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Abstract The astonishing development of diverse and different hardware platforms is
twofold: on one side, the challenge for the exascale performance for big data process-
ing and management; on the other side, the mobile and embedded devices for data
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collection and human machine interaction. This drove to a highly hierarchical evolu-
tion of programming models. GVirtuS is the general virtualization system developed
in 2009 and firstly introduced in 2010 enabling a completely transparent layer among
GPUs and VMs. This paper shows the latest achievements and developments of GVir-
tuS, now supporting CUDA 6.5, memory management and scheduling. Thanks to the
new and improved remoting capabilities, GVirtus now enables GPU sharing among
physical and virtual machines based on x86 and ARM CPUs on local workstations,
computing clusters and distributed cloud appliances.

Keywords GPGPU · HPC · ARM · Cloud · Virtualization

1 Introduction

In the challenge for the enormous benefits of exascale applications, the Top500 ranking
and its greener counterpart, the Green500 list, an impressive improvement is shown
in the performance-power ratio of large-scale high performance computing (HPC)
facilities over the last 5 years. Furthermore, a trend clearly visible in these two lists is the
adoption of hardware accelerators to obtain unprecedented levels of raw performance
with reasonable energy costs, which hints that future Exaflop systems will most likely
leverage some sort of specialized hardware [41].

The virtualization currently provided by popular open source hypervisors (XEN,
KVM, Virtual Box) does not allow software based transparent use of accelerators
as CUDA based GPUs. VMWare and XEN support GPU on the basis of hardware
virtualization provided natively by NVIDIA GRID devices instead [16].

High performance internet of things (HPIoT) and high performance cloud comput-
ing (HPCC) are typical examples of highly heterogeneous computing systems, where
different devices and computing units coexist in the same software environment [8].
They can be described as highly parallel internet-based models providing virtualized
and standard resources as a service over the Internet.

In this paper the evolution of our GVirtuS [12], generic virtualization service,
enabling transparent GPGPU virtualization [26] and remoting [13] for low-power
processors for, but not limited to, the acceleration of scientific applications is presented
[29]. In the latest GVirtuS incarnation the architecture independence was enforced,
in order to make it work with both CUDA and OpenCL on Intel and ARM architec-
ture, as well as with a clear roadmap heading to Power architectures compatibility.
The rest of the paper is organized in the following way: Sect. 2 is a brief technical
introduction about GVirtuS, its design, architecture and implementation; Sect. 3 is a
detailed description of the GVirtuS new features and how the heterogeneous archi-
tectures support has been enabled; Sect. 4 is about the experiment setup for different
scenarios; Sect. 5 shows the evaluation results; in Sect. 6 the current version of GVir-
tuS with other notable related works are compared and contrasted; finally, Sect. 7 is
about conclusions and future directions of this promising research.
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2 GVirtuS: A Tool to Virtualize Heterogeneous Architectures

GVirtuS is a generic virtualization framework for virtualization solutions based on a
split-driver model [1]. GVirtuS offers virtualization support for generic libraries such
as accelerator libraries (CUDA, OpenCL), with the advantage of independence from
all involved technologies: hypervisor, communicator and target of virtualization. This
feature is possible thanks to the plug-in design of the framework, enabling the choice
of different communicator or different stub-libraries mocking the virtualization target.
GVirtuS is transparent for developers: no changes are required in the software source
code to virtualize and execute and there is no need to recompile an already compiled
executable.

Low-power processors as ARM or Intel technologies are employed in diverse
and different environments for the resolution of highly complex scientific problems,
because their low cost and reduced cooling needs. On the other hand, the use of ARM
CPUs in HPC infrastructures is a cutting edge technology, but, apparently, not ready
for the prime time. At present, most scientific applications are too demanding of high
performance to run on the current generation of ARM CPUs, even when integrated
with GPUs. To accelerate the use of ARM in science production, remoting capabilities
in GVirtuS have been improved in order to share high-end GPU devices hosted on
x86 machines with low power/low cost ARM based computing clusters. This implies
important challenging issues from the architectural point of view, partially mitigated
by the GVirtuS modular design. Some requirements had to be set firmly in order
to make it possible, as the use of an ARM CPUs with endianness and word length
coherent to the x86 ones.

