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To meet the various requirements of cloud computing users, research on guaranteeing Quality of Service (QoS) is gaining
widespread attention in the field of cloud computing. However, as cloud computing platforms adopt virtualization as an enabling
technology, it becomes challenging to distribute system resources to each user according to the diverse requirements. Although
ample research has been conducted in order to meet QoS requirements, the proposed solutions lack simultaneous support for mul-
tiple policies, degrade the aggregated throughput of network resources, and incur CPU overhead. In this paper, we propose a new
mechanism, called ANCS (Advanced Network Credit Scheduler), to guarantee QoS through dynamic allocation of network resources
in virtualization. To meet the various network demands of cloud users, ANCS aims to concurrently provide multiple performance
policies; these include weight-based proportional sharing, minimum bandwidth reservation, and maximum bandwidth limitation.
In addition, ANCS develops an efficient work-conserving scheduling method for maximizing network resource utilization. Finally,

ANCS can achieve low CPU overhead via its lightweight design, which is important for practical deployment.

1. Introduction

The use of cloud computing technology is rapidly increasing,
because it can provide computing resources to remote users
efficiently in terms of time and cost. By using cloud platforms,
cloud users can run diverse applications without considering
the arrangement of the hardware platforms. In addition,
because of the agile and elastic traits of cloud computing,
the amount of computing resources can be adjusted to reflect
the requirements of each user. Therefore, cloud computing is
rapidly being disseminated for general-purpose, network and
database server, and high-performance computing applica-
tions [1].

System virtualization [2] is an enabling technology of
cloud computing. A hypervisor or virtual machine monitor
(VMM) provides cloud users an illusion of running their
own operating system (OS) on a physical platform. Using
a hypervisor in the basement of the software layer, cloud
vendors can realize IaaS (Infrastructure as a Service), PaaS
(Platform as a Service), and Saa$S (Service as a Service), which
are core services of cloud computing. Recent representative

hypervisor titles for cloud computing include KVM [3], Xen
[4], and VMware ESXi [5].

To satisfy the diverse requirements of cloud users, cloud
computing providers have recently allowed users to select the
Quality of Service (QoS) of each resource. As a result, users
can specify the needs appropriate to their programs and pay
fees according to the QoS level. However, it is challenging
for cloud providers to support stable QoS for applications in
each virtual machine (VM) because of interference between
cloud users [6]. In such environments, users can experience
unpredictable performance and performance degradation.
Therefore, research on achieving performance isolation dur-
ing resource sharing is gaining significant attention [6-10].

In particular, guaranteeing network performance is
widely studied because network performance influences the
Quality of Experience (QoE) that defines the satisfaction level
of each user. Most previous research efforts [11-14] focused
on methods to dynamically adjust network performance.
However, the proposed methods have limitations in that (1)
they can support only one type of policy among several
viable ones and (2) they incur high CPU overhead by
adopting feedback control, which frequently monitors the
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actual usage of the network and compensates insufficient
resources. Therefore, a new approach is required to meet the
demands of the users while significantly reducing overhead.

In this paper, we propose ANCS (Advanced Network
Credit Scheduler), which can dynamically provide network
performance according to the requirements of each user of
a virtualized system. Compared to solutions proposed in the
previous research, ANCS can support several network perfor-
mance control policies simultaneously; these include weight-
based proportional sharing, minimum bandwidth guaran-
tees, and maximum bandwidth guarantees. In addition, at
all times ANCS provides a work-conserving scheme [15] that
distributes the unused resources of any VM to other VMs,
which maximizes total network utilization. Finally, ANCS
incurs low CPU overhead through its lightweight design.

The main contributions of this paper related to previous
studies are as follows:

(i) We deliver the details of ANCS that can satisfy diverse
performance demands through multiple performance
policies in virtualization. Each cloud computing tenant
has different performance requirements. In order to
satisty the needs, ANCS provides three performance
policies: weight-based proportional sharing, mini-
mum bandwidth reservation, and maximum band-
width limitation. We elaborate on how to guarantee
desired performance according to each demand.

