
760
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.3 MARCH 2016

LETTER

Dynamic Inbound Rate Adjustment Scheme for Virtualized Cloud
Data Centers

Jaehyun HWANG†, Cheol-Ho HONG††, Nonmembers, and Hyo-Joong SUH†††a), Member

SUMMARY This paper proposes a rate adjustment scheme for inbound
data traffic on a virtualized host. Most prior studies on network virtualiza-
tion have only focused on outbound traffic, yet many cloud applications
rely on inbound traffic performance. The proposed scheme adjusts the in-
bound rates of virtual network interfaces dynamically in proportion to the
bandwidth demands of the virtual machines.
key words: network virtualization, dynamic rate adjustment, inbound data
traffic, cloud application

1. Introduction

Virtualization has emerged as a key technology in various
areas, e.g., cloud data centers, since it can consolidate mul-
tiple virtual machines (VMs) into one physical machine.
In this area, the main research issues have been CPU and
VM scheduling [1] when running multiple VMs. Recently,
many researchers have focused on network I/O scheduling
where a different amount of bandwidth is allocated to each
VM [2], [3]. Network bandwidth itself is a very important
resource to provide differentiated quality of service (QoS)
in cloud environments. However, most of the prior stud-
ies have only focused on static outbound traffic in designing
such bandwidth allocation or reservation schemes [4]–[6],
whereas the overall service quality is determined by the dy-
namic inbound traffic performance of many cloud applica-
tions, e.g., Hadoop and web search. In these cloud appli-
cations, an aggregator node generally gathers response data
from many worker nodes simultaneously following the par-
tition/aggregate design pattern [7]–[10].

In this paper, we propose a dynamic rate adjustment
scheme among multiple virtual network interface cards
(vNICs) for inbound data traffic. To the best of our knowl-
edge, this is the first attempt that considers a differentiated
rate adjustment for dynamic inbound traffic in network de-
vice virtualization. Basically, it is difficult for the local hy-
pervisor to control the amount of traffic coming from the
outside world, i.e., the amount of inbound traffic, without

Manuscript received August 5, 2015.
Manuscript revised November 6, 2015.
Manuscript publicized November 30, 2015.
†The author is with Samsung Electronics, Suwon, Gyeonggi-

do, Korea.
††The author is with the Department of Computer Science and

Engineering, Korea University, Seoul, Korea.
†††The author is with the School of Computer Science and Infor-

mation Engineering, The Catholic University of Korea, Gyeonggi-
do, Korea.

a) E-mail: hjsuh@catholic.ac.kr (Corresponding author)
DOI: 10.1587/transinf.2015EDL8173

any cooperation from outside clients. For this reason, we
leverage a TCP flow control scheme, an operating system
(OS)-level technique, which has been proposed for data cen-
ter networks [8]–[10]. Such a scheme works on a guest OS
of the local host, and it controls the sending window size
of remote peers so that the total amount of incoming traffic
does not exceed the physical link capacity of the local host.
However, this scheme works under a precise link capacity,
while the vNIC capacity varies as a result of competition for
resources with other vNICs. This necessitates explicit rate
adjustment among vNICs to transparently reveal the appro-
priate link capacity to the guest OS. One of the easiest ways
to achieve this goal is to simply assign a static capacity to
each vNIC. Unfortunately, this static assignment may result
in under- or over-utilization due to varying bandwidth de-
mands of VMs. Therefore, the rate of the vNICs needs to be
adjusted dynamically to achieve efficient network resource
utilization.

In short, when multiple VMs share a physical NIC
(pNIC) through their vNICs, we face two problems:

• How can we assign/adjust the rate of each vNIC for
inbound traffic?
• When is the right time to perform a rate adjustment?

In the following sections, we describe static rate assign-
ment and our proposed dynamic rate adjustment method, an-
swering the above questions.