2.1 Architecture, Design and Implementation

GVirtuS strictly depends on CUDAAPIs version because the nature of the transparent
virtualization and remoting. In this paper we show our results in GVirtuS development
relying on the theCUDA6.5APIs. The use of this version ismotivated by the following
issues:

– After the release of the CUDA 3.0 APIs, the library design no longer fits the same
split-driver approach used by GVirtuS and other similar products;

– The CUDA 6.5 APIs unchain the CUDA power on tiny low power ARM architec-
ture: CUDA applications can be compiled directly on the ARM board if ad hoc
libraries available from NVIDIA are installed;

– CUDA is strictly proprietary and not open source, making the use of a virtualiza-
tion/remoting layer non trivial. The GVirtuS development is framed in a wider big
picture where the target application requirements are CUDA 6.5 compliant.

Since the first public release, the GVirtuS development has been characterized
by two main goals: providing a fully transparent virtualization/remoting solution;
reducing the overhead of virtualization and remoting to make the performance of the
virtualized solution as close as possible to the bare metal execution.

The front-end/back-end communication is abstracted by the communication inter-
face concretely implemented by each communicator component. This issue is critical,
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Fig. 1 The GVirtuS approach to the split-driver model

especially when the virtualized resources need to be thread-safe, as in case of GPUs
providing CUDA support. The methods implemented in this class support request
preparation, input parameters management, request execution, error checking and
output data recovery. The Handler class provides the base functionalities for each stub
function management. The back-end is executed on the host machine behaving as a
server component running as a user with enough privileges to interact with the CUDA
driver. The back-end accepts a new connection spawning a new process to serve the
front-end requests. The CUDA enabled application running on the virtual or remote
machine requests GPGPU resources to the virtualized device using the stub-library.
Each function in the stub-library follows these steps:

– Obtains a reference to the single Frontend instance;
– Uses Frontend class methods for setting the parameters;
– Invokes the Frontend handler method specifying the remote procedure name;
– Checks the remote procedure call results and handles output data.

In order to implement the NVIDIA CUDA stack split-driver using GVirtuS, a
developer has to subclass from Frontend, Backend and Handler classes. For CUDA
runtime virtualization the handler is implemented as a collection of functions and a
jump table for a specified service. As in GVirtuS predecessor gVirtuS, in the case
of CUDA runtime virtualization, the front-end has been implemented as a dynamic
library based on the interface of the original libcudart.so library. Beginning with the
second generation of GVirtuS component, the virtualization is focused on CUDA,
but not limited to it. Thanks to the GVirtuS modularity and technology/architecture
independence, the plug-ins for openCL and, partially, openGL have been developed.
The CUDA driver implementation is similar to the CUDA runtime, except for the low-
level ELF binarymanagement for CUDAkernels. A slightly different strategy has been
used for openCL and openGL support: the openCL library provided by NVIDIA is a
custom implementation of a public specification (Fig. 1).
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2.2 The Front-End

The front-end leverages on the driver’s APIs supported by the platform running on
a virtual machine instance or on a remote physical machine and is implemented as
a stub-library. A stub-library is a virtualization of the real APIs library on the client
operating system where the application is launched (typically a virtual machine or
a physical one without GPU support). The stub-library implements the functionality
of the host machine (GPU capable) on the guest machine. The role of the front-end
is to intercept calls to the functions of APIs supported, transfer to the back-end the
parameters passed to functions through the use of the selected communicator and
wait for the execution result from the back-end. This result is made possible by the
stub-library that provides the driver APIs abstraction to the guest application. When
a client application calls a function, the stub-library intercepts the call and packs the
serialized parameters in a buffer data structure. The front-end sends to the back-end
the serialized buffer and the name of the function called through the communicator
waiting for the response. For each method of the APIs there is a corresponding method
for the management and the execution in the front-end.

2.3 The Back-End

The back-end is the main component of the GVirtuS framework and runs on the host
machine (GPUcapable). The back-end daemon runs on the host operating system in the
user or superuser space, depending on the specifics of applications and security policies
waiting for an incoming connection from the front-end. The daemon implements the
back-end functionality dealingwith the physical device driver and performing the host-
side virtualization. When it receives a request, the back-end creates a new process and
loads the plug-in needed for the requested function execution. After this operation,
the back-end is ready for a new request from another guest machine. The new process
reads the name of the API called, calls the associated method for managing the API
required, allocates the space for the parameters of the method required and inserts the
value from the parameters passed in the buffer from the front-end. The back-end calls
the real API on the host machine through direct access to the driver of the physical
device and saves the result in another buffer. Finally, the buffer result is passed to the
front-end of the guest machine through the Communicator. To each method of the
APIs corresponds a method for the management and the execution in the back-end.

