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Abstract—Increasingly high performance computing (HPC) application developers are opting to use cloud resources due to higher

availability. Virtualized GPUs would be an obvious and attractive option for HPC application developers using cloud hosting services.

Unfortunately, existing GPU virtualization software is not ready to address fairness, utilization, and performance limitations associated

with consolidating mixed HPC workloads. This paper presents FairGV, a radically redesigned GPU virtualization system that achieves

system-wide weighted fair sharing and strong performance isolation in mixed workloads that use GPUs with variable degrees of

intensity. To achieve its objectives, FairGV introduces a trap-less GPU processing architecture, a new fair queuing method integrated

with work-conserving and GPU-centric coscheduling polices, and a collaborative scheduling method for non-preemptive GPUs. Our

prototype implementation achieves near ideal fairness (� 0:97Min-Max Ratio) with little performance degradation (� 1:02 aggregated

overhead) in a range of mixed HPC workloads that leverage GPUs.

Index Terms—GPU virtualization, trap-less architecture, fair queuing, coscheduling and hybrid scheduling strategies
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1 INTRODUCTION

RECENT advances in heterogeneous computing, best
exemplified by the ubiquity of systems with graphics

processing units (GPUs) and multi-core CPUs, have cata-
lyzed high performance computing (HPC) including scien-
tific, engineering, data-intensive, and financial applications.
GPUs in particular have facilitated high performance and
energy efficiency in HPC systems via making massive mul-
tithreading easily accessible to programmers. Heterogeneous
computing with GPUs has also accelerated performance-
sensitive components of system software dramatically, in
areas such as network and cybersecurity, database manage-
ment, and file systems [1], [2].

Increasingly HPC application developers are moving
their applications to cloud hosting services such as Amazon
EC2 and the Google Cloud platform due to higher availabil-
ity [3]. Application developers can benefit from these cloud
platforms without having to maintain large in-house HPC
facilities or queuing for long times to access external facili-
ties. In 2010, Amazon EC2 announced the Cluster GPU
Instance. This virtual machine (VM) instance type provides
access to NVIDIAGPUs with up to 1,536 cores, and supports
OpenGL, DirectX, CUDA, and OpenCL libraries. Leveraging
virtualized GPUs in cloud computing is obviously an attrac-
tive choice for HPC developers, while virtualizing and shar-
ing GPUs for higher utilization and lower cost of ownership
is an attractive choice for cloud hosting data centers.

Unfortunately, efficient virtualization and sharing of
GPUs between HPC applications is challenging. As more

HPC applications move to the Cloud, the diversity of HPC
workloads running in cloud servers also increases. Current
GPU virtualization software is not ready to support effec-
tive sharing of GPUs between HPC workloads, particularly
workloads with varying intensity of GPU access requests.
When such mixed workloads are consolidated, tenants may
experience unfairness and unpredictable performance vari-
ation due to inefficient virtualization stacks, synchroniza-
tion bottlenecks, and non-preemptive scheduling. Such
limitations prevent cloud hosting service providers from
giving access to GPUs on a pay-per-use basis.

Among the limitations that prevent effective sharing of
GPUs, non-preemptive scheduling can be addressed by
adopting most recent GPUs that support hardware-based
preemption [4]. These GPUs can save and restore the context
of GPUs, which include the contents of register files and on-
chipmemory, upon requests from the system software. How-
ever, as a GPU is composed of massive computation cores
each of which has its own context, the amount of data to be
saved and restored at a single time reaches to several hun-
dreds of KB. Unfortunately, this causes significant through-
put degradation up to 35 percent in GPU applications [5].
Therefore, we believe that non-preemptive GPUs are still rel-
evant for performance-sensitive applications, and address-
ing non-preemptive scheduling remains an important issue.

Prior research in GPU virtualization falls short of
addressing the limitations regarding fairness and perfor-
mance. First, small (e.g., sub-millisecond level) but frequent
GPU requests, which are common in a wide range of classi-
cal HPC applications and emerging applications in real-
time analytics, can burden virtualization stacks by frequent
context switching between user and hypervisor spaces. Pre-
vious research invokes system or hypervisor calls on every
GPU request [6], [7], [8], [9], [10], [11], [12], [13], which
causes significant per-request trapping costs for small GPU
requests. Second, workloads with high CPU-GPU interac-
tivity can cause synchronization bottlenecks between the
CPU and GPU schedulers. Previous research suggests that
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coscheduling of a VM and its corresponding virtual GPU
can improve performance [10]. However, co-scheduling in
itself fails to achieve good fairness because of interference
between the CPU and GPU schedulers. Finally, variable
request sizes in mixed workloads, which are challenging to
handle on non-preemptive GPUs, are either ignored [6],
[10], or addressed with reverse engineering methods which
are not supported by many GPUs [8], [9], [12], [14]. None of
the existing GPU virtualization solutions takes all these fac-
tors into account, thus failing to attain acceptable fairness
combined with strong performance isolation.

This paper presents new methods to achieve nearly ideal
fairness and high utilization for workloads with mixed GPU
access intensity running on virtualized GPUs. We achieve
two objectives: Under ideal fairness, each tenant receives a
weighted fair share of the GPU resource, according to the
price paid for this resource. Under high utilization, each ten-
ant experiences predictable performance with strong perfor-
mance isolation. For realizing fair and efficient GPU
virtualization, we introduce FairGV, a new system that com-
bines a highly optimizedGPU virtualization frameworkwith
a novel fair-share scheduler. FairGV implements a radical
redesign of GVirtuS [7] to improve performance and scalabil-
ity for HPCworkloadswithmixed intensity of GPU requests.
FairGV also introduces a fine-grain fair queuing algorithm
that considers the diverse traits of mixed workloads. FairGV
can be used on both non-preemptive and preemptive GPUs
and addresses the limitations that previous research in the
area has encountered, regardless of support for preemption.
We demonstrate that FairGV can achieve near ideal fairness
(� 0:97 Min-Max Ratio) and high utilization (� 1:02 aggre-
gated overhead) in a broad range ofmixedHPCworkloads.

The contributions of this paper are summarized as
follows:

� We introduce a trap-less GPU processing architec-
ture to significantly improve the performance and
scalability of mixed workloads with small, short-
running, and repetitive GPU requests. This new
architecture enables FairGV to process GPU requests
directly from user space without trapping to the OS
kernel or the hypervisor.

� We propose a new fair queuing method to achieve
near ideal fairness without performance degradation
in GPU virtualization. This method uses GPU-centric
coscheduling to effectively tackle the challenge of
runningworkloadswith high CPU-GPU interactivity,
whilemaintaining strongwork-conserving properties

both in GPU and CPU schedulers. This policy can be
applied to both non- and preemptive GPUs.

� We develop a collaborative scheduling method that
is combined with a novel and accurate accounting
mechanism for achieving fairness between short-
and long-running GPU kernels on non-preemptive
GPUs. The accounting mechanism is not dependent
on reverse engineering and uses a simple interposi-
tion technique to measure the request size with an
error of less than 3 percent.

� We implement existing GPU schedulers including
Credit and Strict-co scheduling in the same frame-
work, to thoroughly evaluate and analyze the fair-
ness and performance impact on a wide range of
mixed HPC workloads that use GPUs.

The remainder of this paper is structured as follows:
Section 2 describes background and related work. Section 3
elaborates on the design and algorithms of FairGV. Section 4
provides the implementation details. Section 5 shows our
experimental results. Section 6 presents a discussion point.
Section 7 concludes the paper.

2 BACKGROUND AND RELATED WORK

GPU virtualization techniques use three approaches: API
remoting, para & full virtualization, and hardware-
supported virtualization [15]. We elaborate on the three
approaches and introduce representative solutions in each
approach. We then compare GPU scheduling methods.
Table 1 shows a comparison of GPU virtualization solutions
in terms of the architecture and scheduling method.

