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Abstract: In recent years, there has been an increased demand for highly sensitive and selective
biosensors for neurotransmitters, owing to advancements in science and technology. Real-time
sensing is crucial for effective prevention of neurological and cardiovascular diseases. In this review,
we summarise the latest progress in aptamer-based biosensor technology, which offers the aforemen-
tioned advantages. Our focus is on various biomaterials utilised to ensure the optimal performance
and high selectivity of aptamer-based biosensors. Overall, this review aims to further aptamer-based
biosensor technology.
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1. Introduction

Neurotransmitters are molecules responsible for transmitting signals between nerve
cells and play crucial roles in the central nervous system and the cardiovascular sys-
tem [1,2]. Since most neurotransmitters activate receptors and continuously excite or
inhibit neurons that have received signals, maintaining appropriate levels of neurotransmit-
ters is essential [3–6]. Neurotransmitters can be divided into three major classes—amino
acids, monoamines, and peptides. Glutamate, gamma-Aminobutyric acid (GABA), and
glycine are members of the family of amino acid neurotransmitters and are involved
in most nervous-system functions. Serotonin, histamine, dopamine, epinephrine, and
norepinephrine play roles in the nervous system, especially in the brain, to regulate con-
sciousness, cognition, attention, and emotions. Members of the peptides family, such as
endorphins, act as natural analgesics [7–10]. However, inappropriate levels of neurotrans-
mitters have been implicated as a cause of heart failure, cardiotoxicity, Parkinson’s disease,
and Huntington’s disease [11–14]. Therefore, it is evident that quantifying neurotransmit-
ters is necessary to monitor the effects of neurotransmitters and disease severity in real time.
It has been reported that the development of ultra-sensitive neurotransmitter biosensors
with sensitivity at the levels of ≤ nano units is meaningful for early disease diagnosis and
monitoring [15–19]. In this context, the fusion of biosensors and biomaterials enhances the
potential for sensing specific biomolecules [20–25]. In particular, biocompatible molecules,
such as DNA- and RNA-based nucleic acids, are highly beneficial for the sensitive and
selective detection of analytes. In addition, among the many nucleic acids, aptamers are
recognised as noteworthy materials due to their valuable properties.

Aptamers are peptides or oligo-nucleic acids with high sensitivity and selectivity for
the detection of various types of analytes ranging from nucleotides, peptides, proteins, and
small molecules to cells [26–28]. Aptamers consist of folded structures of single-stranded
oligonucleotides that are typically 20–60 bases in length and are selected in vitro through
the systematic evolution of the ligand exponential enrichment (SELEX) process [29–31].
Aptamers designed in this way offer distinct advantages over some unique antibodies
in analyte analysis [32,33]. Small nucleic acid aptamers exhibit high structural stability
under harsh conditions and have suitable structures to interact with the corresponding
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analytes [34,35]. Aptamers can be adapted to a variety of assays by introducing several
modifications to their portion, including variable stem and loop regions that bind to
specific target molecular pockets (Figure 1A) [36]. Furthermore, studies have reported
that that aptamers can target cell-surface transmembrane proteins, as they are functional
for the native forms of analytes in living cells [37,38]. Therefore, in addition to these
advantages, integrating aptamers with diverse biomaterials generates a synergistic effect
that can produce aptamer/biomaterial-based sensors capable of efficient analyte analysis
and monitoring applications (Figure 1B).
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Figure 1. Aptamer biosensors for selective neurotransmitter detection. (A) Schematic indicating
selective neurotransmitter detection with capture and folding process of aptamer. (B) Representative
detection applications of aptamer-based biosensors. (C) Various forms of aptamer-based biosensors
for high-performance detection applications.