2.4 The Communicator

The communicator is an important component of the GVirtuS framework connect-
ing the front-end guest machine to the back-end host machine. The communicator is
independent of hypervisor and virtualized technology. The communicators have strict
high-performance requirements because they are used in system-critical components
split-drivermodel compliant. The communicator provides a secure, high-performance,
direct communication mechanism between the two sides of virtualization or remoting.
The choice of the communicator depends on the physicalmachine connectivity, in both
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Fig. 2 The GVirtuS architecture

host and guestmachines, because it influences the virtualization performance. GVirtuS
provides several communicator implementations, including the TCP/IP communi-
cator. The TCP/IP communicator is used for supporting virtualized and distributed
resources. In this way, a virtual machine running on a local host can access a virtual
resource physically connected to a remote host in a transparent way. In practice, the
communicator serializes the buffer structure and implements the transmission between
host and guest.

3 Remoting and Novelty Introduced Features

In order to fit the GPGPU/x86/ARM application into our generic virtualization sys-
tem, the back-end on the x86machine directly connected to the GPU based accelerator
device and the front-end on the ARM board(s) using the GVirtuS tcp/ip based commu-
nicator have been mapped. GVirtuS as NVIDIA CUDA remoting and virtualization
tool achieves good results in terms of performances and system transparency.

CUDA applications are executed on the ARM board through the GVirtuS front-
end. Thanks to the GVirtuS architecture, the front-end is the only component needed
on the guest side. This component acts as a transparent virtualization tool giving to
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a simple and inexpensive ARM board the illusion to be directly connected to one or
more high-end CUDA enabled GPGPU devices.

The diagram (Fig. 2) shows the computing architecture (ARM, x86_64) and the
acceleration model (CUDA, OpenCL) independence. GVirtuS currently supports a
growing subset of NVIDIA CUDA features. Thanks to the GVirtuS modular design,
some new features have been developed, such as the GPU scheduling.

3.1 Unified Virtual Addressing (UVA) Management

The unified memory, introduced with CUDA version 6.x. simplifies the programming
model by enabling applications to access CPU and GPU memory without the need to
manually copy data from one to the other, and makes it easier to add support for GPU
acceleration in a wide range of programming languages. When there is no distinction
between a host and device pointer, CUDA runtime can identify where the data are
stored and the correct value of the pointer. Essentially, in a unified virtual address
any space allocated through the cudaMalloc, cudaMallocManaged, cudaHostAlloc or
cudaMallocHost functions is mapped in a single unified space. As a consequence, for
example, the direction of the copy in a cudaMemcpy function becomes obsolete so it
is replaced by cudaMemcpyDefault. To support these features in GVirtuS, maps and
lists have been used (Fig. 3).

Anytime a call to a function is made from the cudaMalloc family, the result pointer
is stored in a list, so the nature of the pointer can be easily identified. When a call
to cudaMemcpy is performed, the front-end can correctly identify the direction even
when the cudaMemcpyDefault flag is selected. Direction mismatch is also avoidable,
but this feature is not provided by CUDA, so it has not been used for this project. The
nature of the pointers is determined by querying the list where the device pointers are
stored. To support the UVA any time a managed pointer is allocated, this is stored in a
map alongwith its size and a host pointer allocated throughmalloc function fromglibc.
When a managed pointer is involved in the execution, GVirtuS runtime takes care that
data are passed to the back-end and stored on the device. Moreover, GVirtuS runtime
takes care that the processed data are available on the front-end after the execution.
When a managed pointer has to be used, the GVirtuS runtime searches for a match
on the pointer map ensuring the coherence between the two virtualization/remoting
address spaces. The memory pinned by the managed pointer is copied from the front-
end to the back-end boundedwith the valid device pointer. Finally, theGVirtuS runtime
pushes in a stack the value of the host pointer.

All the pointers present in the stack after the computation are transferred from the
back-end to the front-end, so that the processed data are available on the front-end
side. At this stage, no significative overhead is introduced by the identification process.
Nevertheless, in theUVAcase a significant overhead is introduced, because any pointer
involved in the calculation must be enforced by coherence in both directions (Fig. 4).

3.2 GPU Scheduling

The GPU scheduler of GVirtuS enables fair and efficient use of virtualized GPUs
among multiple cloud users. The GPU scheduler multiplexes back-end processes
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Fig. 3 Automatic memory management

Fig. 4 Unified virtual address with back-end maps
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spawned by the GVirtuS Backend driver; GVirtuS creates a back-end process when-
ever a connection between the split-drivers is established, and terminates it after the
connection between them is closed. The scheduler maintains a run queue to accom-
modate runnable back-end processes and selects one of them to execute according to
its fairness policy. It then gives a token to the chosen process in order to allow the
process to exclusively access GPU devices during its time slice.