API Remoting. This approach virtualizes GPUs at the
library level in the GPU execution stack. As GPU vendors
tend to not provide the source code of their GPU drivers,
API remoting offers a guest OS a GPU wrapper library in
order to intercept GPU calls before the calls reach the GPU
driver. The intercepted calls are forwarded to the host OS
and processed remotely.

GViM [6], GVirtuS [7], rCUDA [13], Pegasus [10],
vCUDA [11], and VADI [16] are based on API remoting.
They adopt a split device model where the frontend and the
backend are located in the guest and the host respectively.
A wrapper library in the guest intercepts GPU calls and
delivers them to the frontend. The frontend transfers the
intercepted calls to the backend in the host, and the backend
executes the GPU calls on behalf of the guest. Most of the
aforementioned solutions provide a shared memory mecha-
nism for communication between the guest and the host.
An exception is rCUDA, which aims at utilizing remote

TABLE 1
Comparison of GPU Virtualization Solutions in Terms of the Architecture and Scheduling Method

GVirtuS rCUDA vCUDA Pegasus GPUvm gVirt NVIDIA GRID FairGV

Category API remoting API remoting API remoting API remoting Para-virt Full-virt Hardware-virt API remoting

Supported GPUs NVIDIA NVIDIA NVIDIA NVIDIA NVIDIA Intel NVIDIA NVIDIA

Trap-less architecture No No No No No Partially yes Yes Yes

Schedulingdiscipline - - - Credit Credit Round-robin - Fair queuing

GPU-CPU

coscheduling

- - - Yes (CPU-centric) No No - Yes (GPU-centric)

Non-preemptive

scheduling

- - - No Yes Yes - Yes
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GPUs and uses TCP/IP-based communication for both local
and remote GPU virtualization [17].

Existing API remoting solutions adopt communication
modules provided by the hypervisor. Thesemodules can bur-
den the virtualization stack with frequent context switching
between user and hypervisor spaces. FairGV substantially
improves the performance of API remoting by introducing
the trap-less architecture presented in Section 3.1.

We select GVirtuS [7] for our exploration of ideal fairness
and high utilization of virtualized accelerators because it is
the only GPU virtualization framework available that is both
open source and supports the latest version of CUDA and
OpenCL [18]. In GVirtuS, when the connection between the
frontend and the backend is first established, the backend
spawns a child process to differentiate the GPU context from
those of other applications. We refer to this spawned process
as a vGPU (virtual GPU) in the rest of this paper. Also, we
will refer to a VM that runs GPU kernels as a GPUVM.

Para & Full Virtualization. This approach enables GPU
virtualization at the driver level utilizing either a custom
GPU driver based on reverse engineering [19], [20] or an
open source driver [21]. In this approach, the host exposes
emulated virtual GPUs to the guest driver, which regards
them as real GPUs. Para virtualization modifies the guest
GPU driver for improved performance while full virtualiza-
tion does not modify the guest GPU driver and fully emu-
lates GPUs instead.

GPUvm [12] provides both full and para virtualization in
the Xen hypervisor using a custom GPU driver. In full virtu-
alization, GPUvm makes every GPU access generate a page
fault so that the hypervisor can emulate the access. This
approach shows poor performance because of frequent
trapping. GPUvm improves performance by adopting a
para-virtualization method that utilizes batch execution.

gVirt [21] implements full virtualization for Intel on-chip
GPUs in the Xen hypervisor, to accelerate 2D and 3D
graphics workloads. gVirt allows each VM to access the
frame and command buffers in the GPU without interven-
tion from the hypervisor. At the same time, privileged
instructions are trapped and emulated by the hypervisor for
isolation. This approach is called mediated pass-through. A
KVM version gVirt called KVMGT also exists [22].

GPU instructions of para & full virtualization are inter-
nally processed by the hypervisor, which causes frequent
context switching between user and hypervisor spaces.
Although gVirt implements mediated pass-through that
allows non-privileged instructions to bypass the hypervisor,
Tian et al. [21] report that certain applications still suffer
from mediation overhead with frequent trapping events.

Hardware-Supported Virtualization. In this approach, a
guest is allowed to access GPUs directly with hardware fea-
tures for I/O virtualization, which remap direct memory
accesses and interrupts to the guest. Intel VT-d and AMD-
Vi only support a single VM to exploit a GPU. NVIDIA
GRID [23] can support sharing of a single GPU between
multiple guests and is implemented in a few NVIDIA GPUs
that target cloud computing environments.

Hardware-supported virtualization achieves near-native
performance. However, imposing GPU scheduling policies
on this approach is difficult because GPU operations bypass
the hypervisor. For the same reason, important virtualization

features such as execution checkpointing, livemigration, and
fault-tolerant execution are hard to implement [24].

Scheduling Methods. GPU scheduling methods are essen-
tial to fair and effective distribution of GPU resources
between tenants in a shared computing environment.

Pegasus [10] achieves high performance for CPU-GPU
interactive applications under a CPU-centric coscheduling
approach. However, the CPU-centric policy can hamper
fairness because of frequent interference between the CPU
and GPU schedulers. Furthermore, Pegasus does not con-
sider fairness on non-preemptive GPUs. FairGV improves
the fairness of Pegasus with GPU-centric coscheduling
(Section 3.2.3) and non-preemptive scheduling (Section 3.3).

GPUvm [12] adopts the BAND scheduler of Gdev [9],
which is based on Credit scheduling. The BAND scheduler
considers non-preemptive GPUs by waiting for the comple-
tion of GPU kernels and assigning a credit value to the task
based on its GPU usage. gVirt [21] also waits for the ring
buffer to be emptied by the GPU to support non-preemptive
GPUs. These implementations are dependent on a reverse-
engineered or open source driver, which are not supported
by many GPUs. FairGV’s accounting mechanism is not
dependent on a custom or open source driver thanks to its
interposition technique explained in Section 3.3.1.

3 DESIGN

In this section, we introduce the design of FairGV, which is
our proposed model for strong fairness and high utilization
of virtualized GPUs. First, we introduce a trap-less GPU
processing architecture to significantly improve the perfor-
mance and scalability of short-running but repetitive GPU
requests. Next, we develop a fine-grain fair queuing algo-
rithm to fairly and effectively schedule a diverse range of
GPU applications in terms of GPU computation intensity
and CPU-GPU interactivity. Finally, we introduce a collabo-
rative scheduling method combined with a novel and accu-
rate accounting mechanism for fairness between short- and
long-running kernels on non-preemptive GPUs.

FairGV is based on GVirtuS. However, our design is not
specific to GVirtuS and can be applied to other GPU virtual-
ization frameworks, as well as different hypervisors. In this
section, we present our design in more detail in the context
of GVirtuS and the KVM hypervisor.

3.1 Trap-Less Architecture

To achieve high performance, GPUs process requests
directly from user space using memory-mapped I/O. Sys-
tem calls are hardly used by GPUs, typically just for mainte-
nance and initialization purposes. This is because trapping
to the OS kernel in a system call carries significant instruc-
tion execution overhead and the indirect cost of cache pollu-
tion, which can be thousands of CPU cycles [25]. For a range
of GPU applications that issue short-lived and frequent
GPU kernel execution requests, these overheads can signifi-
cantly degrade system efficiency.

