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ABSTRACT In image segmentation, noise and nonuniform intensity can lead to performance degradation
in existing models, particularly when dealing with shadow artifacts. This study proposes a hierarchical
saliency-driven segmentation model with local correntropy (SalCor) to address this problem, incorporating
saliency information with local correntropy-based K-means clustering to formulate an energy function. This
approach enables it to extract objects with complex backgrounds effectively regardless of noise and intensity
inhomogeneity. An adaptive weight function is introduced to dynamically adjust the intensities of the energy
functions (external and internal) based on the image information, resulting in enhanced model resilience to
contour initialization and improved robustness. The SalCor model can handle noise robustly by leveraging
the local correntropy-based K-means clustering. The proposed approach is evaluated on synthetic and real
images, including medical images, such as brain and mammogram magnetic resonance imaging (MRI) and
coronavirus disease 2019 (COVID-19) computed tomography images, and is compared with state-of-the-art
models. The statistical analysis confirms the SalCor model’s exceptional precision and efficiency. These
outcomes indicate that SalCor holds great potential for detecting brain tumors and mammogram tumors in
MRIs and early diagnosis of COVID-19.

INDEX TERMS Active contours, brain magnetic resonance imaging (MRI), coronavirus disease 2019
(COVID-19), image segmentation, level set, mammogram, medical image, saliency.

I. INTRODUCTION

IMAGE segmentation is a fundamental component in most
image processing and computer vision tasks, with such appli-
cations as object recognition and tracking, medical imaging,
face recognition, autonomous driving and robotics, pedes-
trian detection, and augmented and virtual reality [1]. How-
ever, image segmentation accuracy is significantly affected
by intensity inhomogeneity and noise in observed images,
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which can spread inaccuracies across the complete image
analysis process. Therefore, techniques to overcome these
limitations to ensure the reliability and accuracy of the seg-
mentation model are highly desirable.

The literature contains a numerous image segmentation
algorithms encompassing various stages of development.
These include initial methodologies like thresholding,
histogram-based clustering, region-growing, K-means clus-
tering, and watersheds, as well as more sophisticated
approaches like active contours, conditional and Markov ran-
dom fields, sparsity-based, and graph cuts methods. While
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deep learning models offer greater precision compared to
alternative methods, they need more extensive datasets and
increased computational resources [2]. Thus, the active con-
tour model (ACM) based on deformable contours has gained
attention in recent years.

The ACMs, also known as snakes, are mathematical mod-
els for image segmentation and object recognition. The idea
behind an ACM is to use a deformable curve or surface
attracted to the edges of objects of interest in an image.
An ACM can determine the object boundary and segment
it from the rest of the image by iteratively adjusting the
shape of the curve or surface based on the image features.
Moreover, ACMs have been widely studied and developed
over the past few decades, and several categories of ACMs
exist, including parametric and nonparametric models [3],
edge-based models [4], [5], [6], [7], region-based models [8],
[9], [10], [11], [12], [13], [14], and hybrid models [15], [16],
[17], [18], [19], [20]. Parametric models, such as the original
snake proposed by Kass et al. [3], use a predefined shape
and can be computationally efficient but may not be flexible
enough to capture complex shapes. Nonparametric models
do not make any assumptions about the shape of objects and
can be more flexible but may be computationally expensive.
As the name implies, edge-based models focus on detecting
and linking edges in an image to identify object boundaries
effectively but can struggle with noise and may miss objects
with unclear edges. Region-based models, which consider the
interior and edge of an object, are helpful for objects with
varying intensity levels or those in noisy images. However,
they can be sensitive to the initial conditions and may not
work well on objects with unclear boundaries. Hybrid models
combine approaches to leverage their strengths and mini-
mize their weaknesses but can be challenging to implement
and optimize. Ultimately, the choice of segmentation model
depends on the specific application and image characteristics,
and a combination of models may be necessary to achieve the
best results.

Li et al. proposed popular edge-based methods for level-set
segmentation, including level-set evolution without reinitial-
ization [5] and distance-regularized level set [6], which do
not require reinitialization. However, these methods may not
perform well on weak boundaries. While region-based mod-
els were initially developed for objects with uniform intensity,
such as the Chan—Vese model [9], they may be unsuitable for
images with an nonuniform intensity or texture.

Local region-based models have been developed to address
this problem, such as local binary fitting (LBF) [10],
where the region scalable fitting energy is used to capture
nonuniform intensity images, adapting intensity information
locally using a Gaussian kernel. The local correntropy-based
K-means clustering model uses K-means clustering with the
pixel-to-cluster distance to reduce noise influence on image
segmentation [13]. Nevertheless, it is sensitive to initializa-
tion, and its iterative approach delays the final segmentation
results.
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Other methods, such as the variational level-set approach
for bias correction and segmentation (VLSBCS) [11] and
local statistical ACM (LSACM) [14], use a bias field correc-
tion term in their formulations to improve the segmentation
of nonuniform intensity images. These methods approximate
the nonuniform intensity map of the entire image and oper-
ate in the context of local energy. However, severe noise
and distinct nonuniform intensity factors can impede effec-
tive and accurate image segmentation in local ACMs. Thus,
a local/global region-based ACM was proposed in [12] that
integrates a global signed pressure force function using inten-
sity means from [9]. However, two drawbacks of these ACMs
are the struggle of the evolving contour to conform to image
topology changes and the high sensitivity to the initial con-
ditions. The configuration of parameters at the beginning
and the initial shape of the contour (seeds) are required for
these ACMs, which can be challenging and require technical
expertise from end users.