As a fairness policy, the GPU scheduler adopts the Credit scheduling policy, which
is a proportional fair-share algorithm employed in the Xen hypervisor as a CPU
scheduler. In this scheduling policy, the global credit accounting function periodically
(30ms) assigns a certain amount of credits to each back-endprocess in proportion to the
GPU weight. The accounting function then decides the priority of each process based
on the remaining credit amount. Similarly to the Xen hypervisor, the GPU scheduler
maintains two priorities: UNDER and OVER. If the credit value of a back-end process
is positive, its priority is set to UNDER. Otherwise, the priority becomes OVER. The
accounting function then sorts the back-end processes into priority order (UNDER
and OVER) in the run queue; for simplicity and fast sorting speed, the scheduler does
not sort them based on the credit amount.

The scheduler selects the next back-end process to run in the head of the run queue at
every scheduling instance; it implements the O(1) scheduling concept that can select
the next process within a fixed amount of time. While the chosen process is using
GPU devices, the credit value of the process is decreased at a fixed rate. After the time
slice, the back-end process is put at the tail of its priority list. Before the global credit
accounting function executes, its priority is maintained regardless of its current credit
amount in order to reduce the frequency of sorting. This whole procedure reflects the
motivation of credit scheduling, which focuses on efficient scheduling decision and
simple implementation.

As depicted in Fig. 5, the GPU scheduler is placed in the user space of the host
OS rather than in the kernel space in order to communicate with back-end processes
more efficiently. It utilizes POSIX shared memory and real time signal mechanisms
for synchronous and asynchronous communication respectively. When a back-end
process is created, it notifies the GPU scheduler of its process ID by a signal. The
GPU scheduler then inserts the process in the GPU run queue. When a timer alarm
event is sent to the GPU scheduler, the scheduler decides the next back-end process
to execute based on the Credit scheduling policy. The scheduler then revokes a token
from the previous process and delivers it to the next process via the shared memory.
In our implementation, the time slice of a running back-end process is configured to
6 ms, which can be adjusted by the administrator.

4 Scenarios and Prototypal Applications

Designing a test plan for the application scenario described in this paper is a complex
issue because, while many legacy CUDA enabled applications and widely accepted
performance test cases are available for the x86_64 architecture, the same is not true
for ARM. So we had to face the lack of standard testing guidelines for CUDA and
ARMs due to the weak available support for this technology, relatively new for CUDA
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Fig. 5 Procedure of GPU back-end process switching from back-end process 1–2

environment. From the hardware point of view, our test setup involves aMaxwell based
development workstation and a cluster built of 3 ARM based high-end single board
computers (SBCs).

In order to test performance for x86_64/x86_64/GPU two different evaluation soft-
ware have been used: CUDASW++ [23] and SRAD [36]. The first is a bioinformatics
software for Smith–Waterman protein database searches, while the latter is a diffusion
method for ultrasonic and radar imaging applications based on partial differential equa-
tions. Both applications take advantage of the massively parallel CUDA architecture
of NVIDIA.

ARM/x86/GPU performance tests have been produced developing an ad hoc MPI
Matrix Multiplication software [40] enabling the GVirtuS behaviour investigation
setting up a scenario where a x86 machine is used as an accelerator node of a high-
end ARM based cluster. The Matrix Multiplication software used is a matrix–matrix
multiply routine (GEMM, GEneral Matrix to Matrix Multiplication) achieving better
performance if compared with other usual implementations. This routine uses a LU,
QR, and Cholesky factorizations gaining up to 80–90.

4.1 The Development Workstation

The performance test system has been built on top of theUbuntu 14.04 Linux operating
system, the NVIDIA CUDA Driver, and the SDK/Toolkit version 6.5 hosted on a
workstation equipped by an i7-940@2.93 GHz 12Gb RAM. The GPU subsystem is
enforced by two NVIDIA GeForce Titan X 12Gb RAM powered by the Maxwell
chipset and summing up 3072 CUDA cores.
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4.2 The Cluster Based on High-End ARM Single Board Computer

In order to face with a real next generation high performance computing scenario, an
experimental cluster made by 3 NVIDIA Jetson TK1 computing nodes has been set
up, connected by a dedicated Gigabit Ethernet network to the developing workstation
mimicking an accelerator server. Each computing node relies on 4-PLUS-1CortexA15
r3 CPU architecture, that delivers higher performance and is more power efficient than
the previous generation, and a Kepler GPU architecture that utilizes 192 CUDA cores
to deliver advanced graphics capabilities, GPU computing with NVIDIA CUDA 6.x
support, breakthrough power efficiency and performance for the next generation of
gaming and GPU-accelerated computing applications.