Existing API remoting approaches including GViM [6],
GVirtuS [7], Pegasus [10], and vCUDA [11] provide a wrap-
per library that invokes system or hypervisor calls on every
GPU request and reply. For example, GViM and Pegasus
issue hypervisor calls to use Xenbus and Xenstore [26],
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which provide shared ring buffers and event channels.
vCUDA also adopts the VMchannel residing in the KVM
hypervisor for implementing notification channels. OS
kernel-based approaches including Gdev [9], GPUvm [12],
gVirt [21], and KVMGT [22] use custom open-source drivers
such as Nouveau [19] or Intel GPU drivers for virtualiza-
tion. However, they also heavily use the kernel-level drivers
for each GPU request and reply. Fig. 1 shows the relative
performance of KVMGT running the glxgears and glmark2
OpenGL applications in an Intel HD Graphics 4,600. Owing
to KVMGT’s mediated pass-through where non-privileged
instructions bypass the hypervisor (Section 2), the texture,
pulsar, and terrain scenes in glmark2 achieve near native
performance. However, other applications still suffer from
performance degradation with frequent trapping events as
reported by Tian et al. [21]. Because of frequent trapping
into the OS and the hypervisor, these approaches can be
problematic for small and repetitive GPU requests.

Fig. 2 shows the overhead of matrixMul in the NVIDIA
SDK measured by GVirtuS with its shared memory module
and FairGVwith different kernel sizes in an NVIDIA TitanX.
The overhead is calculated by dividing the execution time in
a VM by the time taken in native Linux. The kernel size was
adjusted by changing the size of the matrices of matrixMul.
When the kernel size is 391 ms, GVirtuS does not incur any
overhead. However, with small kernel sizes, it causes signifi-
cant overhead (from 1.05 at 285 ms to 1.45 at 21 ms) because it
executes four system calls on each GPU request for buffer
synchronization. This result validates that with small GPU
requests, frequent trapping can become a major bottleneck.
A significant number of important GPU applications is

known to execute small (10-250 ms) and frequent GPU ker-
nels [14]. With the advance of GPU micro-architectures,
request execution time is expected to drop even further,
whichwill in turn inflate the trapping overhead.

FairGV makes the GPU processing architecture trap-less
by using three mechanisms:

First, FairGV uses a dedicated inter-VM shared memory
region in user space to remove the necessity of trapping to
the OS or the hypervisor for communication. For this pur-
pose, FairGV allocates a shared memory segment on the
host and dynamically maps the memory region into the vir-
tual address space of each vGPU and its GPU application.
As the page tables of each entity are modified at the initiali-
zation phase, there is no need to trap the OS or the hypervi-
sor on each GPU request and reply.

Second, a bounded lock-free queue [27] is adopted as a
shared memory data structure. Shared memory is typically
managed by locks. However, in order to manage locks, sys-
tem calls that can hold the status of locks are required. Con-
text switching by such system calls is known to take on the
order of micro-seconds for a contested lock [28]. To remove
such overheads, FairGV creates two lock-free rings for both
communication directions, the request and response rings,
as depicted in Fig. 3. Each ring is composed of descriptors,
and each descriptor contains a request (or reply) command
and an offset to the data buffer where the actual data to be
transferred is stored. Through the lock-free data structure,
neither vGPUs nor GPU VMs will read or write the same
buffer concurrently, which eliminates the overhead of sys-
tem calls that manage locks.

Finally, FairGV adopts a polling mechanism when a
vGPU or a GPU VM checks whether the shared ring has a
new message. FairGV avoids an event notification mecha-
nism such as a virtual interrupt because a notification inter-
rupt causes an expensive VM Exit operation [29], which
transfers the control from the guest OS to the hypervisor.
During the execution of programs with small and repetitive
GPU requests, the notification rate is expected to be high
and reduce overall performance. Therefore, FairGV adopts
polling, which continuously inspects the shared ring in user
space.

The whole process of accessing the GPU is illustrated in
Fig. 3. Throughout this process, FairGV can deal with GPU
requests directly from user space without trapping to the
OS kernel or the hypervisor. Therefore, in Fig. 2, the over-
heads of FairGV are shown to be nearly zero regardless of
the GPU kernel size, which means the execution time in
FairGV is quite close to the execution time of the same GPU
request in a native environment. The three mechanisms in

Fig. 1. Performance of KVMGT running glxgears and a suite of scenes in
glmark2.

Fig. 2. Overhead of matrixMul measured by GVirtuS and FairGV with dif-
ferent kernel sizes. The corresponding matrix sizes for each kernel size
are (160,160)(160,160) for 21 ms, (160,320)(320,160) for 51 ms,
(160,480)(480,160) for 102 ms, (160,640)(640,160) for 172 ms,
(160,800)(800,160) for 285 ms, and (160,960)(960,160) for 391 ms.

Fig. 3. Trap-less GPU processing architecture of FairGV.
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FairGV require additional processing time for transferring
and checking messages, but the overhead can be hidden
because the vGPU and the virtual CPU (vCPU) of the GPU
VM can execute on different cores.

3.2 FairGV Scheduling Method

FairGV combines three scheduling policies including fair
queuing, work-conserving, and GPU-centric coscheduling
to deal with workloads with mixed intensity of GPU
requests. Fair queuing is a basic scheduling policy of
FairGV, which attains fairness when sharing a limited
resource. However, fair queuing alone is not sufficient to
achieve high fairness and utilization with mixed workloads.
Therefore, FairGV adaptively activates work-conserving
and/or GPU-centric coscheduling according to the work-
load characteristics.

Work-conserving is applied to non GPU-intensive work-
loads in order to improve GPU utilization. Work-conserving
keeps the GPU busy by allowing a vGPU temporarily hav-
ing no GPU request to yield its allocated GPU to another
vGPU ready to be scheduled. GPU-centric coscheduling is
adaptively applied to CPU-GPU interactive workloads to
improve the fairness. In this policy, the GPU scheduler has
the capability to request coscheduling, instead of the CPU
scheduler. GPU-centric coscheduling preserves the fairness
policy of fair queuing by eliminating the interference from
the CPU scheduler. In summary, the three policies adap-
tively work together to achieve high fairness and utilization
for various workloads. The three policies can be applied to
both non-preemptive and preemptive GPUs.

3.2.1 Fair Queuing Algorithm

FairGV is based on a standard fair queuing algorithm, which
is widely used for sharing CPUs and I/O devices [30]. We
choose fair queuing for two reasons: First, it does not require
a priori knowledge of the length of the time slice. Given non-
preemptive GPUs, a vGPUmay overrun its time slice, which
would render scheduling decisions based on that time slice
inaccurate. Standard fair queuing overcomes this problem.
Second, standard fair queuing prevents a vGPU that wakes
up from a lengthy sleep period from accumulating signifi-
cant unspent GPU time andmonopolizing the GPU.

FairGV assigns a weight value, a start tag, and a finish
tag to each vGPU and schedules vGPUs in increasing order
of start tags. A weight value reflects the vGPU’s relative use
of GPU resources; it is assigned by the system administrator
according to the price paid for GPUs. The start tag and the
finish tag represent accumulated virtual run time before
and after using the GPU respectively; virtual time is
weighted run time and indicates computational progress
based on the weight. When a vGPU has finished its
requests, its start tag is updated as the value of its finish tag.
The finish tag of vGPU i, Fi, after the jth time quantum is
calculated as follows: Fi ¼ Si þ Li;j

vi
where Si denotes the

start tag, Li;j indicates the execution length (measured in
time units, i.e., milliseconds) at the jth time quantum, and
vi represents the weight. The finish tag is increased in
inverse proportion to the weight of the vGPU. A vGPU with
a high weight value will therefore have a start tag increasing
relatively slowly. As FairGV schedules vGPUs in increasing

order of start tags, this vGPU will be selected more fre-
quently in proportion to the weight. The algorithm also
maintains a global virtual time in order to assign a new start
tag to a vGPU that wakes up. The start tag of an unblocked
vGPU is updated as the current virtual time, which is the
minimum of the start tags of active vGPUs. With this
method, the vGPU cannot monopolize the GPU while it
catches up on the start tags of other runnable vGPUs.