In recent decades, medical imaging has become a promi-
nent area of application for image processing and segmenta-
tion [21]. Medical image segmentation is a critical component
in medical image analysis, as it allows for the precise iden-
tification and extraction of anatomical structures or regions
of interest (ROIs) from medical images. This information
is crucial in various clinical applications, including diag-
nosis, treatment planning, and disease monitoring [22]. For
instance, accurate segmentation of medical images, including
computed tomography (CT) scans or magnetic resonance
imaging (MRI), can help identify tumor boundaries, brain
lesions, coronavirus disease 2019 (COVID-19) infection in
the lungs, and abnormalities in other organs. Brain MRI and
CT scans of COVID-19-infected lungs are among the most
common radiological imaging techniques that function as a
workable strategy for the timely identification and evaluation
of these diseases [23].

Segmentation of brain tumors from MRIs and COVID-19
infections from lung CT scans are considered some of the
most complex and challenging tasks in medical imaging [24],
[25]. First, brain MRI and lung CT images have complex
structures and textures, making it difficult to differentiate
between healthy tissue and tumors or infections. Second, the
boundaries between the tissue of interest and the surrounding
tissue are not always clear, making it challenging to define
a clear boundary for the active contour to follow. Third,
the pixels intensity values within the ROIs and surrounding
tissue may overlap, making it difficult to distinguish between
them using only intensity-based information. Finally, the size,
shape, and location of tumors and infected regions in differ-
ent patients can vary considerably, making it challenging to
design a generic model that works well for all cases.

Currently, in medicine, identifying and categorizing brain
tumors from multiple MRIs and COVID-19 infections
from multiple CT scans necessitates manual intervention.
However, this process is time-consuming and demanding,
requiring highly experienced and well-trained radiologists to

83853



IEEE Access

A. Joshi et al.: SalCor: A Hierarchical Saliency-Driven Segmentation Model With Local Correntropy

perform the task accurately. Thus, these challenges require
sophisticated algorithms that can handle the complex nature
of these medical images to improve the precision and robust-
ness of the segmentation process. As far as the authors
are aware, no previous attempt has been made to create an
ACM capable of segmenting brain tumors from MRIs and
detecting COVID-19 in CT scans. Hence, the objective of
this research is to create an ACM that can perform accurate
and efficient segmentation on various image types, including
those suffering from nonuniform intensity, low contrast, and
noise, in synthetic and real images and medical imaging
applications.

Recently, saliency-based approaches have become increas-
ingly popular for identifying essential parts of an image in
image segmentation. This approach is applied in computer
vision applications and can reduce computational burden
by focusing on the most relevant parts of the image. Vari-
ous techniques for measuring and analyzing saliency have
been developed, which achieved state-of-the-art (SOTA)
results [26], [27], [28], [29], [30]. For instance, a saliency-
driven approach for color image segmentation was proposed
in [26], constructing a facial saliency map to segment and
track faces. The authors of [27] proposed the saliency-
SVM (support vector machine) model that uses saliency
and addresses image segmentation as a binary classification
task. In [28], the affinity propagation clustering algorithm
was employed to merge regional saliency with the random
walk method for segmentation. Besides, the authors suggest
using visual saliency with ACMs to improve the segmenta-
tion outcomes in [29]. Thus, saliency-based segmentation is
a promising approach for improving image analysis and is
likely to be an active area of research and development in the
future.

The mentioned saliency-based ACMs can effectively seg-
ment images with clear boundaries and intensity uniformity;
however, they are inadequate for segmenting images with
distorted or nonuniform intensity distributions, such as real
and medical images. In addition, some ACMs are susceptible
to initialization and noise. Therefore, a novel hierarchical
saliency-driven segmentation model with local correntropy
(SalCor) is proposed to address the challenges associated
with image segmentation for different initializations in the
presence of nonuniform intensity and noise.

The significant contributions were made in this study and
can be succinctly summarized as

e A novel SalCor model is proposed to address the
challenges of severe nonuniform intensity and noise
in image segmentation. This model employs a novel
energy function incorporating saliency and color vari-
ance information in the level set. Thus, it can effectively
extract objects with complex backgrounds irrespective
of nonuniform intensity and noise.

« An adaptive weighted function is introduced using local
and global image dissimilarities. This design enhances
model resilience to contour initialization and improves
its robustness.
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o The SalCor model is made robust against noise by lever-
aging K-means clustering based on local correntropy
with the exponential family (LCE) function.

o The SalCor model with Riemannian steepest descent
(RSD) improves the image segmentation speed and
accuracy over conventional gradient descent (SGD).

« Finally, contour evolutions on various images confirm
the effectiveness and advantages of the SalCor model
over SOTA models.

The paper is structured as follows. Section II presents
the SalCor model using saliency and color intensity vari-
ance, including the mathematical model for the evolution
of the initial contour. Section III presents simulation results
and compares the SalCor model with SOTA methods using
synthetic and real images. Section IV performs quantitative
and qualitative analyses on multiple medical and real image
datasets. Discussion is done in Section V. Finally, Section VI
concludes the paper.

Il. PROPOSED SalCor MODEL

The proposed SalCor model is presented in this section
to address the problems posed by significant nonuniform
intensity and noise in images. A novel energy function is
formulated to extract objects efficiently, even with complex
backgrounds and high noise levels. Furthermore, a novel
level-set evolution approach is proposed in the SalCor model
that employs internal and external energy functions. This
design enhances model robustness to initialization and allows
it to converge faster than other segmentation models.

The proposed energy function Esaicor is defined in (1) for
an input image 7 : Q — %2 and a level-set function ¢ with an
initial contour C : x € 2|¢p = 0in animage domain 2. We let
Qo : x € Q|¢p = 0 be the zero level- set, and i, : QL|p <0
and Qex : 2|¢ > 0 be the domains inside and outside of 2,
respectively.:

Esaicor = Eex (¢) + Ein (¢’) . (1)

In (1), the external energy function Ey is computed based
on gradient, region, and saliency information, whereas the
internal energy function Ej, is based on LCE and acts as a
constraint to guide the level-set evolution.