4.3 Smith–Waterman Sequence Alignment

The Smith–Waterman algorithm has been available for more than 25 years. It is based
on a dynamic programming approach that explores all the possible alignments between
two sequences; as a result it returns the optimal local alignment. Unfortunately, the
computational cost is very high, requiring a number of operations proportional to
the product of two-sequence length. Furthermore, the exponential growth of protein
and DNA databases makes the Smith–Waterman algorithm unrealistic for searching
similarities in large sets of sequences [21]. The alignment of two sequences is based
on the computation of an alignment matrix. The number of its columns and rows is
given by the number of the residues in the query and database sequences respectively.
The computation is based on a substitution matrix and on a gap-penalty function. The
CUDASW++ [22] has been used as evaluation software. It is a publically available
open source software for Smith–Waterman protein database searches on Graphics
Processing Units with CUDA. This software has been added to the NVIDIA Tesla Bio
Workbench.

4.4 Rodinia Performance Study Application

The Rodinia software suite is widely accepted by the GPGPU scholars as a test
of CUDA performances and capabilities. It uses the Berkeleys dwarf taxonomy to
choose the applications developed using CUDA and OpenMP. Each dwarf represents
a set of algorithms with similar computation and data movement. Even though pro-
grams representing a particular dwarf may have varying characteristics, they share
strong underlying patterns. The dwarves are defined at a high level of abstraction
to allow reasoning about the program behaviors [37]. The Rodinia software suite
focuses on Structured Grid, Unstructured Grid, Combinational Logic, Dynamic Pro-
gramming, fast Fourier transform (FFT), N-Body, Monte Carlo and Dense Linear
Algebra dwarves. It targets on GPUs and multicore CPUs as a starting point in
developing a broader treatment of heterogeneous computing. Rodinia benchmark
suite enables users to evaluate heterogeneous systems including both accelerators,
such as GPUs, and multicore CPUs. The parallel computing on GPGPU applica-
tion chosen to test GVirtuS is speckle reducing anisotropic diffusion (SRAD) [39].
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SRAD is a diffusion method for ultrasonic and radar imaging applications based on
partial differential equations (PDEs). It is used to remove locally correlated noise,
known as speckles, without destroying important image features. SRAD consists
of several pieces of work: image extraction, continuous iterations over the image
(preparation, reduction, statistics, computation 1 and computation 2) and image
compression.

4.5 Matrix Multiplication

Our implementation of Matrix Multiplication takes advantage of shared memory
already used to evaluate the performances ARM CUDA enabled software offloaded
on remoted GPUs [24].

In this implementation each task (MPI process or thread) is responsible for com-
puting number_of_rows/number_of_task rows of the matrix C (Algorithm 1). Every
block of CUDA thread is responsible for the computing of one square sub-matrix Csub
of C and each thread within the block is responsible for computing one element of
Csub. Csub is equal to the product of two rectangular matrices: the sub-matrix of A
of dimension (A.width, block_size) that has the same row indices as Csub, and the
sub-matrix of B of dimension (block_size, A.width ) that has the same column indices
as Csub. In order to fit into the device resources, these two rectangular matrices are
divided into as many square matrices of dimension block_size as necessary and Csub
is computed as the sum of the products of these square matrices [3]. In order to easily
verify the correct execution of the code the software performs:

RAND(n × n) ∗ EYE(n × n) = RAND(n × n) (1)

The choice of this strategy comes from the easy scalability and evaluation, and because
it does not need synchronization mechanism to avoid race condition, this comes from
the spawn of the data amongst the tasks. We propose two implementations of this test:
one for MPI process and one for POSIX thread. The main process (Rank 0 in MPI)
takes care of distributing the data amongst the workers and collecting them after the
computing process is ended.

Writing a basic dense Matrix–Matrix Multiplication kernel is a fairly simple exer-
cise (see the CUDA Programming Guide for details). Achieving this high level of
performance, on the other hand, requires more careful optimization. Volkov and Dem-
mel [40] used a block algorithm similar to those used for vector computers, using
GPU registers and per-block shared memory to store the data blocks. As the GPU
has an unusually large register file, registers can be used as the primary scratch space
for the computation. Furthermore, assigning small blocks of elements to each thread,
rather than a single element to each thread, boosts efficiency much as strip-mining
boosts efficiency on vector machines. Finally, the non-blocking nature of loads on the
GPU makes it possible to do software prefetching, which is useful for hiding memory
latency [11] (Fig. 6).
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Algorithm 1MatrixMul MPI/CUDA
1: procedure mainTask
2: for i ← 1,num_of_tasks do
3: alocal ←a[offset * num_rows_a]
4: clocal ←c[offset * num_rows_b]
5: send_to_worker(alocal)
6: send_to_worker(b)
7: send_to_worker(clocal)
8: end for
9: for i ← 1,num_of_tasks do
10: collect_from_worker(i)
11: end for
12: end procedure
13: procedure workerTask
14: for a ← 1,num_of_el_a do
15: for k ← 1,num_of_block do
16: Csub ← calculate_C_submatrix(k)
17: end for
18: C ← collocate_Csub(Csub)
19: end for
20: end procedure