(ii) We develop an efficient work-conserving method
for utilizing network resources. In a non-work-
conserving method, when a VM cannot fully utilize
an allocated resource, the unused amount is wasted,
resulting in decreased overall network utilization. To
maximize the utilization, ANCS develops an efficient
work-conserving method to guarantee high utiliza-
tion regardless of the resource usage of each VM.

(iii) We design ANCS to use minimal CPU resources
when managing the network performance of VMs.
We do not utilize packet inspection or packet queuing
to reduce overhead in the QoS control.

The remainder of this paper is structured as follows:
In Section 2, we explain the background of virtualization

and the methods it uses to distribute network resources.
Section 3 elaborates on the design of ANCS. Section 4 shows
the performance evaluation results. Section 5 explains related
work. Finally, we present our conclusions in Section 6.

2. Background and Metivation

We select Xen [4] for implementing ANCS because it is an
open-source hypervisor and also supports a simple round
robin scheduling method. We can regard this scheduling
method as a baseline for our experiment and intend to
improve the scheduling method in terms of supporting
weight-based proportional sharing, minimum bandwidth
reservation, and maximum bandwidth limitation.

2.1. System Virtualization and Xen. System virtualization
allows several OSs to be consolidated on a single physical
machine. At the bottom of the system software stacks, the
hypervisor multiplexes all system resources, including pro-
cessors, memory, and I/O devices; it exports the virtualized
resources in the form of a VM. Therefore, each VM can
provide a complete system environment (composed of virtual
CPUs, virtual memory, and virtual devices) to each guest OS.

Xen [4] is an open-source hypervisor that adopts a
paravirtualization technique to minimize virtualization cost.
The paravirtualization technique enables communication
between the hypervisor and a guest OS by providing a
communication channel, which is referred to as a hypercall.
Hypercalls are analogous to system calls between an OS and a
user application. Hypercalls request Xen to execute sensitive
instructions on behalf of the guest OS. They include processor
state update operations such as memory management unit
(MMU) updates and physical interrupt masking operations,
which guest OSs cannot execute directly. To contain hyper-
calls, the source code of a guest OS must be modified to
facilitate paravirtualization.

2.2. The I/O Model of Xen. To process I/O requests from guest
OSs, Xen adopts the back-end driver in domain 0, which is
a driver domain, and the front-end driver in the guest OS
[16], as depicted in Figure 1. The back-end driver delivers
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/O requests using the shared memory from the front-end
drivers to the actual device driver in domain 0. Afterward,
the back-end driver conveys the responses to each front-end
driver by notifying them via virtual interrupts. The front-
end driver behaves as an actual device driver in the guest
OS. It receives I/O requests from the guest OS and delivers
them to the back-end driver. It also brings the processed
result to the guest OS. For network devices, the front-end
network driver creates virtual network interfaces called vifs.
The virtual network interfaces behave as the actual network
devices in the guest OS. In systems that have several VMs,
the back-end network driver processes the requests of several
virtual network interfaces in a round-robin manner without a
proportional sharing policy. Therefore, each competing guest
OS will have the same network performance, which cannot
satisfy the different requirements.

3. Design of ANCS

In this section, we present the details of ANCS, an advanced
network credit scheduler that dynamically allocates network
resources to VMs for guaranteeing the network performance
of VMs under various scenarios. First, we describe the design
goals of ANCS that aim to guarantee QoS for network
virtualization. Next, we elaborate on the coarse-grained algo-
rithm of ANCS using its flow chart. Finally, we explain the
fine-grained subalgorithms of ANCS for achieving diverse
performance goals.

3.1. Design Goals. The goals of ANCS that aim to implement
a network scheduler for guaranteeing QoS in virtualization
are as follows.

(i) Multiple Performance Policies. ANCS aims to meet the
network demands of each VM, which are described by
multiple performance policies. Recent cloud computing users
tend to run diverse network applications on their VMs.
These applications have different performance demands,
especially in terms of networks; minimum sustainable band-
width is an example of such a requirement. In order to
meet the various needs, ANCS provides the following three
performance policies: weight-based proportional sharing,
minimum bandwidth reservation, and maximum bandwidth
limitation. ANCS aims to satisfy the desired performance
of cloud users by allowing them to select an appropriate
performance policy among the three policies, according to
their demands.