When dealing with images that exhibit nonuniform inten-
sity and color variation, the pixels tend to cluster, causing
pixels with comparable intensity and saliency to be given to
Qin and Qex. To address this problem, the proposed external
energy function E¢x considers the saliency information and
color intensity variance for 2, and Qcx of I:

Eex (9)

= «a /hHs (®) Yin(x)dx+/h(l_Hs (#)) Yex(x)dx

Q Q

Q2.1
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vy / hH, () Zin(@)dx+ / h(1—H, ($)) Zex(x)dx |,

Q Q

2.2)

)
where
Yin(x) = [S®) — 5117, Yex(x) = [S(¥) — 217, (3)
Zin () = I () = c1]* + 1T (x) —
Zex (x) = |I (¥) — 2, )

where H, (¢) denotes the e —Heaviside function in (2) with
& > 0. The scaling constants « and X are fixed and pos-
itive, and correspond to the saliency information (2.1) and
color intensity variance (2.2) in (2), respectively. In addition,
an edge indicator 4 is used for both (2.1) and (2.2):

1
-, )
1+ Vi %1
where
—x2+y2
K (1) = 3z 7, ©)

V, and * represent the Gaussian kernel with standard devi-
ation p, the gradient operator, and the convolution operator,
respectively.

The identification of the most prominent objects or regions
in an image, such as edges, colors, and textures, is the aim of
saliency information § in (3) and is given as [31]:

Se) = |[I(x) — I (x)

, N

where the mean pixel value of I is represented by I and
the blurred image I, is obtained by convolving the original
image I with a Gaussian filter «,. In addition, the saliency
means for the regions i, and Q¢x are respectively denoted
by s1 and s3:

JS(x) - He (¢) dx
sp = Q—, sy =

[ He (¢) dx
Q

JSCo) - (1 — H (¢)) dx
Q
J (1= He (¢))dx

Q

®)

In (4), the scalar approximations of mean intensities for the
regions Qj, and Qex are denoted by c¢1 and ¢, respectively.
In addition, the median scalar approximation for the region
Qi is represented by £

c1 = mean (I(x) € Qi) - w,
c» = mean (I(x) € Qex) - ©,

f = median (I(x) € Qi) - @. )
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To increase the resilience of the SalCor model towards ini-
tialization, an adaptive weighted function is introduced and
applied to ¢y, ¢p, and f:

0= /Q 1 Zin ) 1o He () dx
+ /Q 1Zex(ll> (1 — He (@) dx,  (10)

where ||-] is the L2 norm. Compared to mean values, median
values are more proximate to the edge of an object in terms
of pixel values. This characteristic makes the median value
effective in reducing noise and preserving fine details like thin
lines.

Using the external energy function alone for segmenta-
tion can lead to inaccuracies and irregularities, resulting
in the appearance of false contours or singularities. The
LCE function for the local region overcomes this limitation,
helping to address nonuniform intensity and low contrast.
The Correntropy-based clustering in LCE ensures adaptive
weighting of objects, making it robust to outliers. It is defined
as follows

Ei, (¢)
= —kz/sz/QprIOg [J (I (x,y) [c1)] He (¢) dydx

_ i /Q /Q cpwlog 17 (I (x.y) [c2)] (1 — Hy (9)) dydx
—e/ log [J (¢)] dx (11)
Q

where Ay, A3 > 0 are predefined constants, and J is one
of the exponential family functions. The exponential family
comprises various distributions such as Gaussian, Pois-
son, Bernoulli, and Rayleigh, which have been extensively
used to model the noise structure in several image acquisi-
tion devices. For instance, Poisson distribution helps model
noise in charge-coupled device cameras or X-ray images,
whereas Rayleigh distribution is appropriate for ultrasound
images [32].
Therefore, Esyicor proposed in (1) can be expressed as:

Esaicor (¢)

=« /hHa () Yin(x)dx +/h(1 — H; (¢)) Yex(x)dx
Q

Q

+ /hHs (¢)Zin(x)dx+/h(l_Hs (9)) Zex(x)dx

Q Q
“ o /Q /Q cplog [J (I (x. y) le1)] He () dydx

- Ks/Q/Qprlog [J (I (x,y) [e2)] (1 — He (¢)) dydx

- 8/ log[J (¢)]dx (12)
Q
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Next, minimize (12) by taking its derivative using the calculus
of variations as

0Esaicor
a9
= o [1Yin (x) — hYex (x)]
+ A1 [hZin (x) — hZex (X)]
+ kpxw [Aalog [J (I (x,y) en)]=2A3log [J (1 (x,)] c2)]]
+ 2¢ |¢| 13)

The SGD ensures that ACMs converge. Although they
are prone to local minima, numerous iterations are required,
increasing the runtime. Thus, the RSD method was proposed
to enhance segmentation accuracy and decrease runtime [33].
The evolution of ¢ concerning time ¢ in (13) can be

% _ aESalCor
ar 9
= ¢ + ah[Yin(x) — Yex()] + A7 [Zin(x) — Zex(x)]
+ N1 () VEin (I; ¢) (14)

where
VEin (I; $)
= kp x @ [Aalog[J (I (x,y)|c)] — Azlog [J (1 (x,y)| c2)]]

+2¢ 9], (15)
N (9)

_ 8¢ ()| By [caller], ¢ >0
=k * (16)
18 ()| By [c1 lle2], ¢ <0

is the RSD, §, = ¢ / T ((])2 + 82) is the Dirac Delta function,
and By is the J-Bregman divergence [34]. In (14), the matrix
inversion, N"~! (¢), can be easily performed because N (¢)
is a positive diagonal matrix. The A is derived using Defini-
tion I in Theorem 1.