Aptamer sensors based on various new biomaterials have been developed. For exam-
ple, an aptamer sensor based on a gold material can be freely immobilised using various
chemical conjugations [39–43]. In addition, gold has active electron-transfer effect and
can amplify the electrochemical signal by the folding of methylene blue conjugated ap-
tamers [44–46]. Hybrid forms using different metals can amplify the signal for the aptamer
by enhancing the conductivity of the sensor and increasing the electron transfer [47–49].
Interestingly, aptamers can be immobilised on the surface of graphene using pi-pi stacking,
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and graphene provides the sensor with excellent resistance to corrosion and heat [50–53].
The graphene/gold-hybrid form maximises the performance of the biosensor due to the
easy aptamer immobilisation of graphene and excellent optical or electrical properties of
the gold metal [54]. In addition, polymer/metal hybrids enable various designs of aptamer
biosensors since the substrate can easily be deformed, and it is easy to obtain data on
the neurotransmitter in real time due to the characteristics of the aptamer [55]. Therefore,
aptamer-based sensors are often used as preliminary diagnostic tools because they enable
high-throughput sensing with short detection times and easy immobilisation.

In this review, aptamer-based sensors are classified into five categories depending on
the material used to detect the neurotransmitter: (1) gold-based, (2) gold/metal-hybrid-
based, (3) graphene-based, (4) graphene/gold-hybrid-based, and (5) polymer/metal-
hybrid-based (Table 1). Accordingly, various aptamer-based sensors that can rapidly
and sensitively detect neurotransmitters are discussed (Figure 1C).

Table 1. Materials used to construct aptamer sensors for neurotransmitters.

Material Neurotransmitter Detection Method Linear Range LOD Ref.

Au 5-HT LSPR 1–20 ng/mL 1 ng/mL [56]
Au DA Mass spectrometry 20 µM–1.2 mM - [57]
Au DA Electrochemistry 1 nM–100 µM 0.4 nM [58]
Au Glutamate FET 100 fM–10 nM 16.7, 48.6 pM [59]

Ni, Pt DA Electronics 10 fM–1 pM - [60]
Au, pt ATP Electrochemistry 2.5–447 µM 2.5 µM [61]

Cerium MOF, Ag DA SERS 10–250 µmol/L 8 pM [62]
Graphene DA FET 2.5 aM–2.5 µM 2.5 aM [63]
Graphene DA, 5-HT FET 10 pM–0.1 nM 10 pM, 10 pM [64]
Graphene DA FET 10 aM–1 pM 1 aM [65]
CNT, Au HA Electrochemistry 0.46–35 nmol/L 0.15 nM [66]

rGO, CuAlO2 DA Electrochemistry 50 pM–10 µM 17 pM [67]
GO, Au DA SERS 10 nM–100 µM - [68]

Parylene, Au 5-HT FET 10 fM–100 µM - [69]
PET, Au, Ti 5-HT FET 1 pM–1 µM - [70]

Polyimide, Au, Cr DA Microtransistor 10 Fm–100 pM 10 pM [71]
MIP, Au DA FET 50 nmol/L–10 µmol/L 47 nmol/L [72]

FET: Field-effect transistor. SERS: Surface-enhanced Raman scattering. LSPR: Localised surface plasmon resonance.

2. Gold-Based Aptamer Sensors

Gold nanoparticles (GNPs) can be stably synthesised via simple methods. Additionally,
they are biocompatible and have excellent electrical conductivity, high surface-to-volume
ratios, and unique optical properties, making them suitable for use in biosensors [73,74].
Furthermore, GNPs can easily be conjugated to aptamers via thiolation [75]. Because of
these properties, various forms of gold-based aptamer sensors have been developed.

Recently, a GNP-based aptamer has successfully been used to detect serotonin (5-HT)
by virtue of the optical characteristics of the GNPs [56]. Gold ions were reduced by ascorbic
acid to synthesise the GNPs, which were then conjugated to the aptamer via electrostatic
tuning of the positive charge on the GNP surface and the negative charge on the aptamer
backbone. The aptamer was detached from the GNPs via the 5-HT reaction, and the GNPs
were then aggregated via chloride ion loading. The solution colour change due to GNP
aggregation was quantitated by UV/vis wavelength shifting. The limit of detection (LOD)
was calculated at 1 ng/mL, and the selectivity was demonstrated by detecting 5-HT in
human serum samples. Excellent repeatability and reproducibility were also confirmed.
This study suggests that the GNP–aptamer sensor is suitable for detection of 5-HT.