Fig. 6 Implementation of Matrix Multiplication multitask
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Fig. 7 The WaComM hybrid parallel implementation

4.6 Experiment Design for a Real World Problem

Water quality CommunityModel (WaComM) is a coastal area decisionmaking tool for
mussel farms food quality assessment and prediction. It is based on eulerian/lagrangian
methods. WaComM is numerically coupled with marine dynamics models [10] in an
offline fashion. WaComM has been developed and tested in X86_64 multicore envi-
ronments. Due to the intensive demanding computations, the porting to a hierarchically
parallel architecture has been designed and partially already implemented. In this sce-
nario we refactored the model code in order to implement distributed memory/shared
memory/GPGPU hierarchical parallelisation (Fig. 7).

The use of GVirtuS in order to take advantage of amassiveARMbasedHPC system
with few high-end CUDA equipped accelerator nodes could be the killing application
targeting the reduction of total cost of ownership (procurement, powering, cooling)
in an application field, the continuous operational real-time environmental modelling,
where the on-premises and on-cloud solutions are economically borderline options. A
forthcoming paper will discuss about the WaComM architecture, its implementation
and the performance assessment in a GVirtuS based, mixed ARM/X86_64/GPGPU
environment.

5 Results

From the wall clock time point of view, the execution of an application interacting
with a remoted GPU will sustain lower performance than the same in the full avail-
ability of a dedicated, local, not virtualized accelerator device. This is due to the
need of the split-driver interleaved layers and (in the case of GPU remoting) the net-
work infrastructure. In the best case the virtualization/remoting overhead is partially
balanced by the improvements in computation performance. This happens for some
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Table 1 SRAD parameters
R C y1 y2 x1 x2 L I

2048 2048 0 31 0 31 0.5 10

2048 2048 0 31 0 31 0.5 100

4096 4096 0 31 0 31 0.5 10

4096 4096 0 31 0 31 0.5 100

application classes characterized by the need for high GPU calculations feeded by a
relative poor amount of input and output parameters. But, if we change the point of
view from a strict performance oriented to a total costs of ownership perspective, the
GPU remoting permits to build a cluster with a reduced number of GPUs. The use
of GVirtuS middleware could be definitely effective if the applications are designed
explicitly to take advantage from an hybrid architecture computation environmentwith
a consistent costs reduction. The proposed evaluation tests have the target to demon-
strate the effectiveness of the designed infrastructure rather than themere performance
that, as previously stated, is affected by many ineluctable components that could be
mitigated with future technology improvements. It is possible to evaluate the overhead
introduced by GVirtuS faced with the chance to run CUDA code or no CUDA enabled
devices. Mainly, the bottleneck is the communication overhead due to the use of the
TCP communicator. This results in poor performance, especially stressed out when
the GPU remoting is done outside the local dedicated network where the overhead is
acceptable.

5.1 GPGPU Virtualization and Remoting

In this section the results of CUDASW++ (test 1) and SRAD (test 2) to test perfor-
mance for x86_64/x86_64/GPU in three different approaches have been showed.

Three test scenarios are presented:

– No virtualization the CUDA code is executed using regular CUDA libraries. This
is a measurement of the blank.

– Localhost remoting the CUDA code is executed using a remoted CUDA device
hosted on the same machine. This test verifies the effectiveness of GVirtuS
libraries.

– Virtualization the CUDA code is executed on a virtual machine hosted on the same
physical host where the CUDA devices are connected to the PCIe bus.

