
ondly, applying meta-learning could potentially enhance the
speed of basis training.

We finish the discussion by presenting several potential
applications of our advanced OGD algorithm. Besides con-
tinual learning, the no-forgetting ability of OGD can work
for a wide range of deep learning areas. For example, [46]
proposed unlearning and relearning algorithm based onOGD,
which are necessary tricks for network debugging (also
known as model editing). They intentionally induced forget-
ting in the model to erase mislearned information without
losing important knowledge, then retrained the model using
accurate data labels. Reference [43] applied OGD to one-
pass learning, in which the model accesses each data point
only once, resulting in much faster adaptation of the model
training. We argue that this no-forgetting one-pass learning is
not only more efficient than SGD, but also has the capacity
to serve as a more effective generalization paradigm then
repetition-based training.

VI. CONCLUSION
We presented a novel approach to generate an OGD basis,
a crucial component for orthogonal projection in OGD algo-

rithms. In order to tackle the architectural restrictions posed
by the NTK regime, we devised an OGD basis training
scheme that makes use of a loss function containing the
model’s discrepancy at two remote points. To the best of our
knowledge, this is the first approach that suggests an alterna-
tive solution rather than using the model’s gradient to obtain
the OGD basis. We conducted characteristic, architectural,
and comparative experiments on Split MNIST, Permuted
MNIST, and Split CIFAR-100 datasets. In all experimental
scenarios, our method significantly outperformed the state-
of-the-art gradient-based OGD algorithms, especially for
deep or narrow networks where the NTK regime is violated.
Furthermore, we provided a mathematical analysis based
on higher-order Taylor series to explain why our new basis
is more accurate than gradient-based OGD basis. We also
discussed the limitations of our methods, including additional
training time and hyperparameter tuning, as well as potential
applications like continual learning, network debugging, and
one-pass learning. We anticipate that the new mathematical
concepts and engineering techniques for neural networks
introduced in this study will influence a wide range of deep
learning research areas, including the OGD applications dis-
cussed above.
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