2. Static Rate Assignment

Let CpNIC and CvNICi denote the capacity of the pNIC and
the ith vNIC respectively, on a virtualized host. The static
assignment for the capacity of each vNIC is:

CvNIC1 = CvNIC2 = . . . = CvNICn = C1 (1)

where n is the total number of VMs (i.e., vNICs), and C1 is
a constant (C1 ≤ CpNIC). To achieve better utilization when
using multiplexing, we can have:
∑n

i=1
CvNICi ≥ CpNIC (2)

This usually works well if all VMs are not busy at the same
time. However, there may be heavy network congestion in
cases where all VMs are busy performing network I/O pro-
cessing. For example, suppose that there are 3 VMs on a
virtualized host where CpNIC = C1 = 1Gbps. Then the
total inbound traffic demand may increase to up to 3 Gbps
while the pNIC capacity is only at 1 Gbps, resulting in poor

Copyright c© 2016 The Institute of Electronics, Information and Communication Engineers



LETTER
761

network performance as a result of network congestion. If
we use CpNIC/n for C1, then network congestion could be
always avoided since

∑n
i=1 CvNICi = CpNIC . However, the

overall pNIC utilization would be reduced if there were any
VM that does not use network resources.

3. Dynamic Rate Adjustment

To address the inefficiency of the static assignment, we de-
veloped a dynamic (inbound) rate adjustment scheme that
works through a hypervisor. Our main design goals are as
follows:

• Work-conserving: An increase in rate of one vNIC
necessitates a decrease in the rate of another vNIC.
In other words, we should maximize the total rate of
vNICs without wasting pNIC capacity.
• Network congestion avoidance: The total amount of

inbound traffic should not exceed the pNIC capacity to
avoid the network congestion.
• Throughput fairness: Network throughput allocation

between network connections should be fair across all
VMs.

The first and second goals therefore cause the sum total of
all the rates of the vNICs to be equal to the pNIC capacity.
As a result, we adjust the rate of each vNIC to meet the third
goal as follows:

CvNICi =
CpNIC × wi∑n

i=1 wi
(3)

where wi is the weight of the ith vNIC. In this scheme, the
weight is the number of active network connections on each
VM. Similarly to the previous data center studies [7]–[11],
we mainly consider the partition/aggregate types of services
that are delay-sensitive and generate many short-lived con-
nections in a moment. To support this characteristic, we pro-
vide more bandwidth to the VMs that create more connec-
tions. Note that throughput-driven applications such as file
transfers create a relatively small number of connections.
The median number of concurrent throughput-driven con-
nections per node is one in data centers [7], [8]. Therefore,
they will be allocated less bandwidth by our scheme when
competing with the partition/aggregate types of traffic. This
is reasonable because they are not delay-sensitive, thus have
a lower priority [8], [11]. In other words, the rates of the
vNICs are adjusted in proportion to the number of connec-
tions so that the VM that has a higher bandwidth demand is
assigned a higher rate relative to the others VMs.

Now we have to determine when the rate adjustment is
performed. Since the bandwidth demand varies with time,
the hypervisor should perform the rate adjustment according
to (3) whenever there is a change in the bandwidth demand,
i.e., when the number of active connections changes on any
of the VMs. By doing so, we can always achieve throughput
fairness between the network connections across all VMs.
Note that the weight can be defined differently according
to the operator’s policy. For example, we may introduce a

Fig. 1 Architecture of the proposed rate adjustment scheme.

weight cap (i.e., the maximum number of connections) for
VMs where the fairness of network resource usage is re-
quired. Finally, a minimum rate is assigned to the currently
unused vNICs to ensure the minimum bandwidth required
is available for future network connections.