Definition 1: [35] The distribution family of a random
variable S {F,, meJIC RC} is classified as a c-parameter
canonical exponential family when certain conditions are
met. Specifically, the natural parameter vector n =
1, ...,nc) € R, and the log-normalizer A (i) exists within
a natural parameter space I = {n € R.; —0o < A(n) < oo}.
The probability density function of F, can be expressed
as (17), where D (s) denotes the reference density, T =
(T, ..., T.)" is the natural sufficient statistic, and (-) denotes
the scalar product.

fsm=p@ew|n" T@)-am] an

Theorem 1: Assuming (17) in Definition 1 is satisfied,
then NV (¢) can be represented as a diagonal matrix whose
elements are given by:

J kp 18 (@) By [c2llci)dx, ¢ >0

_ Q
N@ =15 5. @B [cileatar, g <0 1Y
Q
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where

BJ [C2” Cl] éA (ncz) —A (1’01)
~(A (e = 7)Y, A(ne)). (19)

and the gradient of A (n) is denoted as V,A (n). By employ-
ing convolution, (18) can be expressed as (16). It can be
concluded that N (¢) is positive only when 8, (¢) does not
approach zero.

Proof: Let the Fisher Information Matrix (FIM) be
written as [36]

2
Ay

where E denotes the expectation and

N(@)£E [ log[J (I |¢)]] , (20)

T ¢) = / J(Ilcr)dx + / J (I| c2) dx.

(Q:9>0} {Q:p<0}
Now, the derivatives of the FIM is expressed as
N (@) = —=8: @ E[log(J (I |c1)|)]
—8: (=) E[log (J (I Ic2) |9)] - (21)
Applying Gaussian kernel in (6) on (21), (21) becomes

—8: (@) E[log(J (I |c1) |9)] }
—8: (=) E[log(J (I le2) 19)] |
(22)

N(¢)=Kp(x,y)*[

Since § (—¢) = —6 (¢), (22) can be expressed as

J
N () = K, (x,y) * [—ag #)E [log (]EI :2;)%“ :
(23)

With Kullback-Leibler divergences [34],

|8 (@) KLy (c1llc2), ¢ (x) >0
|8 (@) KLy (c2llc1), ¢ (x) <O

(24)

N () =Kp(x,y)*i

Finally, (24) can be reformulated using the Bregman diver-
gence, as given in (16). [ |

According to [33], preconditioning VEi, (I; ¢) with
N1 (¢) in (14) results in isotropic convergence prop-
erties around the local minima, regardless of the model
parametrization or signal dependencies. Fig. 1 illustrates that
the RSD converges faster than the simple SGD. Specifically,
the RSD converged after the fourth iteration, whereas the
SGD required ten iterations.

The SalCor model derives region information (global fea-
tures), including color intensity variance and saliency, from /.
This approach allows for a high degree of flexibility in initial-
izing ¢ and can be initialized as follows

hr=0 = p,x € Q, (25)
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FIGURE 1. The energy convergence of SalCor with RSD and SGD.

where p > 0 is a constant initialization parameter. A thresh-
old y must be implemented to halt the process to ensure the
proper evolution of ¢, as follows:

a

% ar
ot
because ¢ will no longer converges. In (26), At denotes the
time interval parameter. The algorithmic steps of the SalCor
model are outlined in Algorithm 1.

= |1 — |l <y, (26)

Algorithm 1 The Proposed SalCor Model
Input: 7, o, A1, A3, A3, e and ¥

1: Initialization: ¢y by (25) and w = 1
2: for 1 to maximum iterations do
3:  Compute & using (5)
4:  Compute S(x) using (7)
5.  Compute s1 and s by (8) and ¢y, ¢, and f by (9)
6:  Update adaptive weight w using (10)
7. Compute N using (16)
8:  Obtain the final segmentation using (14)
9: if (26) is satisfied then
10: Jump to Step 3
11:  else
12: Stop evolution
13:  endif
14: end for

Output: Final ¢

IIl. SIMULATIONS AND RESULTS

The MATLAB implementation of the SalCor model was
executed on a computer system equipped with an Intel Core
i7 processor clocked at 3.60 GHz with § GB RAM. Both
synthetic and real images were tested to evaluate the SalCor
model and compare its performance with other SOTA models,
such as CV [9], LBF [10], VLSBCS [11], LSACM [14],
LGFI[37], and McGKFCM [38]. To set the optimal values for
parameters «, A1, A2, A3, &, and p, experiments on an image
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(a)

FIGURE 2. Effect of Saliency on image segmentation. (a) Original image,
(b) saliency information, (c) result with saliency, and (d) result without
saliency.

from mini-MIAS dataset [39] is performed. The Accuracy of
the segmentation is calculated for different combinations of
three different values of «, A1, A2, A3, &, and p as

IRs N Rer|
AccuracyGT = m

where Rg and Rgr denote the segmented region and ground
truth, respectively. Table 1 presents the accuracy achieved by
different combinations of parameters. It is important to note
that the accuracy for different values of X, and A3 are not
included in the table. This omission is due to the observed
instability in contour evolution during the initial iterations
when A1, Ay > 6, caused by an oversaturation of energies.
Consequently, the values of A, and A3 have been selected
as 1 since this selection consistently yields the best accuracy.
From the experiment, it was observed that the accuracy is
almost same for p > 0.5 and the algorithm’s complexity
is determined by the value of p. A smaller p reduces com-
plexity, while increasing p enlarges the smoothing kernel’s
window size, resulting in higher computational demands and
increased time complexity. Therefore, the SalCor model used
fixed parameters for further experiments, which are listed in
Table 2. On the other hand, parameters for the other models
were retrieved from their corresponding literature.