Fig. 4 illustrates an example of start tag, finish tag, and
global virtual time calculation in FairGV. Consider two
vGPUs, 1 and 2, with weight values 1 and 2 respectively.
Let us suppose that the length of every time slice is 10 ms,
and vGPU 1 is scheduled first when vGPUs have the same
start tags. After the first quantum, the start tag of vGPU 1
becomes 10 because the finish tag is calculated as 10 (i.e.,
F1 ¼ S1 þ L1;1

v1
¼ 0þ 10

1 ¼ 10), and the start tag is updated as
the value of the finish tag. The scheduler proceeds to select
vGPU 2 because its start tag is less than that of vGPU 1.
After the first run, the start tag of vGPU 2 becomes 5 (i.e.,
F2 ¼ S2 þ L2;1

v2
¼ 0þ 10

2 ¼ 5). As the start tag of vGPU 2 is
less than that of vGPU 1, vGPU 2 is selected again. This pro-
cedure is repeated, and each vGPU receives GPU time in
proportion to its weight. After vGPU 1 is blocked at time 70,
it becomes runnable at time 105. Then, the start tag of vGPU
1 is forced to have the current virtual time, 35, which is the
minimum of the start tags in the system. vGPU 1 will be
scheduled in the next turn because of having the minimum
start tag, but it cannot claim resources from its idle period.

On preemptive GPUs, a short time slice value in fair
queuing (e.g., 1 ms) will cause considerable loss of through-
put because of the cost of context switching. To mitigate this
overhead, FairGV sets the time slice value to 30 ms when
preemptive GPUs are used. For non-preemptive GPUs, this
restriction can be relaxed, and we set the value to 6 ms to
improve the responsiveness of interactive applications. The
both time slice values can be adjusted by the cloud
administrator.

3.2.2 Work-Conserving Scheduling

To improve the total GPU utilization, the GPU scheduler in
FairGV supports work-conserving where a vGPU voluntarily
yields the GPU during its time slice when it has no requests
to issue. Such a vGPU accommodates a non-saturating work-
load that sleeps frequently or is CPU-intensive. To implement
work conservation, when a vGPU checks the request ring
and finds no requests, it yields the GPU after a predefined
spinning time. Wewill refer to this policy as hybrid spinning.
In our prototype, the vGPU releases the GPU after spinning

Fig. 4. Example of start tag, finish tag, and global virtual time calculation.
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100 K times. The time is configured after considering the
communication latency between the host and the guest. Fair
queuing changes the status flag of this vGPU to blocked and
later unblocks itwhen a new request is available in the request
ring. FairGV also helps the CPU scheduler implement awork-
conserving policy. When a GPU VM does not have a new
message in the response ring because its vGPU is not online,
the VM voluntarily releases the CPU instead of continuously
polling the ring. The same predefined spinning time as that of
the GPU scheduler is used in this hybrid spinning.

3.2.3 GPU-Centric Coscheduling Policy

Some GPU applications continuously submit asynchronous
kernel launch functions to the GPU. In these applications,
synchronous calls are used rarely, mainly just for copying
data between the host and the device before and after conse-
cutive kernel launch and completion. In FairGV, asynchro-
nous GPU calls are queued at the request ring (Section 3.1)
and executed asynchronously. Therefore, the GPU VM
scheduled by the CPU scheduler can proceed regardless of
whether or not its vGPU is currently online. However, other
applications execute at least one synchronous call per kernel
launch. They typically perform a device to host copy opera-
tion after a kernel launch, and this copy is a synchronous
operation. We refer to these applications as CPU-GPU inter-
active applications. A synchronous call requires the GPU
VM to wait for the result returned from the GPU. Therefore,
if the corresponding vGPU is not scheduled immediately,
the GPU VM cannot make progress for a significant amount
of time, leading to severe performance degradation.

Algorithm 1. CPU Scheduler Part of Pegasus

next_vcpu next vCPU to be run;
next_vgpu find_vgpu(next_vcpu);
if next_vgpu 6¼ NULL then
send_schedule_info_to_CPU(next_vgpu);

end

Algorithm 2. GPU Scheduler Part of Pegasus

curr_vgpu current running vGPU;
target_vgpu target vGPU informed by the CPU;
max_credit find_max_credit_value(target_vgpu);
target_credit credit_value(target_vgpu);
if target_credit � max_credit then
GPU_context_switch(curr_vgpu, target_vgpu);

else
continue_running(curr_vgpu);

end

Coscheduling of a GPU VM and its corresponding vGPU
can solve this problem. Coscheduling was originally pro-
posed in [31], and is widely used in several CPU schedulers
for hypervisors [32] in order to address the performance
implications of synchronization between vCPUs. Pega-
sus [10] applies a Strict coscheduling policy for virtualized
GPU scheduling. The Strict coscheduling policy makes a
GPU VM and its corresponding vGPU run on physical cores
simultaneously. Therefore, Strict coscheduling allows the
GPU VM to progress immediately when a synchronous call

is submitted. In this scheduling scheme, the CPU scheduler
sends a coscheduling request to the GPU scheduler
when the next vCPU has a runnable vGPU as shown in
Algorithm 1. The GPU scheduler then preempts the current
running vGPU and schedules the next vGPU informed by
the CPU scheduler. Strict coscheduling prevents uncondi-
tional coscheduling because unfairness can occur between
vGPUs when low weight vGPUs are scheduled frequently.
For this purpose, the GPU scheduler performs a fairness
condition check shown in Algorithm 2. The condition is that
the credit value of the target vGPU should be higher than
the maximum credit value of other vGPUs. If this condition
is met, the current vGPU context is preempted.

Strict coscheduling in Pegasus can improve the perfor-
mance of workloads with frequent CPU-GPU interaction,
but suffers from two limitations. First, Strict coscheduling
and its sibling, AugC [10], cannot achieve good fairness.
This is because the CPU scheduler frequently interferes
in the scheduling policy of the GPU scheduler. The GPU
scheduler part in Pegasus is based on Credit schedul-
ing [26], and this policy can maintain good fairness only
when the time slice of each vGPU is fully and exactly
consumed. When the CPU scheduler preempts the cur-
rent running vGPU, the de-scheduled vGPU is put at the
tail of its priority list without fully spending its time
slice. This situation can compromise overall fairness [33].
The coscheduling condition check in Algorithm 2 pre-
vents excessive and unconditional vGPU preemption,
but it cannot promise good fairness because it allows a
certain amount of preemption. Second, multiple coordi-
nation requests issued from different cores at the same
time cannot be accepted. Under the coscheduling condi-
tion check policy, only one GPU VM that has the maxi-
mum credit value can be accepted by the GPU scheduler.
Unselected GPU VMs should then wait even though they
need their vGPUs.

Algorithm 3. GPU Scheduler Part of FairGV

prev_vgpu previous vGPU to be preempted;
next_vgpu next vGPU to run;
GPU_context_switch(prev_vgpu, next_vgpu);
if CPU_GPU_interactive(next_vgpu) = true then
next_vcpu find_vcpu(next_vgpu);
send_schedule_info_to_CPU(next_vcpu);

end

Algorithm 4. CPU Scheduler Part of FairGV

next_vcpu vCPU informed by GPU scheduling;
cpu current cpu number of next_vcpu;
if next_vcpu = IDLE then
wakeup_vcpu(next_vcpu);

end
resched_cpu(cpu);

To address these issues, we propose a new GPU-centric
coscheduling policy. The key idea is to pass the capability to
request coscheduling to the GPU scheduler, instead of the
CPU scheduler. The GPU scheduler can then retain the pri-
mary responsibility for preserving the fair share of each
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vGPU while protecting the performance of workloads with
frequent CPU-GPU interaction. Furthermore, as the GPU
scheduler requests only one vCPU candidate for coschedul-
ing at each instance, the execution of GPU VMs is balanced
and not interleaved in time. This eliminates unnecessary
waiting of VMs that require synchronized GPU executions.