In studies, GNPs have been synthesised in a variety of forms, which have then ben-
efitted from testing by a variety of analytical methods [76]. For example, a study used
aptamer-functionalised gold nanoflowers (Apt-GNFs) to successfully detect dopamine
(DA) [57]. To construct this Apt-GNF, a 13-nm core GNP was first synthesised, then an
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aptamer was conjugated to the core GNP through a thiol group, and finally the GNP was
allowed to grow along with the aptamer. LDI-MS was used for data analysis. A linear
range of 28–140 nM was calculated, demonstrating excellent selectivity, reproducibility,
and reproducibility. This approach is suitable for processes that require detection of trace
amounts of neurotransmitters.

In addition to 3D nanostructures, aptamer sensors in the form of gold-film electrodes
have been studied. In a study by Zhao et al., DA was successfully detected using a dual-
nanopore aptamer sensor with a gold-film deposition [58]. In such dual nanopores, the
inner space of the nanopipette is divided into two, and a gold film is deposited on one of the
nanopores (Figure 2A). The dual-nanopore structure is fabricated using a laser pulling pro-
cess. A thiolated aptamer that specifically binds to DA is attached to the gold-film-coated
nanopore. The developed sensor successfully detected DA in a single pheochromocytoma
(PC12) cell seeded in a microwell with a diameter of 100 µm and a height of 50 µm. The
linear range and LOD were 1 nM–10 µM and 0.4 nM, respectively, based on a linear sweep
voltammetry method (Figure 2B). Selectivity was also demonstrated by comparing the
values from single HeLa and PC12 cells (Figure 2C). Excellent repeatability and repro-
ducibility were also verified. It was reported that the nanopore sensor can be used up to
five times. These results suggest that various types of sensors can potentially be fabricated
using gold-based aptamer sensors.
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Figure 2. Gold-based dual-nanopore aptamer sensors for DA detection. (A) Schematic illustration
of the fabrication process of a gold-based aptamer sensor. (B) Linear I-V curve indicating the
linear range and LOD of DA, respectively. (C) Selectivity of the fabricated aptamer sensor. With
permission from [58]. Copyright 2022, ACS. HAuCl4, Gold (III) chloride trihydrate; ETOH, ethanol;
UV, ultraviolet; SH, thiol; PEG, polyethylene glycol; DA, dopamine; AA, ascorbic acid; CT, catechol;
PEA, phenethylamine; TR, tyrosine; L-DOPA, 3,4-dihydroxyphenylalanine.

The use of physically interdigitated gold-based electrodes and field-effect transistors
(FETs) has been shown to be effective in the sensitive detection of analytes. In 2019, a group
reported the detection of Plasmodium falciparum (pf) glutamate dehydrogenase in serum
samples using an aptamer sensor in which FETs were structurally interlocked with gold
electrodes [58]. The sensor was fabricated by connecting a gold electrode to the silicon
oxide surface of the FET and immobilising the aptamer. Glutamate was detected in the
linear range of 100 fM–10 nM using a buffer and serum as solvents, with calculated limits
of detection (LOD) for glutamate of 16.7 and 48.6 pM, respectively. The sensor was also
subjected to a selectivity test using interference molecules, such as human hydroxyglutarate
dehydrogenase, human serum albumin, pf lactate dehydrogenase, and pf histidine-rich
protein-II at 10 nM, demonstrating high selectivity suitable for actual sample analysis for
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malaria diagnosis. These findings suggest that this design could be implemented as a
portable aptamer FET sensor in a point of care (POC) setting.

Gold nanostructures have unlimited potential depending on their application. They
can be grown, attached by chemical bonding, or deposited onto the sensor surface. Similarly,
the sensitivity of the sensor to detect an analyte can be fine-tuned. Modification of gold
in the aptamer sensor improves the fundamental properties of the metal and aptamer
binding performance, which is an important advantage of this biomaterial in that it does
not damage the sensor.