(ii) High Network Resource Utilization. ANCS endeavors to
efficiently utilize the total network resources of a system
by applying a work-conserving method. In a non-work-
conserving environment, when a VM receives network
resources in proportion to its weight and does not consume
its allocated amount, the unused network resources then
become wasted, resulting in decreased total network utiliza-
tion. In order to enhance resource management efficiency,
ANCS adopts a work-conserving method, which yields
unused network resources to other VMs that have pending
network requests. This maximizes the resource utilization of
the entire system regardless of the usage of each VM.

(iii) Low CPU Overhead. ANCS focuses on minimizing
additional CPU overhead in achieving QoS for networks.
Other research efforts that aimed to guarantee QoS failed
to reduce CPU overhead, because of the complexity of
the proposed algorithms [12, 14, 17]. These studies adopted
either packet inspection or packet queuing for throttling the
sending packet rate per network interface, and therefore this
mechanism demands nonnegligible computation resources.
Unfortunately, this causes total network performance to
deteriorate. ANCS adopts a credit-based simple accounting
algorithm that incurs only minimal overhead, which prevents
performance degradation during the QoS control.

Although ANCS is implemented in the back-end driver
of the Xen hypervisor, ANCS can be applied to other hyper-
visors that use a paravirtual model where the back-end and
the front-end cooperate with each other to deal with network
packets. In a paravirtual model, each hypervisor processes
packets in a similar manner. For example, the back-end
receives/sends packets from/to the front-end by using shared
memory composed of descriptor rings. Also, after receiving
and sending packets, the back-end delivers virtual interrupts
to the front-end in order to notify that the packets have been
processed. Because of this architectural similarity, we believe
that ANCS can still satisfy the performance requirements in
other hypervisors.

3.2. ANCS Algorithm. In basic terms, ANCS is based on
the proportional share scheduling mechanism that allocates
network resources to each virtual interface in proportion
to its weight. Each virtual interface, called vif, is owned
by its VM and behaves like an actual network interface
within the VM. ANCS operates in the driver domain of
the Xen hypervisor, particularly in the back-end driver that
plays the role of the communication channel between the
hardware device driver and VMs, as depicted in Figure 2.
ANCS processes the network operation requests of VMs in
a round-robin manner, checking whether a vif has sufficient
resource allocation to possess the network resources. For this
purpose, ANCS uses the credit concept [18, 19] to represent
the amount of resource allocation. While network resources
are being used, every vif consumes its credit according to
the requested size; the credit value of a vif is recharged
regularly in proportion to its weight. If the credit value that
a vif has is less than the requested size, ANCS does not
process its requests. The vif must then wait for the next credit
value to be allocated. Therefore, the amount of credit a vif
has determines the network bandwidth of the corresponding
VM. The amount of credits allocated is calculated by the
configured performance policy of each VM.

Figure 3 depicts an overall flow chart of the ANCS
algorithm. In this section, we elaborate on the coarse-grained
algorithm of ANCS using the flow chart. We introduce
variables used in the ANCS algorithm and provide a general
description of them. Then, we explain the fine-grained
subalgorithms of ANCS. The detailed operations of ANCS
will be described in Sections 3.3 and 3.4.

The accounting function of ANCS runs every 30 ms and
allocates network resources to vifs on a physical machine
in order. The value of 30ms is selected to decrease the
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overhead of periodically running the accounting function.
Please note that regardless of this period each virtual interface
can execute if it has sufficient credit values to process its
network packets. Therefore, the 30 ms period does not affect
the network latency of each virtual interface. The following
procedure is performed per vif.

First, the two variables required to obtain the fair share of
each vif are calculated: CreditFair and CreditPeak. CreditFair
is determined depending on the weight of a vif. CreditFair
represents the fair share of network resources for a vif accord-
ing to its weight. Then, CreditPeak is calculated. CreditPeak
indicates the amount of available resources for a vif based on
the assumption that the vif dominates the network resource
when other vifs are idle. CreditPeak is used to maintain the
total amount of credits in the system in order to distribute
the proper amount of credits to each vif.