The Test 1 leverages on CUDASW++ version 2.0.11 executed with parameters
-query P01008.fasta -db uniprot_sprot.fasta -use_single 0. The database used for the
test is uniprot_sprot.fasta. This is the last release of the Swiss-Prot database released
by UniProt, a scientific community with a comprehensive, high-quality and freely
accessible resource of protein sequence and functional information. The database
contains 550,552 sequence entries [2]. The query used for the test is P01008.fasta.
This is an example query sequence suggested by the CUDASW++ documentation.
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Table 2 SRAD performances

Size Iterations No virtualiza-
tion (s)

Localhost
remoting (s)

Virtualization
(s)

2048× 2048 10 0.451 0.626 2.969

2048× 2048 100 1.119 3.458 27.872

4096× 4096 10 0.948 2.005 2.997

4096× 4096 100 3.781 12.283 27.946

Fig. 8 Execution time of SWCUDA++ in the three different approach

The test 2 leverages on benchmark provided by Rodinia SRAD casted with the
parameters shown inTable 1: thefirst parameter,R, is the number of rows in thedomain;
the second parameter, C, is the number of columns in the domain. Currently, the GPU
implementation of SRAD only supports a dimension of kernel that can be divided
by 16. The kernel has square shape. The parameters from third to sixth represent
respectively the y1, y2, x1, x2 positions of the speckle. The seventh parameter is the
lambda value (L). The last parameter is I, the number of iterations.

The tests ensure the effectiveness of the GVirtuS framework because the results of
the execution through CUDA and through GVirtuS coincide. As of the performances
in the execution of CUDASW++, no significative overhead is introduced by the use
of GVirtuS in the Localhost remoting scenario, while in the virtualization scenario the
overhead introduced has to be correlated to the virtual environment. The execution of
SRAD is impacted by the involvement of GVirtuS as shown in Table 2. The reason of
this behaviour has to be found in the data intensive nature of this test so the bottleneck
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Table 3 Matrix Multiplication performances using internal and remoted GPU

Size NP1 (s) NP2 (s) NP3 (s) NP1 GVirtuS
(s)

NP2 GVirtuS
(s)

NP3 GVirtuS
(s)

800× 800 2.812 1.948 1.895 1.238 1.383 2.115

1600× 1600 9.813 9.004 5.846 2.201 2.411 2.795

3200× 3200 46.754 39.061 30.388 5.341 5.280 6.571

is represented by the TCP/IP communicator. Furthermore the TCP/IP communicator
is not intended for performance purpose (Fig. 8).

5.2 High-End ARM GPU Cluster

The results ofMPIMatrixMultiplication programshowing the performance test results
for a ARM/x86/GPU setup are presented in this section. In this experiment the MPI
MatrixMultiplication programhas been used, in order to investigate about the behavior
of GVirtuS in a scenario where a x86 machine is used as an accelerator node of a high-
end ARM based cluster. In our setup each computing node is provided by an on-board
K20A NVIDIA CUDA enabled GPU with 192 cores, while the accelerator node is
poweredby a couple ofNVIDIATitanX.This benchmarkhas beenperformedwith two
problem size: 1600× 1600× 800 and 3200× 3200× 1600. The experiment compares
the performance of the on-board GPU and GVirtuS remoted on both problems size
(Table 3). The ARM based cluster is built on 3 nodes each provided by 4 CPU cores.
The MPI Matrix Multiplication program uses MPI, but it is not OpenMP enabled, so
runs were performed using up to 3 MPI computing processes.

Results demonstrate the use of GVirtuS remoted CUDA acceleration is convenient
especially when the problem size increases: the weight of the latency due to the
communication decreases, as expected. The overall performances are improved by
the MPI parallel approach when the CUDA is used locally, but the limited amount of
node memory and number of nodes prevented to investigate more in this direction.

When the number of MPI processes increases over 2, benchmarks are no more
suitable for classic parallel programming efficiency and speedup analysis, but could
be useful for some speculations about GVirtuS and its use in GPU remoting. When
GVirtuS will fully support the multithreading, the use of the Matrix Multiplication
enabled for both distributed and shared memory could provide a better performance
test for this kind of applications (Fig. 9).

6 Related Works

GPUvirtualization solutions toGPGPUasGVirtuShave been implemented in research
projects as Remote CUDA (rCUDA) [34] andDistributed-Shared CUDA (DS-CUDA)
[17]. They all use an approach similar to GVirtuS, providing CUDA API wrappers on
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Fig. 9 Implementation of Matrix Multiplication multitask

the front-end application in the guest OS while the back-end in the host OS accesses
to the CUDA devices.

Table 4 shows the main differences on the CUDA toolkit supported, the implemen-
tation of various communicator components to connect the front-end and back-end, the
re-compiling needed, the concurrent remote usage of CUDA devices in a transparent
way, the support for x86 and ARM processors and, finally, the type of license.

– CUDA Toolkit supported all GPGPU computing solutions mentioned implement
the functions in the CUDA Runtime API, but the graphic relevant APIs, such as
OpenGL and Direct3D interoperability, are not supported. A common restriction
for GVirtuS and DS-CUDA is the asynchronous APIs implemented as aliases to
their synchronous counterparts.