Fig. 2 illustrates the segmentation obtained using the Sal-
Cor model, showcasing the impact of incorporating saliency
information into the level-set function. The input image used
in the experiment is a combination of synthetic and real
images as shown in Fig. 2(a). Fig. 2(b) shows the saliency
obtained using the SalCor model. The segmentation result of
the SalCor model using the saliency information is depicted
in Fig. 2(c), whereas the segmentation without saliency is
obtained by initializing « to zero and is presented in Fig. 2(d).
The incorporation of saliency information improves the reli-
ability and accuracy of the SalCor model, as demonstrated by
the segmentation outcomes.

Fig. 3 shows a comparison of the segmentation outcomes
from all previous SOTA methods and the SalCor model for
an image with intensity variation. The image in the compar-
ison initially have uniform intensity (Fig. 3(a): Row 1) but
has altered intensity distributions to some extent (Fig. 3(a):
Rows 2, 3, and 4), making it challenging to segment even

27)
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TABLE 1. The effect of o, 11, ¢, and p on the segmentation performance of SalCor with Accuracy metric.

a 0.01 0.05

A1 0.1 0.5 0.1 0.5

€ 1 1.4 1 14 1 1.4 1 14

p 0.5 0.7 0.5 0.7 0.5 0.7 0.5 0.7 0.5 0.7 0.5 0.7 0.5 0.7 0.5 0.7

Accuracy | 0.955 0.957 | 0.959 0.961 | 0.958 0.962 | 0.956 0.963 | 0.964 0.977 | 0.975 0.981 | 0.966 0.962 | 0.967 0.969
TABLE 2. Parameters of the SalCor model.

Parameter Symbol Value

Saliency scaling constant «a 0.05

Color intensity variance constant A1 0.1

Force term scaling constants A2, A3 1

Constant epsilon € 1.4

Standard deviation p 0.7

Stopping Threshold N x 0.005

Constant for initial level set p 1

Time step At 1

*N is the number of pixels in 1.

* Jekdkokekkk
oo clectnloatoste ot

ok ook dedo ke ke

(a) (b) (c) (d) (e) (f) (8) (h)
FIGURE 3. Image Segmentation with intensity variation. (a) Original
image, (b) CV, (c) LBF, (d) VLSBCS, (e) LSACM, (f) LGFI, (g) McGKFCM, and
(h) proposed SalCor.

manually. Fig. 3(a) shows the input images with initial con-
tours, and Fig. 3(b)-(h) show the segmentation outcomes
extracted using the CV, LBF, VLSBCS, LGFI, McGKFCM,
and SalCor models, respectively. The results reveal that the
SalCor and LGFI models provide the most accurate segmen-
tation, irrespective of nonuniform intensity. In addition, the
LSACM model fails to determine the precise object edge,
whereas the CV, LBF, and VLSBCS models provide rela-
tively precise segmentation for the uniform intensity image
(Row 1), but their performance deteriorates with increased
nonuniform intensity. The McGKFCM model fails to detect
precise object boundaries, even for the uniform intensity
image.

Most SOTA ACMs require an accurate level-set ini-
tialization and exhibit sensitivity to position of contour
initialization. In contrast, the SalCor model is exceptionally
robust to the position of the initial contour and consis-
tently produces the identical results regardless of the contour
position. This property of the proposed model is demon-
strated in Fig. 4, where a synthetic image with severe
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FIGURE 4. Effect of initial contour position on proposed SalCor model.
(a) Original image, (b) CV, (c) LBF, (d) VLSBCS, (e) LSACM, (f) LGFI,
(8) McGKFCM, and (h) proposed SalCor.

nonuniform intensity is used. Fig. 4(a) exhibit distinct ini-
tial contours, while Fig. 4(b)-(h) show the segmentation
outcomes obtained using the CV, LBF, VLSBCS, LGFI,
McGKFCM, and SalCor models, respectively. The results
demonstrate that SalCor, VLSBCS and LSACM exhibit
effective performance in dealing with different initial contour
positions on images with nonuniform intensity and noise
conditions. Notably, the SalCor model achieved precise seg-
mentation even when the object edges were blurred, proving
its robustness against severe intensity variation and initializa-
tion. Thus, this paper used a constant initialized contour for
all images.

Fig. 5 illustrates the ability of the SalCor model to address
noise in input images. Two types of noise, Gaussian and
salt-and-pepper, are present in the two images being used.
In Columns 1 to 4, the level of Gaussian noise increased from
0.01 to 0.04, whereas in Columns 5 to 8, the level of salt-
and-pepper noise increased from 0.01 to 0.04. All the models
except McGKFCM produce false contours around the ROI
edges due to their inability to eliminate noise from the images.
Although the McGKFCM model performs well, the seg-
mentation accuracy is not as close to the SalCor model.
In contrast, the SalCor model leverages saliency information
to accurately identify the ROI while distinguishing it from
the surrounding background, while utilizing LCE to eliminate
most of the noise. As a result, the SalCor model is robust
to noise, enabling it to accurately segment the ROI despite
variations in image complexity and noise type.

VOLUME 11, 2023



A. Joshi et al.: SalCor: A Hierarchical Saliency-Driven Segmentation Model With Local Correntropy

IEEE Access

Noise Type G

Salt and Pepper

Noise Level

Original Image

cv

LBF

VLSBCS

LSACM

LGFI

McGKFCM

Proposed SalCor

0.3

£

€
.

FIGURE 5. Segmentation and corresponding comparisons of images with varying levels of Gaussian noise and Salt

and Pepper noise: (0.01, 0.02, 0.03, 0.04).