The GPU scheduler part in FairGV is based on the fair
queuing policy explained in Section 3.2.1. The GPU sched-
uler sends a coordination request to the CPU scheduler
when it changes the current vGPU context as shown in
Algorithm 3. The request is delivered to the CPU scheduler
in KVM via a new system call that receives the next vCPU
as a parameter. Upon the request, the CPU scheduler
unblocks the requested vCPU and tickles the core where the
vCPU has become runnable in order to schedule the vCPU
as shown in Algorithm 4.

The vCPU associated with the next vGPU should be
scheduled immediately by the CPU scheduler for effective
coscheduling. The CPU scheduler in KVM, the Completely
Fair Scheduler (CFS), implements a class of weighted fair
queuing [34], similar to that of FairGV. When FairGV tickles
the core where the target vCPU becomes runnable, CFS
selects a vCPU with the lowest virtual time in the run
queue. To ensure that the target vCPU is selected, FairGV
takes advantage of hybrid spinning (Section 3.2.2) where a
vCPU of a GPU VM is blocked when the GPU VM does not
have an item to process in the response ring. When the next
vGPU (next_vgpu in Algorithm 3) was de-scheduled in its
previous preemption point, the next vCPU (next_vcpu in
Algorithm 4) would be also blocked by hybrid spinning,
because its vGPU became offline. When the next vCPU is
unblocked at the current scheduling point, it can have the
lowest virtual time allocated by the fair queuing algorithm
of the CPU scheduler. Therefore, the target vCPU can be
scheduled immediately for coscheduling. This mechanism
is non-intrusive, because FairGV does not force the CPU
scheduler to schedule the target vCPU. Otherwise, the CPU
scheduler may hamper fairness between CPU workloads.

In addition, FairGV implements a hybrid scheduling pol-
icy where CPU-GPU interactive workloads are selectively
coscheduled (Algorithm 3). Coscheduling is not effective
and may cause some overhead against non CPU-GPU inter-
active applications, because such applications mainly issue
asynchronous GPU calls. To selectively apply coscheduling,
FairGV characterizes GPU workloads in the host by measur-
ing the frequency of synchronous calls. When a vGPU sub-
mits more than 10 synchronous calls per 10 ms, we classify
the vGPU as CPU-GPU interactive and apply coscheduling.
To deal with fluctuating phase changes in GPU workloads,
FairGV continuously monitors communication between the
CPU and the GPU. FairGV feeds this information to the
GPU scheduler in order to decide whether to coschedule a
vGPU and its corresponding vCPU.

When there is more than one vCPU in the GPU VM,
FairGV associates a vGPU with its corresponding vCPU
by tracking the CPU a request is coming from, between all
vCPUs in the GPU VM. The frontend sends its CPU num-
ber (i.e., virtual CPU number) to the backend through a
descriptor when it submits GPU requests. The GPU sched-
uler knows which vCPU to coschedule by tracking this
information.

3.3 Non-Preemptive Scheduling

FairGV targets supporting fair GPU scheduling for both
non-preemptive and preemptive GPUs. GPUs were non-
preemptive until recently, which implies that GPU requests
are processed serially in a GPU on a first come, first served
basis. GPUs could only preempt executions at the boundary
of GPU kernel calls. The problem with this approach is that
certain kernels are composed of an amount of computation
work, and such kernels can cause unfairness and poor
responsiveness in a shared environment. To overcome this
limitation, GPU architectures that support hardware-based
preemption were suggested, and finally preemptive GPUs
have emerged in the market recently [4]. However, context
switching in such GPUs is very expensive and recent
research [5] reports that hardware-based preemption
decreases the total throughput up to 35 percent in a wide
range of GPU applications. Owing to this reason, we expect
that certain HPC clouds will still employ non-preemptive
GPUs for throughput-sensitive applications. Therefore, sup-
porting non-preemptive GPUs for fair sharing in virtualiza-
tion is still an important issue and remains a challenging
endeavor.

3.3.1 Accounting Mechanism

For non-preemptive GPUs, a scheduling method needs to
precisely measure how long each request occupies a GPU
and to take this into account when scheduling vGPUs.
Scheduling vGPUs without respective request accounting
causes unfairness in a time slice-based scheduler because of
interference between short- and long-running kernels inside
the GPU. Let us suppose that a VM continuously executes
short running GPU kernels (e.g., 10 ms) whereas another
VM issues long running GPU kernels (e.g., 100 ms). As a
kernel launch operation is asynchronous, each VM can issue
as many GPU kernels as possible during its time slice. The
issued GPU kernels are then buffered in the hardware
queue of the GPU and are processed sequentially. However,
as the GPU is non-preemptive, the long running kernels will
be uninterrupted and monopolize the GPU, thus causing
severe unfairness between the two VMs. To achieve fair-
ness, we need to account for each GPU request and deliver
this information to the GPU scheduler.

OS kernel-based approaches address this problem via
reverse engineering. TimeGraph [8] and Gdev [9] replace
the black-box NVIDIA driver with the Nouveau [19] or
pscnv [20] driver, a reverse engineered driver for NVIDIA
GPUs. They configure the custom driver to generate an
interrupt after a group of requests is processed in the GPU.
Disengaged scheduling [14] infers the direct-mapped inter-
face by making the candidate memory region read-only and
catching the resulting page faults. However, reverse engi-
neering can be a difficult task as new GPUs are gradually
introduced in the market. For example, no open source
driver can fully support the recent Maxwell architecture of
NVIDIA since its introduction in February 2014. API remot-
ing approaches including Pegasus [10] and GViM [6] avoid
reverse engineering as they reuse the vendor GPU driver,
but they just allow a vGPU to run for a time slice, which
causes a severe fairness problem for mixed workloads.

To achieve fairness in the execution of short- and long-
running kernels, FairGV employs a simple interposition
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technique to account for the time each GPU request occu-
pies. The measured time is used by the GPU scheduler (Sec-
tion 3.2.1), for selecting a vGPU to run. The technique
FairGV develops is not dependent on reverse engineering
and can be applied to any GPU virtualization platform.
FairGV inserts an additional device synchronization func-
tion (e.g., cudaDeviceSynchronize() in CUDA and clFinish()
in OpenCL) after a vGPU dispatches a request, as depicted
in Fig. 5. The synchronization function waits until the GPU
has completed the submitted request. Therefore, when the
function returns, the vGPU can measure the execution time
of the submitted request. Table 2 shows the average execu-
tion time of the first 20 kernels of selected applications in
the CUDA SDK, which are measured by the NVIDIA Pro-
filer and FairGV respectively. The results indicate that the
interposition technique of FairGV is quite accurate, with an
error of less than 3 percent of the actual run time.

Because GPU software stacks are generally not open
source, the operation of device synchronization functions is
unclear. We infer that the function continuously checks a
reference counter in the memory-mapped I/O region, and
the counter tracks the completion of each request. This
assumption is based on reverse engineered results that rec-
ognize the semantics of data structures in user space [8],
[19], [35]. Because of this additional processing, we observe
that inserting a device synchronization function after
every GPU request causes a drop in performance of up to
7 percent. To alleviate this, we introduce a sampling tech-
nique, described in more detail in Section 3.3.2.

3.3.2 Collaborative Scheduling

When FairGV operates on non-preemptive GPUs, the
scheduling discipline of FairGV is configured as non-
preemptive. In this discipline, each vGPU has an accounting
function (explained in Section 3.3.1) for measuring GPU
usage. When the usage exceeds the length of a predefined
time slice (i.e., 6 ms), the vGPU informs the GPU scheduler
of the usage and voluntarily releases the GPU. The sched-
uler then executes its account update function and selects
the next vGPU to run.