Second, the procedure to support work-conserving and
various performance policies is performed. ANCS checks
whether CreditNext is greater than zero. CreditNext is accu-
mulated in the previous scheduling period when some vifs
did not fully use their credit values. A positive CreditNext
value indicates that there were unused credits in the previous
scheduling period. This value is added to CreditPeak in order
to distribute unused credits in the current scheduling period.
We will explain this in more detail in Section 3.4. Then,
for proportional sharing, ANCS adds CreditFair to Remain-
Credit, which is the current credit value of the vif. In order
to support minimum bandwidth reservation and maximum
bandwidth limitation, ANCS determines whether the credits
allocated to the vif satisfy the configured performance policy,
which will be explained in depth in Section 3.3.

Finally, if the current vif is the last vif in the system, the
ANCS process for a single scheduling period is finished. If
there are additional vifs to which credits can be allocated,
ANCS selects the next vif and iterates the credit calculation.
If a VM does not consume its allocated credits in the current
period, ANCS adds the remaining credit value to CreditNext
to give other VMs a chance to consume unused credits.

3.3.  Multiple Performance Policies. For the diverse
performance requirements of cloud computing users,
ANCS provides multiple performance policies, including
weight-based proportional sharing, minimum bandwidth
reservation, and maximum bandwidth limitation. Weight-
based proportional sharing is a base policy that proportion-
ally differentiates the amount of allocated resources based
on the weight of each VM. Minimum bandwidth reservation
guarantees that the quantitative network performance
of a VM is always greater than the configured value,
MinimumCredit, as shown in Figure 3. When the amount of
credits allocated to a vif becomes less than MinimumCredit,
ANCS adjusts CreditFair to satisfy the minimum bandwidth;
the CreditFair value of the vif is set to MinimumCredit in
order to support minimum bandwidth. When supporting
minimum bandwidth, the aggregated amounts of minimum
bandwidth requests from all vifs should not exceed the
total throughput of the physical device. By using the
minimum bandwidth reservation, ANCS can prevent
performance degradation of a specific VM and guarantee

sustainable minimum bandwidth. On the other hand,
maximum bandwidth limitation prevents aggressive resource
consumption by a specific VM. If the resources allocated
to a vif exceed the MaximumCredit value, ANCS reclaims
surplus resources from the vif for distribution to other VMs.

The administrator can apply an appropriate performance
policy to each VM according to the performance demands of
each user. The designated policy can be dynamically changed
during runtime. In addition, multiple performance policies
can be applied in a conjunctive form. For instance, when a
user requires a specific boundary of network performance
(e.g., larger than 200 Mbps and less than 500 Mbps), both
the reservation and limitation requirements can be applied
by specifying the minimum and maximum bandwidth val-
ues. Moreover, ANCS can satisfy the different performance
demands of multiple applications in a single VM, because
the designated performance policy is based on a vif, not a
VM. Therefore, a VM with several vifs can establish various
network performance requirements by assigning a different
performance policy to each vif.

3.4. Support for Work-Conserving. ANCS supports work-
conserving, in which a vif is idled when it does not have
network requests or responses. Work-conserving is a crucial
factor in cloud computing; it allows resources to be allocated
efficiently and system utilization to be maximized. For work-
conserving, ANCS modifies the amount of allocated credits
according to fluctuations in network usage. When a VM does
not fully use its credits, ANCS gives other VMs a chance to
receive unused credits by distributing additional credits to
them.

When a vif is idled for a certain amount of time, the
RemainCredit value of the vif can exceed CreditPeak, which
denotes the maximum credit value a vif can have. Then,
the credits of this vif must be distributed to other vifs. For
this purpose, CreditLeft, which is obtained by subtracting
CreditFair from RemainCredit, is added to the total credit
value. This increases the credits that can be allocated to the
next vifs. If a vif exceeds its CreditPeak, ANCS resets the
credit value of the vif to CreditFair, to give it a credit value
according to its weight. By distributing idle resources to active
VMs, ANCS can efficiently utilize network resources of the
entire system.