3. Metal-Hybrid-Based Aptamer Sensors

Recently, various metals, such as Au, Pt, Ag, and Cu, have been used for biosensor
development [77–80]. Various attempts have been made to use hybrid forms of metals to
increase the sensitivity of biosensors. Bimetal nanoparticles are multiphase particles with
novel characteristics due to the synergy between the metals and their role as catalysts while
maintaining the advantages of each of the two separate metals [81].

In 2022, a successful report was published on the detection of DA using an aptamer
sensor based on a Ni/Pt hybrid [60]. An aptamer sensor was fabricated in a hybrid form,
combining Ni and Pt as complementary metal oxide semiconductors (CMOS) to build a
powerful biosensing substrate. The optimised sensor had a linear range of 10 fM–1000 fM.
To test the reusability of the fabricated aptamer sensor, the authors removed the aptamer
coating and conducted further functionalisation and biosensing measurement, thus ver-
ifying the reproducibility of the sensing properties of the aptamer sensor. These results
suggest that bimetallic aptamer sensors are suitable for DA detection. Such bimetals can
also be synthesised in various forms. In a recent study, a microelectrode biosensor based
on 3D bimetal Au-Pt nanoflowers successfully detected adenosine triphosphate (ATP) via
purinergic signalling [61]. The fabricated aptamer sensor was nanostructured layer by
layer on a fixed steel acupuncture microneedle (Figure 3A). Three-dimensional bimetallic
Au/Pt nanoflowers were synthesised by anchoring a Au spike with improved conductivity,
adding a catalytic layer of Pt on top, and finally adding the aptamer. The LOD and linear
range were estimated at 2.5 µM and 2.5–447 µM, respectively (Figure 3B). These results
verified the good reproducibility of the fabricated aptamer sensor. ATP was successfully
detected in the PC12 cell line, demonstrating the selectivity (Figure 3C). Only negligible
changes in current intensity were observed in the presence of interfering molecules. More-
over, repetitive addition of ATP significantly decreased the current response. These results
suggest that bimetallic aptamer sensors are suitable for detecting neurotransmitters. Metal
organic frameworks (MOFs), with large internal surface areas and various configurations
and adjustable cavity sizes, were used as materials for catalysis [82,83]. Shi et al. succeeded
in detecting DA by means of an aptamer sensor that used a cerium MOF-loaded silver
nanocluster (MOFceAgNC) [62]. After the fabrication of cerium MOFs, MOFceAgNC was
synthesised by adding Ag nanoclusters to the MOFs using a magnetic stirrer. MOFceAgNCs
produce GNPs via a catalytic reaction with HAuCl4. The detection results were measured
using SERS. The linear range and LOD were 0.01–0.25 nM and 0.008 nM, respectively. High
selectivity was demonstrated by detecting DA in human serum samples, and excellent
reproducibility was also confirmed. These results suggest that MOF-type metal-hybrid
aptamer sensors are suitable for sensitive detection of DA.

Hybrid forms with two or more metals exhibit high sensitivity to analytes due to the
synergistic effect of the metals. Moreover, hybridism circumvents the drawbacks of sensors
that are based on a single metal and provides high selectivity. Combinations of metals in
multiple phases may be particularly effective candidates for sensing a range of analytes,
given that their sensing properties can vary depending on the metal types and proportions.
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With permission from [61]. Copyright 2020, Elsevier. ATP, adenosine triphosphate; ADP, adenosine
diphosphate; AMP, adenosine monophosphate; UA, uric acid; AA, ascorbic acid; DA, dopamine.

4. Graphene-Based Aptamer Sensors

Graphene is a carbon allotrope with a hexagonal honeycomb-shaped two-dimensional
planar structure and has attracted much attention due to its excellent electrical conductivity,
thermal conductivity, chemical and physical stability, and biocompatibility [84,85].