FairGV uses the interposition mechanism to measure the
GPU usage of each request (Section 3.3.1). This mechanism
introduces overhead up to 7 percent. To address this prob-
lem, we introduce a sampling technique that can predict the
number of requests that may use up the entire length of the
time slice. When a vGPU is selected to run, it measures the
execution times of the first several requests (5 in our system)
and obtains the average completion time. During this sam-
pling period, if the sum of the lengths of the requests
exceeds the length of time slice, the vGPU is forced to
release the GPU. Based on the obtained value, the

accounting function infers the number of remaining
requests to fill the time slice value. The vGPU then runs
without interposition until it reaches its last request. A
device synchronization function then follows the last
request to exactly measure the total execution time. As the
execution times of successive GPU kernels of a program
tend to be similar, this mechanism preserves accurate
accounting while substantially reducing the overhead.
Additional samples can improve accounting accuracy, but
may sacrifice performance. Accounting inaccuracy or a con-
siderable surplus or shortage of run time caused by sudden
phase changes in the application can be compensated by
fair queuing in subsequent scheduling points.

FairGV in non-preemptive scheduling specifically targets
the efficient execution of fine-grainGPU kernels, with typical
execution times under 500ms, similarly to all GPU virtualiza-
tion systems published in the literature [9], [10]. Many
important HPC applications, such as particle simulation,
molecular dynamics, andmedical imaging, as well as emerg-
ing applications in the domain of real-time data analytics for
computational finance, smart traffic, and cybersecurity
repetitively or continuously execute short-lived kernels that
require low latency processing [14]. FairGV’s cooperative
scheduling is beneficial for improving fairness and GPU uti-
lization without compromising latency in these scenarios.

FairGV also copes with repetitive coarse-grain kernels
exceeding the length of the time slice. When such a kernel
uses up its time slice, fair queuing assigns the correspond-
ing vGPU a high start tag value after the kernel finishes its
execution. The corresponding vGPU will not be selected
again until other vGPUs with fine-grain kernels catch up on
the start tag. In this way, fairness is preserved between
long- and short-running kernels.

Unfortunately, offending, greedy, or buggy applications
can submit very long running kernels into their vGPUs (e.g.,
60 seconds). This puts cooperative scheduling in jeopardy. To
address this issue, FairGV implements a GPU kernel slicing
technique that can split a long running GPU kernel into small
ones. The literature shows this technique to be feasible with
low performance overhead and significant benefits in terms
of responsiveness [36]. We have adopted the implementation
details from GPES [37]. When a vGPU has a long running
kernel, FairGV divides the kernel into a set of sub-kernels so
that a sub-kernel is executed by a specified number of thread
blocks. How to decide an appropriate number of thread
blockswill be discussed inmore detail in Section 5.5.

4 IMPLEMENTATION

FairGV is implemented in the KVM hypervisor. The imple-
mentation is depicted in Fig. 6. FairGV is based on GVirtuS

Fig. 5. Pseudo code of the accounting mechanism in FairGV.

TABLE 2
Average Execution Time of the First 20 Kernels Measured by

the NVIDIA Profiler and FairGV

Benchmark NVIDIA (ms) FairGV (ms) Error (%)

matrixMul 207 214 3
BlackScholes 377 381 1
scan 171 176 3
convoiutionSeparable 391 397 2
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and reuses the GVirtuS wrapper library in the guest OS, and
the GPU call handler in the host OS by which the vGPU exe-
cutes CUDA/OpenCL operations. Also, FairGV performs
significant changes to the frontend and the backend of GVir-
tuS to implement the trap-less architecture and other sup-
port for scheduling. We additionally implement our GPU
scheduling methods on top of the redesigned framework.
This section provides implementation details regarding the
inter-VM shared memory, GPU scheduling, and coordina-
tion mechanisms.

4.1 Inter-VM Shared Memory

As explained in Section 3.1, FairGV establishes a shared
memory segment between the host and a guest when the
guest boots. For this purpose, we develop a virtual device
in QEMU, which is a user space interface of KVM and emu-
lates peripherals, to map a shared memory region created
by the host into the guest address space. The virtual device
can be controlled by the guest with a loadable kernel mod-
ule. The shared memory creation process is as follows: First,
the backend creates a POSIX shared memory object using
shm_open() and transfers the object handle to the frontend
by a network transport. Second, the frontend informs the
virtual device in QEMU about the handle so that the virtual
device can open and map the same region by using
shm_open() and mmap(). Finally, the frontend can use the
region by mapping the virtual device into memory.

4.2 GPU Scheduling

The GPU scheduler implements fair queuing by maintain-
ing vGPUs in a time-ordered red-black tree, similarly to the

CPU scheduler of KVM [34]. A red-black tree is a self-
balancing binary tree, which offers good worst-case run
time. The GPU scheduler stores vGPUs having lowest start
tags toward the left side of the binary tree and selects the
left-most node at a scheduling point. The GPU scheduler
and each vGPU are implemented as user-level processes in
the host. They are also bound to a dedicated core. For con-
text switching, the GPU scheduler requests the CPU sched-
uler to swap the current and next vGPUs through a new
system call. The CPU scheduler then blocks the current
vGPU and wakes the chosen one up to proceed. As there
are no other runnable processes in the dedicated core, the
next vGPU can be executed without delay.

4.3 Coordination Mechanism

As explained in Section 3.2.3, the GPU scheduler sends a
coscheduling event to the CPU scheduler when the selected
workload is CPU-GPU interactive. In this case, the CPU
scheduler awakes the vCPU of the selected vGPU in order
to coschedule the two. For this procedure, the GPU sched-
uler sends the target vCPU information through a new sys-
tem call. Upon message reception, the system call handler
unblocks the target vCPU by changing the status flag to
runnable and tickles the target core by calling resched_cpu().

5 EVALUATION

We implemented FairGV on an Intel Xeon E5-2620 v3 plat-
form with six 2.4 GHz cores, 15 MB of L3 cache, and 32 GB
of main memory. The GPU used in this evaluation is an
NVIDIA TitanX with 3,072 cores, which is based on the
NVIDIA Maxwell architecture and does not support
hardware-based preemption. Our experiments employ the
NVIDIA 352.55 driver and the CUDA 6.5 library, which is
supported by the current version of GVirtuS.

5.1 Experimental Workload

We collected benchmarks from Rodinia 3.0 [38] and the
CUDA SDK 6.5, which provide applications from a diverse
range of HPC domains. The list of benchmarks is provided
in Table 3. BS, CS, HG, MM, and SCAN are from the CUDA
SDK while the remaining ones come from the Rodinia suite.
We lengthened the execution time of each program to about
10 seconds by increasing the problem size or the iteration

Fig. 6. Implementation detail of FairGV.

TABLE 3
Description of the Evaluated Benchmark Applications

Benchmark Domain CPU-GPU
interactive

Kernel
size (ms)

Total calls
per 10 ms

Asynchronous
calls per 10 ms

Synchronous
calls per 10 ms

Run time in
VM (s)

cfd (CFD) Fluid Dynamics Yes 198 136.891 49.761 87.130 8.0
heartwall (HW) Medical Imaging Yes 10,201 12.028 0.794 11.233 1.3
hotspot (HS) Physics Simulation No 133 59.534 59.520 0.014 7.8
laveMD (LMD) Molecular Dynamics No 1,908,357 0.064 0.002 0.061 3.4
nw (NW) Bioinformatics No 11,032 2.743 2.666 0.076 1.4
pathfinder (PF) Grid Traversal No 592 0.105 0.027 0.078 1.8
srad_v1 (SRD1) Image Processing Yes 46 891.115 247.525 643.589 9.3
BlackScholes (BS) Finance Processing Yes 377 52.673 26.318 26.355 7.6
convolutionSeparable (CS) Image Processing Yes 391 38.515 19.223 19.281 5.2
histogram (FIG) Image Processing Yes 431 79.150 39.561 39.588 10.1
matrixMul (MM) Math Processing No 207 44.275 44.241 0.033 5.8
scan (SCAN) Array Processing Yes 171 109.462 54.705 54.757 8.8
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count, which minimizes the GPU initialization cost when
we repeatedly execute programs for evaluation. We profiled
each program in Table 3 by measuring the average kernel
size and the frequency of GPU calls per unit of time between
the host and the device. When a vCPU issues more than 10
synchronous calls per 10 ms, we characterize the program
as CPU-GPU interactive as explained in Section 3.2.3. This
class of applications demands a coscheduling method.