4. Evaluation

For evaluation, we implement ANCS in the driver domain,
domain 0, of the Xen hypervisor. The Linux version of
domain 0 is 3.10.55, and the version of Xen is 4.2.1. The
experiments are conducted on two identical physical servers,
each of which has an Intel i7 Quad core 3770 CPU running
at 3.5 GHz, 16 GB of RAM, and a Gigabit Ethernet card. One
of them runs the Xen hypervisor with our modified driver
domain, and the other one runs vanilla Linux 3.10.11 working
as an evaluation machine. Because ANCS does not require
any modification on guest OSs, we run unmodified vanilla
Linux 3.2.1 for each VM. Iperf [20] benchmark is used to
measure the network performance of each VM. In addition,
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FIGURE 4: Bandwidth of VMs without ANCS.

we use Xentop to measure the CPU utilization of the driver
domain, which is described in Section 4.4.

4.1. Base Performance. Before we show the evaluation results
of ANCS, we produce the base performance for comparison.
For this purpose, we measure the network performance of
default VMs on the Xen hypervisor without ANCS. We ran
Iperf while launching up to five VMs one by one. As depicted
in Figure 4, the network performance of each VM on our
system is always even. When there is only one VM, the VM
(VM1) consumes all network resources, achieving 941 Mbps
bandwidth. As the number of VMs increases, the system’s
network resources are equally shared among VMs. This
occurs because the unmodified driver of the Xen hypervisor
processes the requests of several virtual network interfaces in
a round-robin manner with the same weight. Therefore, each
guest OS has the same network performance.

4.2. Multiple Policies. To demonstrate that ANCS guarantees
the network performance of VMs under various scenarios, we
change the performance policy during runtime and observe
that the change is reflected properly in the system. When the
system is started, we set the weights of five VMs for weight-
based proportional sharing as {VM1 = 1/15, VM2 = 2/15,
VM3 = 3/15, VM4 = 4/15, VM5 = 5/15}; thus, the ratio of
the weights is 1:2:3:4:5. After measuring the performance
of each VM, we additionally set the maximum bandwidth
limitation policy to VMS5. The bandwidth of VM5 is set
to 150 Mbps while the weight-based proportional sharing is
maintained. Finally, the minimum bandwidth reservation is
set to VMI with a value of 200 Mbps. Similarly, the previous
configuration applied to other VMs is maintained.

The results of the experiment are shown in Figure 5. At
the beginning of the experiment, ANCS allocates credits
to vifs according to their weights. Therefore, the network
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settings.

performance of each VM is differentiated proportionally, as
expected. When the maximum bandwidth limitation policy
is applied to VM5 in the second phase, VM5 shows the
bandwidth limited to 150 Mbps. As the credit value allocated
to VM5 decreases compared to the first phase, the network
performance of other VMs increases naturally. Moreover, the
increment in the bandwidth of other VMs is proportional to
their weights. During the last phase, the bandwidth of VM1
increases to 200 Mbps because of the reservation policy, while
the bandwidth of VM5 is preserved as 150 Mbps, the same as it
was in the second phase. Then, VM2, VM3, and VM4 receive
less credit value compared to the second phase, and therefore
their performance decreases.

Based on the above experiment, ANCS shows that it
guarantees the network performance of VMs under various
scenarios that combine the policies explained in Section 3.3.
The scenarios include all three performance policies provided
by ANCS. Our evaluation demonstrates that ANCS is capable
of handling various performance requirements in cloud
computing.

4.3. Support for Work-Conserving. In cloud computing, effi-
cient resource management is crucial for reducing mainte-
nance costs. For better efficiency in resource management,
ANCS maximizes resource utilization even if the number
of VMs and their performance policies are changed. We
evaluated the efficiency of ANCS in resource management by
measuring aggregated bandwidth in different environments.

First, Figure 6 provides the bandwidth results of the VMs
on a physical server. We configured only one policy (weight-
based proportional sharing) on all VMs. In addition, we
maintained the weight of each VM for weight-based propor-
tional sharingas {VM1=1/15,VM2=2/15,VM3=1/5,VM4
=4/15, VM5 = 1/3}, throughout the remaining experiments.
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FIGURE 6: Aggregated bandwidth of VMs with ANCS (only weight-
based proportional sharing is applied).