In 2021, Hwang et al. successfully detected DA at the fM level using crumpled
graphene [63]. Using graphene-FET (G-FET), the researchers developed a sensor for DA
detection. Since DA is electrically neutral, it cannot be detected via G-FET alone, which
relies on electrical properties; thus, a polar aptamer was used as a detection probe and
synthesised using pi-pi stacking. The linear range of the G-FET sensor was 2.5 aM–2.5 µM,
and the LOD was 2.5 aM. The researchers reported that the LOD was 10 times lower than
that of normal graphene. Excellent selectivity, reproducibility, and repeatability were also
demonstrated. These results suggest that graphene-based aptamer sensors are suitable for
monitoring neurotransmitters emitted from real cells.

There has also been an attempt to detect multiple neurotransmitters using graphene.
Gao et al. successfully detected DA and 5-HT by arranging graphene with different ap-
tamers on a single substrate in such a way that the circuits did not overlap [64]. After
functionalisation of the graphene surface via electrochemical grafting methods, the ap-
tamers that detect 5-HT and DA were subjected to the amine carboxylic acid reaction to
increase their stability. In the case of 5-HT, when combined with an aptamer, the electrical
response diminished as the distance between the aptamer and the graphene increases. In
contrast, when the aptamer was combined with dopamine (DA), the electrical response
became stronger as the aptamer moved closer to the graphene. The LODs and linear
range were 10 pM and 10 pM–100 µM, respectively, for both 5-HT and DA. In addition,
in the interference between substances, which is the key to multi-sensors, the response
of the DA sensor when detecting 5-HT was 1.1%, and the response of the 5-HT sensor
when detecting DA was −0.6%. The developed sensor was confirmed to have excellent
selectivity, repeatability, and reproducibility while performing multiple monitoring of rat
CSF 5-HT and DA. These study results suggest that a graphene-based aptamer sensor could
potentially detect two or more neurotransmitters for complex disease monitoring. The
biocompatibility of graphene and the sensitivity of the aforementioned graphene-based
aptamer sensor showed the in vivo applicability of the sensor.
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In 2022, a group succeeded in quantitating DA using a graphene multi-transistor array
(gMTA) functionalised with a selective DNA aptamer [65]. Micron-sized electrolyte-gated
field-effect graphene transistors (EG-gFETs) were functionalised by attaching DNA ap-
tamers and incorporated into graphene multi-transistor arrays (gMTA) (Figure 4A). Each
gMTA chip consisted of an array of 20 EG-gFETs with individual interconnecting lines and
groups of 10 transistors sharing a common source with individual gold drain electrodes
connected to two common gold source electrodes. The authors obtained a calibrated curve
to detect the dopamine in artificial cerebrospinal fluid to verify the sensitivity of the fabri-
cated aptamer sensor. The LOD of the fabricated sensor showed a high sensitivity of 1 aM
and a linear range of 1 aM–100 µM (Figure 4B). The fabricated aptamer sensor was suc-
cessfully tested for selectivity for DA in the presence of interference molecules (Figure 4C).
Responses to monoamine neurotransmitters, such as serotonin and norepinephrine, have
not been tested, but aptamers have been reported as having reduced affinity for these neu-
rotransmitters. Furthermore, this graphene-based aptamer sensor succeeded in detecting
DA in the brains of rats with Parkinson’s disease (Figure 4D). Lastly, it was reported that
15680 EG-gFETs and 784 gMTAs were synthesised with a yield of 80% to prove repeatability
and reproducibility. These results suggest that graphene-based aptamer sensors are suitable
for in vivo applications.
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The above studies suggest that graphene-based aptamer sensors have various advan-
tages over other neurotransmitter sensors. Graphene has proven to be an easily imple-
mentable substrate for aptamer immobilisation that does not induce damage to biological
samples. Moreover, the facile handling and superior analyte adsorption properties of
graphene are expected to advance the development of aptamer sensors based on this bio-
material.

5. Metal/Graphene-Hybrid-Based Aptamer Sensors

It has been reported that metals, such as Al, Cu, Au, and Mo, used in sensors have
high biocompatibility and excellent electron transfer characteristics, enabling them to be
used as electrochemical sensors [86–88]. In addition, noble metals tend to be preferred
over other non-metal materials because they have excellent optical properties and can be
developed as optical sensors [89,90]. However, recent studies have reported that metallic
materials have a low effect on the adsorption of biomolecules, reducing the LOD [91]. In
addition, sensors based only on graphene show excellent adsorption to the analyte, but
the sensing performance is significantly lower than that of metal-based sensors [92,93]. To
compensate for these limitations, several studies have recently developed metal/graphene-
hybrid-based aptamer sensors.