Fig. 6 depicts the performance evaluation of the SalCor
model and SOTA models using uniform and nonuniform
intensity synthetic and real images. The original images are
presented in Row 1, whereas Rows 2 to 8 show the segmenta-
tion results of various models, including CV, LBF, VLSBCS,
LSACM, LGFI, McGKFCM, and the SalCor models. The
results show that the CV model accurately segmented images
with uniform intensity backgrounds but fell short in capturing
the ROI when the image had nonuniform intensity in the
foreground and/or background. The LBF, VLSBCS, LSACM,
and McGKFCM models obtained precise segmentation on
images with uniform and nonuniform intensity backgrounds
but encountered difficulties in segmenting the ROI of some
images with nonuniform intensity foregrounds. The LGFI
segmentation results were unsatisfactory, as indicated in
Row 6. However, the SalCor model (Row 8) provided the
most prominent segmentations on both image types.

Table 3 lists the number of iterations needed for contour
to converge and the runtime (final convergence) for all syn-
thetic and real images in Fig. 6 to evaluate the computational
performance of the SalCor and SOTA models. The results
show that the SalCor model exhibited faster convergence and
required fewer iterations for image segmentation than the
SOTA models. Although McGKFCM has similar computa-
tional efficiency to the proposed SalCor model, it fails to
accurately segment all images.

In Fig. 7, the segmentation performance is demonstrated
on various medical images, such as real brain MRIs (Row 1),
COVID-19 CTs (Row 2), and mammograms (Row 3). The
results indicate that the LSACM, VLSBCS, McGKFCM,
and LGFI could identify ROI edges but generated inaccurate
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contours. The CV and LBF contours were dispersed over
the area. The brain MRI in Row 1 was segmented more
effectively by the LGFI and VLSBCS models in comparison
to the other SOTA models, which is evident from the visual
outcomes. However, for the COVID-19 CT and mammogram
in Row 2 and Row 3 respectively, these models were not suc-
cessful in producing accurate segmentation. The McGKFCM
model achieved excellent segmentation for mammograms
and COVID-19 CT. However, Fig. 7 demonstrates that none
of the existing SOTA models could produce better segmenta-
tion than the SalCor model.

IV. QUALITATIVE AND QUANTITATIVE ANALYSIS

This section comprehensively evaluates the SalCor model
on five datasets: brain MRI [40], COVID-CT [41], brain
tumor segmentation (BraTS) 2019 [42], mini-MIAS [39],
and THUS10000 [43]. The brain MRI dataset consists
of 98 MRIs, the BraTS 2019 dataset includes 335 MRIs,
the COVID-CT dataset comprises 349 CT images from 216
COVID-19 patients, the mini-MIAS dataset consists of
322 mammogram images, and the THUS10000 dataset
encompasses 10,000 real images. Qualitative and quantitative
analyses were performed on these datasets to evaluate the
performance of the SalCor model. Furthermore, the segmen-
tation results obtained by the SalCor model were compared
with those achieved by SOTA models.

Fig. 8, Fig. 9, Fig. 10, and Fig. 11 respectively dis-
play segmentation results of brain MRIs from [40], lung
CTs from [41], brain MRIs from [42], and mammogram
images from [39] with severe nonuniform intensity and
noise to demonstrate that the SalCor model is reliable for
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FIGURE 6. Segmentation and corresponding comparison of synthetic and Real images.

TABLE 3. Comparison of number of iterations and runtime for the images in Fig. 6.

Model Image #1 Image#2 Image#3 Image#4 Image#5 Image#6 Image#7 Image#8
cv Iteration 500 200 80 200 80 200 20 100
Runtime  9.43 2.39 2.077 2.427 2.921 20.164 1.94 6.503
LBE Iterat'ion 50 20 15 20 60 50 20 30
Runtime 7.2 3.707 2.801 3.198 3.54 6.68 1.71 2.627
Iteration 10 50 10 50 40 20 20 20
VLSBCS Runtime ~ 2.01 6.76 1.36 5.15 178 28133 13.95 16226
LSACM Iterat-ion 20 20 40 20 40 20 20 20
Runtime ~ 257.1 34.77 78.77 32.61 238.55 405.97 143.79 160.879
LGFI Iterat'ion 180 100 100 100 250 190 50 50
Runtime  9.19 5.053 5.437 4.826 12.34 9.367 2.723 3.347
Iteration 15 5 25 15 20 30 30 20
MeGKFCM Runtime  0.81 0.301 1.27 1.348 2.231 2.775 2.652 2.663
Proposed SalCor Iterat_ion 10 5 12 15 15 15 15 15
Runtime  0.43 0.283 0.701 0.673 1.872 1.923 1.482 1.957

medical images. The segmentation results of three brain
MRIs from [40] is shown in Fig. 8. The CV model seg-
mentation results are shown in Fig. 8(a), showing inaccurate
boundaries in the local region. Similarly, other models failed
to produce precise segmentation results due to the presence of
nonuniform intensity and noise. Some segmentation results
showed undesired contour remains in the background. The
LGFI model segmented the global region smoothly, but its
segmentation in the local region was inaccurate in presence of
nonuniform intensity and noise, as shown in Fig. 8(e). In con-
trast, the SalCor model incorporates saliency information and
consistently produced precise segmentation results irrespec-
tive of the nonuniform intensity, as shown in Fig. 8(g).
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TABLE 4. Average Metric Analysis of brain MRI dataset [40].