5.2 Trap-Less Architecture Evaluation

The performance overhead (or speedup) when using GVir-
tuS, rCUDA, and FairGV is depicted in Fig. 7. The overhead
is calculated by dividing the execution time of a program in
a VM by the time taken by the program in native Linux. We
ran each benchmark program 30 times and obtained the
average value to report the overhead.

GVirtuS with its shared memory module can suffer from
performance degradation when the kernel size is under
250 ms (CFD, HS, SRD1, MM, and SCAN). Trapping to the
OS kernel per request causes high overhead as explained in
Section 3.1. rCUDA uses TCP/IP for inter-VM communica-
tion [17]. For high network performance, we enabled virtio,
which is a para-virtualized network driver for KVM and
offers up to 30 Gbps of inter-VM bandwidth in our system.
Compared to GVirtuS, rCUDA does not show performance
degradation inHS andMM,whichmainly execute asynchro-
nous calls, despite their small kernel sizes. In rCUDA, asyn-
chronous calls are transferred to the host asynchronously
and buffered in the queue while the GPU is running [13].
Therefore, the trapping overhead can be overlapped with
GPU computation. rCUDA exhibits performance degrada-
tion in applications with small kernel sizes and frequent syn-
chronous calls (i.e., CFD, SRD1, and SCAN) because they
burden the network virtualization stack. SRD1 specifically
generates significant overhead due to very small (46 ms) and
repetitive (644 sync calls per 10ms) requests.

FairGV addresses this issue by introducing the trap-less
architecture. The overhead of FairGV in most of these pro-
grams is close to ideal (1.0). Because the vGPU and its vCPU
execute in parallel, occasionally, FairGV introduces slight
speedup (e.g., CFD and BS), which means that FairGV actu-
ally achieves more efficient scheduling than Linux. This
result also shows that the interposition technique in FairGV
does not cause performance degradation due to the sampling
technique introduced in Section 3.3.2. PF in FairGV shows a
little higher overhead than other benchmarks, because of fre-
quent file access operations during its execution. This is
caused by the I/O performance overhead in virtualization
and addressing it is beyond the scope of this paper.

5.3 GPU Schedulers for Comparison

We implemented state of the art GPU schedulers including
Credit and Strict coscheduling to evaluate their impact on our
workloads in terms of fairness and performance. The imple-
mentation of Credit scheduling is adopted from the CPU
scheduler of Xen [26]. We created two variants, Credit-poll
and Credit-hs. Credit-poll adopts continuous polling when
checking the response ring whereas Credit-hs uses FairGV’s
hybrid spinning for the CPU scheduler (Section 3.2.2). The
algorithm of Strict coscheduling is from Pegasus [10] and is
based on Credit scheduling. The policy makes a vCPU and
its corresponding vGPU run on physical cores simulta-
neously to solve synchronization bottlenecks. It sends a
coscheduling request from the CPU scheduler to the GPU
scheduler when a GPU VM is selected to run whereas
FairGV generates the request from the GPU scheduler
(Section 3.2.3). Both the Credit scheduler and the Strict
coscheduler adopt simple time-sharing based on a time slice.

5.4 FairGV Scheduling Method Evaluation

This section evaluates FairGV’s basic scheduling policies
including fair queuing, work-conserving, and coscheduling.

5.4.1 Fairness and Performance Metric

To quantify fairness between multi-tenants in the Cloud, we
use the Min-Max Ratio (MMR), as introduced in Pisces [39],
which provides a min-max fairness notation for multi-
tenancy. The MMR is defined as min xi

max xi
, where xi is the nor-

malized throughput of vGPU i. xi is calculated as Ti
Oi
, where

Ti is the measured throughput of vGPU i, and Oi is the ideal

fair throughput of the vGPU. The index ranges from 0
(completely unfair) to 1 (completely fair). For a performance
metric, we use the aggregated overhead (or equivalently,
speedup). We obtain this metric by dividing the ideal aggre-
gated throughput by the measured aggregated throughput.
In this experiment, we run the same benchmark program in
all VMs: 1) to prevent existing schedulers based on simple
time-sharing from introducing unfairness with different
kernel-sized workloads and 2) to harmonize the perfor-
mance metric that we use for the MMR, as each benchmark
reports a different performance metric depending on its
application domain (e.g., the execution time in seconds or
processed options or pixels per second).

5.4.2 vCPU Weight Assignment

We vary the weight of each vGPU to evaluate weighted fair
sharing. In this setup, the CPU weights of GPU VMs should
be calculated accurately to guarantee minimum CPU alloca-
tions to the VMs. If the CPU weight is too low, the GPU VM
cannot run for sufficiently long time to submit GPU requests
to its vGPU. A GPU VM requires at least the same amount
of CPU time as the corresponding vGPU will consume. If
the GPU VM has an additional CPU workload, it should be
given additional weight for processing that workload.

5.4.3 Evaluation in a Non-Congested Setup

To understand the basic scheduling capability in a non
congested execution environment, we deploy three VMs
on the same core. As every benchmark in Table 3 is a

Fig. 7. Basic standalone performance.

HONG ET AL.: FAIRGV: FAIR AND FAST GPU VIRTUALIZATION 3481

Authorized licensed use limited to: Chung-ang Univ. Downloaded on October 05,2023 at 00:46:12 UTC from IEEE Xplore.  Restrictions apply. 



single-threaded application, each VM launches only one
vCPU together with its vGPU. The ratio of the vGPU
weights for VM1-VM3 is configured to 1:2:3. We select four
applications with a long execution time from Table 3: MM,
HS, BS, and SRD1. BS and SRD1 are CPU-GPU interactive
applications whereas the others are not. Other programs
with long running times show similar patterns to the
selected ones, according to CPU-GPU interactivity. We ran
each benchmark program 30 times and obtained the average
value measured when all programs were run concurrently.
As the relative standard deviation of the execution times is
less than 7 percent, the obtained average value can be used
to compare performance and fairness.

Fig. 8 shows the completion time, MMR, and aggregated
overhead of each application. For the non CPU-GPU inter-
active workloads (MM and HS), Credit-poll and -hs can
achieve high fairness (� 0:9 MMR) with low overhead
(� 1). The GPU VM in these applications performs mainly
asynchronous calls in which the CPU and the GPU schedu-
lers can work independently of each other. High fairness
between vGPUs is then achieved by the fairness policy
of Credit scheduling. Strict coscheduling fails to achieve
reasonable fairness because it can only handle CPU-GPU
interactive applications properly. For non-interactive appli-
cations, Stric coscheduling causes unnecessary and frequent
vGPU context switching due to coordination requests from
the CPU scheduler. As the GPU scheduler is mainly respon-
sible for preserving the fair share of each vGPU, frequently
changing vGPU contexts by the CPU scheduler causes
unfairness. FairGV operates using non-coscheduling by
hybrid scheduling for non CPU-GPU interactive applica-
tions. It achieves nearly ideal weighted fair sharing (� 0:99
MMR), similarly to other Credit scheduling policies.