Mahmoud et al. developed an aptamer sensor decorated with GNPs on carboxylated
carbon nanotubes (CNT) and succeeded in sensing histamine (HA) sensitively and selec-
tively [66]. To construct this sensor, the aptamer was cast on the surface of a glassy carbon
electrode (GCE), and a thiolated aptamer was incubated on the GNPs. This hybrid-material
sensor recorded for HA a linear range and LOD of 0.46–35 nmol/L and 0.15 nmol/L, re-
spectively. In addition, the developed sensor demonstrated high selectivity in the standard
solution, human plasma, and canned tuna, and excellent repeatability and reproducibil-
ity were also confirmed. These results show that metal/graphene-hybrid-based aptamer
sensors can potentially be used in health monitoring.

Reduced graphene oxide (rGO), Al, and Cu are widely used as electrochemical sensors
because of their high chemical stability and ability to synergistically interact with various
materials [94]. In one study, an aptamer platform based on a nanocomposite fused with
CuAlO2 and rGO was developed to monitor DA [67]. rGO was homogenised through soni-
cation, and the aptamer sensors were fabricated by stirring each metal material. The linear
range of the fabricated aptamer sensor was 0.05 nM–10 µM, and the LOD was recorded
as 0.017 nM. The author performed a selectivity test in a solution containing UA, AA, L-
cysteine (L-cys), and glucose, and excellent sensing performance for DA was demonstrated.
In addition, stability and reproducibility tests were successfully conducted for 30 days. This
study suggests that the hybridisation of graphene and metal leads to higher stability and
sensitivity than conventional aptamer capture probes. The high biocompatibility of gold
and graphene is well known [95,96]. In addition, the uniform size and shape distribution of
nanostructures can reduce signal variability; in particular, structural uniformity in surface-
enhanced Raman scattering (SERS) can significantly amplify the analyte signal [97–101].
On the basis of these properties, Choi et al. developed a graphene/gold-hybrid SERS
aptamer sensor that can detect DA by directly culturing cells on the sensor surface [68]. The
high uniformity was achieved via laser interference lithography (LIL), the gold structure by
electrochemical deposition, and the GO nanosheets by chemical conjugation (Figure 5A).
The same authors confirmed the successful synthesis of the gold nanoarray structure of
the tooth-like structure using AFM. In addition, they reported that precise nanostructure
control can be achieved via a large-scale pattern area without a mask using LIL-based man-
ufacturing. The fabricated SERS aptamer sensor exhibited sensitive sensing performance
with a linear range of 1 nM–100 µM for DA. Interestingly, the fabricated SERS aptamer
sensor demonstrated higher sensing performance than the existing gold film (Figure 5B).
In particular, culture at the level of a single neural stem cell directly on the sensor demon-
strated physical stability and real-time DA-sensing performance (Figure 5C). As expected,
the authors reported that Raman signals tended to decrease in the Raman-mapping images
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of differentiated cells, whereas signal differences from undifferentiated NSCs gradually
increased. These results demonstrate the highly advanced neurotransmitter detection
properties of this type of aptamer sensor.
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of the fabrication process of metal/graphene-hybrid-based aptamer sensors. (B) Schematic illustration
and plot indicating SERS signal change. (C) Raman mapping images by differentiation process and
plot indicating the real-time DA-sensing performance. With permission from [68]. Copyright ACS.
SERS, surface-enhanced Raman scattering; NSC, neural stem cell; DA, dopamine; GO, graphene oxide.