Accuracy  Sensitivity ~ Specificity DSC
CV 0.63 0.68 0.71 0.49
LBF 0.81 0.78 0.72 0.70
VLSBCS 0.83 0.79 0.85 0.81
LSACM 0.66 0.70 0.68 0.50
LGFI 0.9 0.84 0.87 0.89
McGKFCM 0.8 0.78 0.81 0.73
Proposed SalCor  0.98 0.97 0.98 0.94

The segmentation results of three CT images from
COVID-CT dataset [41] in Fig. 9 are also presented. The
images indicate that most lesions are near the dorsal lung
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FIGURE 7. Segmentation and corresponding comparison of brain MRI (Row 1), COVID-19 patient’s lung CT (Row 2),
and mammogram (Row 3). (a) CV, (b) LBF (c) VLSBCS, (d) LSACM, (e) LGFI, (f) McGKFCM, and (g) Proposed SalCor.

FIGURE 8. Segmentation and comparison of Brain MRIs from [40]. (a) CV, (b) LBF (c) VLSBCS, (d) LSACM, (e) LGFI,
(f) McGKFCM, and (g) Proposed SalCor.

TABLE 5. Average Metric Analysis of COVID-CT dataset [41].

Accuracy  Sensitivity ~ Specificity DSC
CV 0.62 0.71 0.69 0.5
LBF 0.8 0.75 0.71 0.74
VLSBCS 0.82 0.79 0.85 0.81
LSACM 0.63 0.69 0.67 0.45
LGFI 0.82 0.83 0.84 0.81
McGKFCM 0.78 0.73 0.70 0.72
Proposed SalCor  0.98 0.97 0.98 0.95

region, and it is challenging to differentiate the infected
regional boundaries from the chest wall due to its distinct
structure and visual features. Thus, past and SOTA segmen-
tation models could not accurately segment the COVID-19
infected region, as shown in Fig. 9(a)-(f). Nonetheless, by uti-
lizing saliency information, the SalCor model could precisely
segment the infected areas by detecting the edges of the
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lungs from challenging backgrounds and contrast implicitly.
The results closely resemble manual segmentation, making
SalCor a promising approach for early COVID-19 screening
and brain tumor detection. The segmentation accuracy of the
SalCor model outperforms the SOTA models, as shown in
Fig. 9(g).

Fig. 10 and Fig. 11 illustrate the segmentation results for
three MRIs from the BraTS 2019 dataset [42] and three
mammograms from mini-MIAS dataset [39], respectively.
Fig. 10(a) and Fig. 11(a) present the ground truths, which
serve as a reference for evaluating the accuracy of the
segmentation methods. Fig. 10(b)-(e) and Fig. 11(b)-(e) rep-
resent the results obtained using LBF, VLSBCS, LSACM,
and the proposed SalCor model, respectively. In Fig. 10,
the SalCor model outperforms other models by accurately
capturing tumor regions in the brain MRIs from the BraTS
2019 dataset [42]. Similarly, in Fig. 11, the SalCor model
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FIGURE 9. Segmentation and comparison of COVID-19 patient’s lung CT from [41]. (a) CV, (b) LBF (c) VLSBCS, (d)
LSACM, (e) LGFI, (f) McGKFCM, and (g) Proposed SalCor.

(@) b) © @ © ®

FIGURE 11. Segmentation and comparison of mammogram images
from [39]. (a) Original image (b) Ground Truth (c) LBF (d) VLSBCS,
(a) (b) (©) () (e) () LSACM, and (f) Proposed SalCor.

FIGURE 10. Segmentation and comparison of brain MRIs from [42].
(a) Ground Truth (b) LBF (c) VLSBCS, (d) LSACM, and (e) Proposed SalCor.

BraTS 2019 [42], and mini-MIAS [39] datasets, respectively.

TABLE 6. Average Metric Analysis of BraTS 2019 dataset [42]. In the context of region segmentation, the following metrics
are commonly used to evaluate model performance: accuracy,
Accuracy  Sensitivity  Specificity  DSC measuring the correlation between the actual and segmented
I{/E};B s 8:2‘6‘; 8:3?1 g:ggé g:;;; regi(?n.s;. sensitivity,. describing th.e.ability .to detect.the ROI;
LSACM 0.735 0.704 0.695 0.594 specificity, measuring the capability to disregard irrelevant
Proposed SalCor 0973 0.949 0.941 0.927 regions; and DSC, quantifying the coherence between the
actual and segmented regions. They are defined as [30]
. . . TP + TN
demonstrates its effectiveness by accurately segmenting ROI Accuracy = , (28)
in the mammogram images from [39]. These results highlight TP]',"PTN +FP+FN
the robustness and superior performance of the SalCor model Sensitivity = ———, (29)
in handling different medical imaging datasets and achieving TP ’ITNF N
precise segmentation outcomes. Specificity = ———, (30)
The quantitative analysis of the SalCor model was con- N +§"IE)P
ducted using various metrics, including accuracy, sensitivity, DSC= ——MM—. 31
specificity, and Dice similarity coefficient (DSC). Table 4, 2TP +FP + FN
Table 5, Table 6, and Table 7 present the results obtained of In evaluating segmentation models, values closer to 1 are

applying the models to the brain MRI [40], COVID-CT [41], generally deemed acceptable. The true positive (TP) and
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FIGURE 12. Real image segmentation and comparison from [43]. (a) Original image, (b) Ground truth, (c) LBF, (d) VLSBCS, (e) LSACM, (f) LGFI,

() McGKFCM, (h) DRU, and (i) Proposed SalCor.

TABLE 7. Average Metric Analysis of mini-MIAS dataset [39].

TABLE 8. Average Metric Analysis of THUS10000 dataset [43].