– Communicator a communicator is a key piece because it connects the guest and
host operating systems. One of the main differences lies in the use of the commu-
nication technique. In GVirtuS communicators are independent from hypervisor,
virtualized technology and from the cooperation protocols between front-end and
back-end. GVirtuS already provides several Communicator subclasses such as
TCP/IP, Unix sockets, VMSocket (high performance communicator for KVM
based virtualization), and VMCI (VMWare efficient and effective communication
channel for VMWare based virtualization). By default, rCUDA and DS-CUDA
use InfiniBand Verbs, and TCP sockets in case the network infrastructure does not
support InfiniBand in the guest and host communication.

– Plug-in architecturewhileGVirtuS is a general-purpose virtualization servicewith
a plug-in architecture, which can load modules of CUDA and OpenCL and use
different GPU devices, rCUDA and DS-CUDA allow to manage only NVIDIA
GPUs. The main aim of GVirtuS is to provide a flexible tool capable to adapt itself
to any possible scenario, GVirtuS competitors aim is just to provide NVIDIA
support.
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Table 4 CUDA virtualization features comparison table

GPU Vir. RT DRV Comm Rebuild Plug-in License

GVirtuS 6.5 TCP/IP, SHMem, . . . Yes LGPL

rCUDA 5.5 Yes IB, TCP/IP Proprietary

DS-CUDA 4.5 IB, TCP/IP Needed GPL

– Computing architecture in the last years, the use of remote GPUs and low-power
processors for acceleration of scientific applications has become an important case
study. GVirtuS is a tool to virtualize heterogeneous architectures. It is based on a
split-driver model independent of the computing architecture ARM and x86_64.
DS-CUDA is going to use Android tablets and smartphones to run the executable
CUDAfile [24]. rCUDA carried experimental study on scientific applications with
different hardware platforms [5].

– Transparency and re-compiling themain goal ofGVirtuS is to provide a fully trans-
parent virtualization solution, that is CUDA enabled software has to be executed
without any further modification of binaries and the source code of applications
does not need to be modified in order to use remote GPUs. Transparency is an
important common feature of the presented virtualization GPUs systems. DS-
CUDA needed of a re-compiling in order to build an executable for the application
program, this latter has a DS-CUDA preprocessor dscudacpp to handle CUDA
C/C++ extensions.

– Licence GVirtuS and DS-CUDA are open source projects, the former is licensed
under the LGPL (Lesser General Public License), while the latter is licensed under
the GPLv3 (General Public License version 3). The rCUDA technology is own by
the Parallel Architectures Group fromUniversitat Politecnica de Valencia (Spain).
The Software is distributed for free under specified terms and conditions of use.

7 Conclusions and Future Directions

In this paper were presented our results about the design and the implementation of an
updated CUDAwrapper library for the GVirtuS framework in order to accelerate sub-
clusters of inexpensive low power demanding ARM based boards. We used high-end
GPGPU devices providing an experimental evaluation of the possibilities that state-
of-the-art technology offers in nowadays HPC facilities [32], as well as low-power
alternatives offer for the acceleration of scientific applications using remote graphics
processors.

The performed experiments demonstrate how convenient is the path we followed
as trailblazer in the hunt for the next big thing in the off-the-shelf commodity high
performance computing clusters. The latest GVirtuS release tested in a x86_64 virtu-
alization and remoting performs enough to consider feasible the use of our approach in
real world production applications, especially if enhanced with an Infiniband commu-
nicator component. This because with the availability of the needed hardware testbed,
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the communication plug-in component will evolve in order to support the Infiniband
network because it is expected that the higher bandwidth allows remote GPU virtu-
alization frameworks to experience communication performances similar to the PCIe
on the path between the local GPGPU and the remote GPU resource [31,33]. Due to
the unavailability of real world applications fitting the available ARM cluster, GVirtuS
has been tested using an ad hoc distributed memory Matrix Multiplication software
[14] and accelerated CUDA kernels working on local or x86 remoted high-end GPU
device [18].

On short andmedium term, we are working on the GVirtuS over all improvement in
order to implement a production service for GPGPU computation offloading dedicated
to high end servermachines andmobile devices.A custom Java/Android friendly front-
end implementation will enable to GPGPU computing the most part of low-power
integrated systems and devices. The final destination of this research is provisioning
a full production software environment for advanced earth system simulations and
analysis based on science gateways, workflow engines and high performance cloud
computing [28], giving a support for the next generation of scientific dissemination
tools [30] and the smart city management in case of extreme weather events.
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