Metal/graphene hybrids can improve the signal between aptamers and analytes.
Additionally, the properties of graphene can be exploited to use biosensors with immunoas-
says for simpler adsorption of metals or aptamers. This type of aptamer sensor, combining
the advantages of metals and graphene, has efficient sensing performance. Moreover, it has
better sensing performance than sensors that are based solely on graphene or metal. Never-
theless, additional research on the hybrid technology and the factors affecting detection
performance is needed to achieve optimum performance.

6. Polymer/Metal-Hybrid-Based Aptamer Sensors

Since polymers are composed of repeatedly connected units, they can be fabricated
so as to have flexible forms [102–105]. In addition, polymers have physical variables
that determine their physical properties, and thus each polymer can be used in various
ways [106,107]. Flexible devices have been reported to improve long-term cellular as well
as in vivo monitoring by reducing tissue damage and immunological rejection [108,109].
In addition, a study has reported that the sensor is stable even after much bending or
crumpling [110]. By virtue of these advantages, polymer/metal-hybrid-based aptamer
sensors have been developed via positional and structural aptamer rearrangements that
can be optimised for width and thickness, in such a way that extremely sensitive sensors
can be made.

In 2021, a FET aptamer sensor using parylene and Au electrodes on a Si substrate
was developed for highly sensitive and selective monitoring of 5-HT [69]. The authors
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modified In2O3 and Au/Ti electrodes through spin coating and oxygen plasma etching
on a Si substrate (Figure 6A). The fabricated aptamer sensor detected a wide range of
5-HT concentrations, from 10 fM to 100 µM (Figure 6B). In addition, a selectivity test was
conducted in the presence of several interference molecules, and high selectivity could be
demonstrated by a sensitive response only to 5-HT (Figure 6C). Additionally, successful
in vivo 5-HT sensing was performed by stimulating 5-HT secretion in the mouse brain
(Figure 6D). In general, it has been reported that long-term sensing using Si-based sensors
causes inflammation, but this study suggests high biocompatibility with free size control
due to the high flexibility of the polymer base. Existing metal or silicon-based substrates
are rigid, and the Young modulus is 200 GPa, but the Young modulus of brain tissue is
<10 KPa [111]. A relatively high Young modulus causes tissue scarring, which leads
to biosensor failure due to limited access between the sensing surface and the tissue
interface [112]. To address these limitations of existing materials, flexible poly- (ether
phthalate) (PET) and Au/Ti-hybrid aptamer sensors have recently been developed [70].
The authors fabricated an aptamer sensor for 5-HT by bonding a flexible neuro- from 10 fM
to 100 M, for 5-HT in the artificial cerebrospinal fluid. In addition, high selectivity as an
aptamer-using sensor was recorded for interfering molecules, such as DA, L-tryptophan,
uric acid, and ascorbic acid. In addition, as a result of observing the time-dependent
response to 5-HT, detection was possible in 10 min, showing a rapid sensing advantage due
to the aptamer. This study suggests that, by adjusting the Young modulus, it is possible to
circumvent histological and immunological problems and secure stability for biosensing.
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of the fabrication process of polymer/metal-hybrid-based aptamer sensors. (B) Linear plot indicating
the linear range of 5-HT. (C) Selectivity of the fabricated aptamer sensor. (D) Schematic illustration
of the in vivo 5-HT detection and the plot showing the detection performance. With permission
from [69]. Copyright AAAS. L-5-HTP, L-5-hydroxytryptophan; 5-HIAA, 5-hydroxyindoleacetic acid;
DA, dopamine; L-Trp, L-tryptophan; UA, uric acid; AA, ascorbic acid. ** p < 0.01, *** p < 0.001.

It has been reported that real-time monitoring of neurotransmitters heterogeneously
secreted in a cell can be realised via the immobilisation of two or more types of metal
hybrids and specific aptamers [113]. On this basis, a polymer/metal-hybrid aptamer sensor
in which a Au/Cr source drain is bonded to a polyimide body was developed [71]. The
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fabricated sensor was in the form of an FET, and the aptamer was immobilised by pi-pi
stacking on a graphene film and assembled using a metal source-drain. The developed
sensor had a wide linear range of 1 nM–10 µM and LOD of 10 pM for DA. In addition, it
showed high selectivity for 5-HT, norepinephrine (NE), and GABA gamma-aminobutyric
acid (GABA). Furthermore, the fabricated sensor had an excellent reversible response,
even after DA was sensed. Accordingly, this study succeeded in developing an aptamer
sensor capable of real-time monitoring of transient fluctuations in DA concentration at the
cellular level.