Accuracy  Sensitivity ~ Specificity ~ DSC Accuracy  Sensitivity ~ Specificity ~ DSC

LBF 0.852 0.791 0.783 0.788 LBF 0.871 0.836 0.783 0.574
VLSBCS 0.921 0.796 0.795 0.891 VLSBCS 0.826 0.822 0.795 0.541
LSACM 0.943 0.921 0.892 0.945 LSACM 0.761 0.693 0.739 0.548
Proposed SalCor  0.984 0.971 0.965 0.979 LGFI 0.705 0.832 0.740 0.286
McGKFCM 0.837 0.828 0.808 0.581

DRU 0.923 0.851 0.886 0.681

Proposed SalCor  0.979 0.937 0.971 0.854

true negative (TN) indicate the accurately segmented and
unsegmented regions, whereas the false positive (FP) and
false negative (FN) signify the falsely detected and unde-
tected regions, respectively. Table 4, Table 5, Table 6, and
Table 7 reveal that the SalCor model outperformed previous
models for accuracy, sensitivity, specificity, and DCS on brain
MRI [40], COVID-CT [41], BraTS 2019 [42], and mini-
MIAS [39] datasets, respectively.

In addition, the THUS10000 dataset [43], consisting of
10,000 real images, was also used to test the performance
metrics obtained by the SalCor model in the context of qual-
itative and quantitative analysis. The segmentation results
obtained by the SalCor model on eight images from [43]
are shown and compared with the SOTA models in Fig. 12.
The average accuracy, sensitivity, specificity, and DSC for
SalCor and other comparative models are shown in Table 8.
To obtain the average performance metrics, 300 images from
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10000 images in THUS10000 dataset are selected randomly
and segmentation is performed. According to Fig. 12 and
Table 8, the proposed SalCor model yielded the best segmen-
tation results for real images in [43].

Furthermore, [43] was employed to evaluate the precision
and recall of the SalCor and previous models. Precision is

calculated as P = % and Recall is calculated as R =
%. The PR curve of all models, including a Dual-gated

Recurrent UNet (DRU) [44], were plotted and compared in
Fig. 13. The DRU was trained using 20% of the THUS 10000
dataset, 20% was used for validation, and the remaining
60% for testing. The model was trained with the VGG-16
optimizer with batch size 8 and 250 x 250 sized patches
for 100 epochs. The rate of learning was set to 6 x 1074,
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FIGURE 13. PR curve from segmentation of images in [43].

The results indicate that the SalCor model outperforms DRU
regarding performance metrics. This could be due to over-
fitting, which occurs when a model performs well on the
training data but poorly on new data, especially on a small
dataset like THUS10000.

V. DISCUSSION

The SalCor model offers several advantages not only for
medical image segmentation but also for natural images.
Firstly, it effectively addresses the challenge of intensity inho-
mogeneity commonly present in medical images, ensuring
accurate and robust segmentation results. By incorporat-
ing saliency information, the SalCor model can detect and
emphasize relevant image features, improving the delineation
of ROI. Secondly, the SalCor model provides explicit con-
trol over the contour evolution process, allowing users to
guide and refine the segmentation according to their spe-
cific requirements. This interactive nature enables experts
to incorporate their domain knowledge and fine-tune the
segmentation results. Additionally, the SalCor model ben-
efits from a solid theoretical foundation in ACMs, making
it well-understood and enabling further advancements and
extensions tailored to specific segmentation tasks. Overall,
the SalCor model offers a powerful and reliable approach
to medical image segmentation, addressing key challenges
and providing valuable control and adaptability for accu-
rate results. However, it may have limited representation
power, require manual feature engineering, and be sensitive
to parameter tuning.

On the other hand, deep learning models like DRU excel
in learning hierarchical representations, achieving SOTA
performance, and handling large-scale datasets. They elim-
inate the need for manual feature engineering and can
adapt well to diverse data. However, they require large
amounts of annotated data, have computational complexity,
and lack interpretability. These advantages and disadvantages
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highlight the trade-offs between ACMs like the SalCor model
and deep learning models, emphasizing the importance of
selecting the appropriate approach based on specific require-
ments and constraints.

VI. CONCLUSION

In this study, a novel SalCor model was proposed, which
incorporates saliency information with local correntropy-
based K-means clustering as an energy function, enabling it to
effectively extract objects with complex backgrounds regard-
less of noise and nonuniform intensity. An adaptive weight
function is incorporated in the energy function to improve
the model resilience to contour initialization and improve
robustness. The SalCor model can handle noise robustly by
leveraging the LCE and employs the RSD instead of the SGD
for faster convergence and lower runtime. The SalCor model
was evaluated on synthetic, real, and medical images with
varying intensity variations. Several SOTA models were com-
pared with regards to their number of iterations and runtime.
The qualitative and quantitative analyses were conducted on
the brain MRI, COVID-CT, BraTS 2019, mini-MIAS, and
THUS 10000 datasets using accuracy, sensitivity, specificity,
and DCS. The performance evaluation of the SalCor model on
brain MRI and COVID-CT datasets revealed that it outper-
forms all conventional ACMs with accuracy improvements
of (55%, 21%, 18%, 48.5%, 8.88%, and 22.5%) and (58%,
22.5%, 19.5%, 55%, 19.5%, and 25.64%), respectively, for
the following methods: CV, LBF, VLSBCS, LSACM, LGFI,
and McGKFCM. In additon, the performance evaluation
on BraTS 2019 and mini-MIAS datasets show better accu-
racy by (14.5%, 11.29%, and 27.87%) and (14.38%, 6.61%,
and 4.25%) than LBF, VLSBCS, and LSACM, respectively.
Moreover, the superiority of the SalCor was also reflected
in its runtime, which was significantly reduced compared to
the SOTA models. Similarly, the SalCor model outperforms
previous ACMs and the DRU in terms of the precision, recall,
and other performance metrics for THUS10000 dataset.
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