4. Implementation

We implement the rate adjustment module, in the domain0
kernel of the Xen-hypervisor [12] as shown in Fig. 1. As
a data center protocol, DIATCP [8] is implemented in the
TCP/IP stack of each guest OS (Linux kernel 2.6.38). The
main role of DIATCP is to keep the rate of incoming traf-
fic under the vNIC capacity by utilizing a TCP flow con-
trol scheme, as described in Sect. 1. Specifically, DIATCP
controls its peers’ sending window so that the aggregate in-
coming rate does not exceed the link capacity, i.e., its vNIC
capacity, as follows:

∑n
j=1 wnd j × MS S

Average RTT
= CvNICi (4)

where wnd j is the TCP window size of the jth peer, ad-
vertised by DIATCP. MSS denotes the Maximum Segment
Size. The value of CvNICi is stored in the internal variable,
bw, so that DIATCP uses it for (4). The value can be mod-
ified by the rate adjustment module via the inter-domain
communication (i.e., red dotted arrows). Whenever a guest
OS opens/closes a network connection, it informs the rate
adjustment module about the number of network connec-
tions of the guest OS. And then, the proposed scheme calcu-
lates the inbound rates of all vNICs and shares the calculated
values with other guest OSs.

Note that, in our implementation, we mainly focus on
TCP transmissions since it has been reported that 99.91%
of traffic in data center networks is TCP [7]. Therefore, we
allow such a negligible volume of UDP transmissions (i.e.,
< 0.09%) to bypass the proposed scheme.

5. Evaluation

We evaluate our dynamic rate adjustment scheme on a
small-scale cloud data center testbed, which consists of a
Top-of-Rack (ToR) switch and 19 servers. All servers are
connected to the ToR switch using 1 Gbps links. One of



762
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.3 MARCH 2016

Fig. 2 Aggregate throughput on each VM. The number in the bracket
indicates the number of TCP connections (VM4 has no TCP connection).

Fig. 3 Dynamic rate adjustment varying the number of TCP connections
on each VM.

those servers is a dedicated virtualized aggregator with 2 GB
of main memory, running a domain0 host system of the Xen-
hypervisor with four para-virtualized guest domains, VM1
to VM4, with 2 GB main memory each.

We establish 1, 5 and 12 TCP connections on VM1,
VM2, and VM3, respectively. In each connection, the server
sends a large amount of data to the aggregator. Figure 2
shows the aggregate throughput on each VM. In native Xen,
all VMs share the pNIC capacity (1 Gbps) without any ex-
plicit vNIC capacity isolation. Since each VM tries to uti-
lize the pNIC in a best-effort manner, packet drops fre-
quently occur at the packet buffer of the ToR switch, causing
throughput degradation with a total speed below 600 Mbps.
The static policy avoids network congestion by assigning a
constant capacity as high as CpNIC/n to each vNIC. How-
ever, it cannot achieve full pNIC utilization since the vNIC
capacity assigned to VM4 of about 250 Mbps is unused
(Fig. 2). In contrast, the dynamic rate adjustment of the pro-
posed scheme fully utilizes the total pNIC capacity by as-
signing only a small rate to VM4. Furthermore, unlike in
previous policies, the proposed scheme adjusts the rate of
each vNIC in proportion to the number of TCP connections,
achieving high throughput fairness among the connections
of all VMs.

To verify how the proposed scheme dynamically per-
forms the rate adjustment, we measure the aggregate
throughput by (i) decreasing the number of TCP connec-
tions from 15 to 1 on VM1, (ii) increasing from 1 to 15 on
VM3, and (iii) fixing the number to 2 on VM2, as shown in
Fig. 3. The black line indicates the total throughput of all
VMs. Figure 3 reveals that the pNIC is fully utilized with a
total throughput always close to 1 Gbps. Hence, the hyper-

visor re-adjusts the rate of all VMs well whenever a network
connection is created or closed on the VMs.