Interestingly, the reported polymer/metal-hybrid-based aptamer sensor showed high
signal recovery and sensor signal enhancement ability due to its material and structural
characteristics. In particular, it was possible to detect neurotransmitters in real time through
tissue-to-tissue access more easily than in the case of conventional rigid materials. Molecu-
larly imprinted polymers (MIPs) are crosslinked polymers, which are synthesised based on
the template molecule, and in which removal of the template generates the target-specific
binding site [114]. Like other polymers, MIPs can be prepared rapidly and have high
thermal, chemical, and mechanical stability. In addition, MIPs have the advantage of
simple synthesis and of being low cost compared with other tailored recognition meth-
ods used in various processes [115]. A recent study has reported on dopamine detection
via an MIP–aptamer sensor based on AuNPs and rGO electrodes [72]. The fabricated
sensor utilised an aptamer and MIP double-detection system. The researchers formed a
DA–aptamer complex by reacting with the DA and then conjugated the thiol group at
the end of the aptamer to the surface of AuNPs. The MIP was created using a pyrrole
polymer solution through cyclic voltammetry, and sulphuric acid was added to complete
the MIP templates, from which dopamine was removed. The linear range was found
to be 50 nmol/L–10 µmol/L, with an LOD of 47 nmol/L. The researchers observed that
the MIP–aptamer double probe was more sensitive than the aptamer–AuNPs/rGO (LOD
93 nmol/L) and MIP–AuNPs/rGO (LOD 290 nmol/L). A selectivity test using ascorbic
acid, uric acid, epinephrine, and catechol proved that the MIP–aptamer sensor reacted
specifically to dopamine, suggesting higher selectivity than the aptamer–AuNPs/rGO and
MIP–AuNPs/rGO. The sensor also demonstrated high reproducibility and repeatability,
indicating that the aptamer sensor co-utilising MIP and aptamer is suitable for sensing a
specific analyte in the presence of interfering molecules.

It has been proven that the combination of polymer and metal not only improves
sensing functionalisation through flexible adsorption and penetration in vivo but also
maximises the sensing performance of the aptamer sensor alone. A polymer/metal-based-
hybrid aptamer sensor can be an excellent candidate to effectively detect various targets
by taking advantage of the fact that results vary depending on how the material and
composition are utilised.

7. Conclusions

This review summarised the recent research on aptamer-based biosensors for detecting
and monitoring neurotransmitters in various materials. All the biomaterials reported above
have demonstrated excellent efficacy for neurotransmitter detection. Metal-based aptamer
sensors have excellent electron-transfer and signal-amplification properties, which vary
according to the structural arrangement of the aptamer, and thus such sensors can be freely
applied to electrochemical or optical systems. Graphene-based aptamer sensors feature
excellent stability and high adsorption of analytes and chemicals. Likewise, the sensing
performance of the metal/graphene hybrid is amplified by the synergistic effect of the
strengths of each material. In addition, aptamer sensors based on polymer/metal hybrids
can be used in various environments, and their high biocompatibility allows stable sensing
in biological samples.

Since an increasing number of human nervous system diseases are being reported
every year, researchers need to develop sensors that can easily detect various types of
neurotransmitters. A particular problem is that in many situations the analyte of interest
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is present at low concentrations in a complex medium. Therefore, further research on
the materials and technologies that can improve the sensitivity, accuracy, specificity, and
reliability of biosensors is needed. In addition, although the sensing performance of
biosensors with rigid or complex structures is usually stable and efficient, they are generally
not suitable for real-time or sub-cellular monitoring. Therefore, in addition to increasing
the sensing performance, efforts should be made to improve the biocompatibility and
reproducibility of biosensors, and to prevent potential problems that may be experienced
during on-site performance.
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