We then launched the VMs sequentially (VM1 through
VMS5) and measured the network performance of each VM.
Evaluation results show that the network performance of
each VM is proportional to the weight. While the network
performance of each VM changes according to the weight,
the aggregated bandwidth maintains 940 Mbps. We find
that ANCS fully supports work-conserving scheduling by
achieving the maximum aggregated bandwidth, independent
of the number of VMs on the physical server.

Next, Figure 7 shows the aggregated bandwidth in the
three experiment scenarios described in Section 4.2. Through
this experiment, we aimed to show that ANCS maximizes
resource utilization even if the performance policy of each
VM is changed. In the first phase, only weight-based propor-
tional sharing is applied to all VMs. In the second phase, the
maximum limitation policy is applied to VM5 while main-
taining the weight-based proportional sharing of the other
VMs. Finally, the minimum bandwidth reservation is set to
VML In the final phase, all of the performance policies that
ANCS provides are applied on the system: reservation to VM1
(200 Mbps), limitation to VM5 (150 Mbps), and weight-based
proportional sharing to all VMs. As depicted in Figure 7,
the aggregated bandwidth always achieves the maximum
bandwidth, 940 Mbps, in all the experiment scenarios. It
is clear that the work-conserving property of ANCS is not
affected by the required performance policy of each VM, or
by the number of VMs.

4.4. CPU Overhead. In cloud computing, it is important
to decrease CPU overhead in terms of energy efficiency
when applying a new policy to the system. To illustrate the
CPU overhead caused by ANCS, we measured the CPU
utilization in the driver domain while sequentially generating
VMs one by one. Figure 8 shows the CPU utilization in
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three cases: Native Xen, Linux traffic controller, and ANCS.
Both Native Xen and the traffic controller are based on
the Xen hypervisor; they run unmodified Linux for driver
domains. In the experiment with Native Xen, the network
performance of each VM is equal because the default setting
of Xen is fair sharing. For the traffic controller experiment,
we utilize the Linux traffic controller in the driver domain
to differentiate the network performance of VMs, similar
to ANCS. The traffic controller does not support work-
conserving and only provides network performance policies
with fixed performance values; this is different from ANCS,



TaBLE 1: Latency values in ms measured by a ping program when
the number of VMs is increased from one to five.

Number of VMs
1 2 3 4 5
Native Xen 0.30 0.34 0.25 0.30 0.32
Traffic controller 0.30 0.30 0.30 0.32 0.32
ANCS 0.24 0.28 0.23 0.23 0.34

TABLE 2: Latency values in ms measured by Netperf when the
number of VMs is increased from one to five.

Number of VMs
1 2 3 4 5
Native Xen 0.12 0.13 0.12 0.12 0.12
Traffic controller 0.12 0.12 0.12 0.13 0.13
ANCS 0.12 0.12 0.12 0.12 0.12

which dynamically adjusts the network performance of VMs.
As depicted in Figure 8, the traffic controller demands non-
negligible computation resources as it adopts packet queuing
for throttling the sending packet rate. As ANCS adopts a
credit-based simple accounting algorithm that incurs only
minimal overhead, ANCS shows low CPU utilization in the
driver domain, which is comparable to the two different
techniques.

4.5. Network Latency. In this section, we evaluate network
latency in ANCS and compare the results with Native Xen
and the Linux traffic controller in the same experiment setup
described in Section 4.4. For the performance policy, we
configure the weight of each VM as one to provide the
same bandwidth to VMs, which prevents different resource
allocation from affecting network latency. We use both a
ping program and Netperf [21] with TCP_RR to quantify the
latency of UDP and TCP pings, respectively. The ping pro-
gram sends 64-byte UDP packets to a client whereas Netperf
with TCP_RR sends 1-byte TCP packets to a client. For these
experiments, we respectively execute both programs between
a client and a VM for 60 seconds and take the average value,
because network latency fluctuates on each measurement.
Tables 1 and 2 show the latency values (in ms) of each method
measured by the ping program and Netperf, respectively,
when the number of VMs is increased from one to five. In
both results, ANCS shows lower or similar latency compared
to Native Xen and the traffic controller. As explained in
Section 3.2, although the accounting function of ANCS runs
every 30 ms, virtual interfaces with sufficient credit values
can run at certain points regardless of this period. Therefore,
the 30 ms period does not affect the network latency of each
virtual interface.