6. Conclusion

We proposed a new dynamic rate adjustment scheme for
inbound data traffic on a virtualized host. The proposed
scheme dynamically re-adjusts the rate of vNICs in col-
laboration with the TCP-level flow control scheme, so the
amount of inbound data traffic of the VMs is proportion-
ate to the given weight, e.g., the number of network con-
nections. To evaluate the proposed scheme, we conducted
experiments on our small-scale Xen-based cloud data cen-
ter testbed. Through the experiments, we confirmed that
the proposed scheme effectively achieves full pNIC utiliza-
tion while performing dynamic rate adjustment of the vNICs
based on their bandwidth demands.

Acknowledgments

This research was supported by Basic Science Re-
search Program through the National Research Founda-
tion of Korea (NRF) funded by the Ministry of Education
(2013R1A1A2057967) of Korea.

References

[1] C.-H. Hong and C. Yoo, “Synchronization-Aware Virtual Machine
Scheduling for Parallel Applications in Xen,” IEICE Trans. Inf.&
Syst, vol.E96-D, no.12, pp.2720–2723, Dec. 2013.

[2] S.K. Lee, H. Kim, J. Ahn, K.J. Sung, and J. Park, “Provisioning
Service Differentiation for Virtualized Network Devices,” Proc. In-
ternational Conference on Networking and Services, May 2011.

[3] F. Dan, W. Xiaojing, Z. Wei, T. Wei, and L. Jingning, “vSuit:
QoS-oriented scheduler in network virtualization,” Proc. Interna-
tional Conference on Advanced Information Networking and Ap-
plications Workshops, pp.423–428, March 2012.

[4] C. Guo, G. Lu, H.J. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and Y.
Zhang, “SecondNet: A Data Center Network Virtualization Archi-
tecture with Bandwidth Guarantees,” Proc. ACM CoNEXT, 2010.

[5] A. Shieh, S. Kandula, A. Greenberg, C. Kim, and B. Saha, “Sharing
the Data Center Network,” Proc. USENIX NSDI, 2011.

[6] V. Jeyakumar, M. Alizadeh, D. Mazières, B. Prabhakar, C. Kim, and
A. Greenberg, “EyeQ: Practical Network Performance Isolation at
the Edge,” Proc. USENIX NSDI, 2013.

[7] M. Alizadeh, A. Greenberg, D.A. Maltz, J. Padhye, P. Patel, B.
Prabhakar, S. Sengupta, and M. Sridharan, “Data Center TCP
(DCTCP),” Proc. ACM SIGCOMM, 2010.

[8] J. Hwang, J. Yoo, and N. Choi, “Deadline and Incast Aware TCP
for Cloud Data Center Networks,” Computer Networks, vol.68,
pp.20–34, Aug. 2014.

[9] J. Hwang, J. Yoo, and N. Choi, “IA-TCP: A Rate Based In-
cast-Avoidance Algorithm for TCP in Data Center Networks,” Proc.
IEEE ICC, pp.1292–1296, June 2012.

[10] H. Wu, Z. Feng, C. Guo, and Y. Zhang, “ICTCP: Incast Conges-
tion Control for TCP in Data-Center Networks,” IEEE/ACM Trans.
Netw., vol.21, no.2, pp.345–358, 2013.

[11] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowstron, “Better
Never than Late: Meeting Deadlines in Datacenter Networks,” Proc.
ACM SIGCOMM, 2011.

[12] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.
Neugebauer, I. Pratt, and A. Warfield, “Xen and the Art of Virtual-
ization,” Proc. ACM SOSP, Oct. 2003.

http://dx.doi.org/10.1587/transinf.e96.d.2720
http://dx.doi.org/10.1109/waina.2012.122
http://dx.doi.org/10.1145/1921168.1921188
http://dx.doi.org/10.1145/1851182.1851192
http://dx.doi.org/10.1016/j.comnet.2013.12.002
http://dx.doi.org/10.1109/icc.2012.6364079
http://dx.doi.org/10.1109/tnet.2012.2197411
http://dx.doi.org/10.1145/2018436.2018443
http://dx.doi.org/10.1145/945445.945462