Considering CPU-GPU interactive workloads, Credit-
poll suffers from fairness and performance deterioration.
When the corresponding vGPU is not online, the GPU VM
spins uselessly checking the response ring for the replies of

synchronous calls. Strict coscheduling solves this problem
by running the vCPU and its vGPU together, which can dra-
matically improve performance and fairness. Credit-hs can
also deal with this situation properly because the waiting
VM yields the CPU to other GPU VMs that may have pend-
ing replies. As SRD1 is far more CPU-GPU interactive than
BS (644 versus 26 sync calls per 10 ms), Credit-hs exhibits
high overhead in SRD1; frequent synchronous calls may
cause excessive vCPU context switching, which is an expen-
sive operation. FairGV can achieve nearly ideal weighted
fair sharing (� 0:99 MMR) with the least overhead among
all schedulers because it makes accurate coscheduling deci-
sions in the GPU scheduler. These decisions cause neither
unnecessary vCPU switching, which may harm perfor-
mance, nor vGPU switching, which may harm fairness.

5.4.4 Evaluation in a Congested Environment

This section evaluates the schedulers under congestion,
where the GPU device is shared by multiple VMs at the
same time. For this purpose, we deploy six VMs in three
cores and run BS and SRD1 respectively. The weight ratio of
VM1-VM6 is configured as 1:2:2:3:3:4. We pinned two adja-
cent VMs in the same core, thus making the total ratio across
the cores (1+2):(2+3):(3+4), to observe the performance and
fairness impact of the unbalanced weight combination.

Fig. 9 shows the completion time, MMR, and aggregated
overhead of each application. In this evaluation, Strict
coscheduling cannot achieve fairness at all because GPU
scheduling is significantly affected by CPU scheduling. On
the same core, a vCPU with a high weight achieves better
performance as the number of coscheduling requests issued
by the GPU VM is in proportion to its vCPU weight
(Section 5.4.2). Pegasus suggests the fairness condition
check algorithm to prevent excessive vGPU switch-
ing (Algorithm 2), but it does not work properly in a con-
gested execution environment. Credit-hs exhibits high
fairness and performance in the case of BS, but not in SRD1.

Fig. 8. Completion time for MM, HS, BS, and SRD1 deployed in three VMs. The ratio of the GPU weights for VM1-VM3 is 1:2:3. M and O denote the
Min-Max Ratio (MMR) and the overhead respectively.
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Because SRD1 is highly CPU-GPU interactive, yielding
operations occur frequently in each GPU VM, thus spend-
ing significant amounts of time in vCPU context switching.
FairGV shows quite high fairness (� 0:97 MMR) with low
overhead (� 1:02) under congestion.

5.4.5 Work-Conserving Scheduling Evaluation

Fig. 10 shows the total GPU utilization of co-running VMs
running BS and a non-GPU-saturating version of MM, using
FairGV with and without the work-conserving policy. In
this evaluation, we modified MM to contain sleep functions,
which decrease the percentage of time MM spends on the
CPU. We adjusted the sleep to total execution time ratio
from 50 to 80 percent. FairGV without the work-conserving
policy exhibits low GPU utilization as the sleep ratio
increases, compared to FairGV with the work-conserving
policy. In non work-conserving execution, the GPU is
wasted while a vGPU checks the request ring having no
requests with continuous polling. FairGV eventually adopts
hybrid spinning which preserves work-conserving schedul-
ing on the GPU and improves GPU utilization.

5.5 Non-Preemptive Scheduling Evaluation

This section evaluates FairGV’s support for non-preemptive
GPUs including collaborative scheduling and kernel slicing.

5.5.1 Collaborative Scheduling Evaluation

Fig. 11 shows the normalized run times of MM and HS exe-
cuting in a VM with the Credit-poll and FairGV policies
when another background VM executes MM while adjust-
ing the kernel size from 21-1,605 ms. In this experiment, we
observe the fairness impact on mixed workloads with dif-
ferent kernel sizes. The kernel size of background MM is
adjusted by changing the size of input matrices. Because
Credit-poll is a simple time sharing scheduler, the normal-
ized run times of MM and HS are adversely affected as the

kernel size of background MM increases. When the kernel
size of background MM is smaller than the kernel sizes of
MM (207 ms) and HS (133 ms), the normalized run times
stay under 2.0 in both programs, which means that MM and
HS are occupying more GPU resources than background
MM. In the opposite case, background MM significantly
increases the execution times of both programs. However,
FairGV shows robust fairness because FairGV’s collabora-
tive scheduling is based on accurate time accounting,
which accounts for each respective GPU request correctly
(Section 3.3.1). In FairGV, each vGPU has an accounting
function and measures the GPU usage after the completion
of a request. When the total usage reaches the time slice
value, the vGPU voluntarily releases the GPU and informs
the GPU scheduler of this usage. This procedure realizes
fair-sharing between workloads with different kernel sizes.

5.5.2 Kernel Slicing Evaluation

FairGV implements a GPU kernel slicing technique for pre-
venting offending, greedy, or buggy applications from
monopolizing the GPU as explained in Section 3.3.2. In this
section, we observe the overhead of this technique and heu-
ristically determine an appropriate number of thread blocks
per sub-kernel to minimize the overhead. For this purpose,
we slice the kernel of MM into multiple sub-kernels for two
inputs of grid sizes with 600� 600 and 900� 900 respec-
tively. Table 4 shows the slowdowns of the two large inputs,
whose execution times are about 20 and 80 seconds respec-
tively. From this result, we can identify that 1) a larger ker-
nel (900� 900) generally incurs less overhead than a
smaller kernel (600� 600) given the same number of sub-
kernels, 2) there exists a trade-off between fine-grained ker-
nels and overhead, and 3) when the number of thread
blocks per sub-kernel is more than about 1,500, the slow-
down can be confined to less than 5 percent. From this
observation, FairGV splits a long running kernel into small
ones so that the number of thread blocks executed in each
sub-kernel is no less than 1,500. FairGV identifies a kernel
as very long running when the grid size is more than
600� 600, but this value is configurable.

6 DISCUSSION

Beyond the trap-less GPU processing design and schedul-
ing methods, FairGV tries to achieve device memory parti-
tioning for each GPU VM. As the GPU device driver is a
black box, it is hard to explicitly partition the device mem-
ory between vGPUs. Programmers may write GPU kernels
that use the entire device memory space, or the total

Fig. 9. Completion time for BS and SRD1 deployed in six VMs. The ratio of the GPU weights for VM1-VM6 is 1:2:2:3:3:4.

Fig. 10. GPU utilization of co-running VMs running BS and a non-GPU-
saturating version of MM, using FairGV with and without the work-con-
serving policy.
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memory use of all co-running vGPUs may exceed the total
device memory capacity. These situations will result in
blocking of vGPUs. To address this issue, FairGV prevents a
vGPU from allocating memory beyond its allowed amount
through inspecting the device memory (de-)allocation func-
tions (e.g., cudaMalloc() and cudaFree() in CUDA, and
clCreateBuffer() and clReleaseMemObj() in OpenCL) at the
backend.

7 CONCLUSION

As current GPU virtualization software cannot provide
acceptable fairness and performance isolation, tenants in
cloud computing may experience unfairness and unpredict-
able performance variation due to contention with other
users. In this paper, we investigated the trap-less GPU proc-
essing architecture, the new fair queuing method, and the
collaborative scheduling algorithm for providing system-
wide weighted fair sharing and performance isolation in
GPU virtualization. Our FairGV prototype implementation
achieves near ideal fairness (� 0:97 Min-Max Ratio) with
high GPU utilization (� 1:02 aggregated overhead) in a
range of mixed HPC workloads.
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