5. Related Work

As cloud computing based on virtualization becomes preva-
lent and the requirements of each user are diversified,
techniques for improving QoS are increasingly studied. In
particular, network devices are considered to offer unstable
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QoS, because sharing of the devices involves another schedul-
ing layer (such as the scheduler in the back-end driver).
vSuit [11] adopts a feedback controller in order to analyze
variations in network performance and to react to such
deviations by adjusting network resources to each guest OS.
Using this mechanism, vSuit can offer maximum bandwidth
reservation and limitation for each VM. Furthermore, CPU
overhead is shown to be under 1%. However, this research
does not support weight-based proportional sharing, and the
experiments are performed in 100 Mbps environment.

DMVL [12] provides a technique to distribute the net-
work bandwidth to each VM in a stable and fair manner. For
this purpose, it separates the logical data path and the request
1/0 queue belonging to each VM. In addition, it records the
allocated and consumed amounts of network bandwidth for
each VM by using shared memory. This information is used to
adjust the amount of network bandwidth allocated in the next
iteration. The limitation of this research is that this technique
incurs nonnegligible CPU overhead in domain 0, up to 7%.

PSD [13] differentiates the network performance of each
VM based on each virtual network interface. It schedules
each virtual interface by means of a leaky bucket controller
and a time slot-based resource allocator, which distribute
the resource in proportion to a different ratio. However, this
approach cannot provide absolute bandwidth assignment.

The Linux traffic controller [14, 17] is a traditional
approach to adjusting the network bandwidth of each net-
work application. It classifies each packet according to its
header information and configures different bandwidths
according to each classification. In the paravirtualized Xen,
the traffic controller in domain 0 can be used to perform
network performance differentiation by classifying the pack-
ets based on the IP address of each VM. In this case, severe
CPU utilization occurs (up to 12%) when the number of VMs
increases, as shown in Figure 8.

Recently, Silo [22] proposes to consider both VM place-
ment and end host pacing to guarantee message latency
in cloud computing. In Silo, message latency between two
VMs is determined by the capacity of network switches
connecting two virtual machines. End host pacing controls
the transmission rate in a server by utilizing hierarchical
token bucket scheduling. Even though Silo guarantees quan-
titative network latency in cloud computing, it only covers
communication between two specific VMs. When a VM
starts new connection with another VM or migrates to a
different server, Silo needs to recalculate guaranteed latency.

Cerebro [23] predicts bounds on the response time
performance of web APIs exported by applications hosted in a
Paa$ cloud. However, Cerebro only predicts response time of
cloud applications and does not involve network scheduling
in the case of violation of predicted response time. Moreover,
Cerebro incurs computational overheads since it adopts a
static analysis to predict the response time.

As shown in Table 3, the solutions proposed to enhance
network QoS either provide only a single policy or incur
high CPU overhead through the use of high-frequency
feedback controllers. ANCS can support various policies,
including proportional sharing and minimum/maximum
network bandwidth reservation. It also maximizes the total



Scientific Programming 9
TaBLE 3: Comparison of virtual network scheduling methods.
ANCS vSuit DMVL PSD Traffic controller Silo Cerebro
Work-conserving o o o X o X X
Proportional sharing o X o o o X X
Minimum and maximum reservation o o X X X 0 X
CPU overhead Low Low High N/A High Low High

network bandwidth by supporting work-conserving while
reducing CPU overhead as much as possible.

6. Conclusion

In this paper we propose ANCS, which dynamically enhances
network performance to meet the various requirements of
users in cloud computing environments. Compared to solu-
tions proposed in previous research efforts, ANCS can pro-
vide several network performance control policies, including
weight-based proportional sharing, minimum bandwidth
guarantees, and maximum bandwidth guarantees, while
achieving low CPU overhead.
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