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A B S T R A C T   

Moringa oleifera Lam. (MO) is traditionally used to treat various ailments, including swelling, hypertension, and 
diabetes. We investigated the anti-inflammatory effects of Bifidobacterium animalis subsp. lactis (B. lactis)-fer-
mented MO (MO-B) on LPS-mediated RAW 264.7 cells. HPLC analysis showed that (+)-catechin, ellagic acid, and 
quercetin-3-glucuronide contents of MO-B were markedly higher than those of MO extract. MO-B contained 
kaempferol, which was not observed in MO. MO-B exhibited better inhibitory effects on the inflammatory factors 
NO and ROS in LPS-stimulated RAW 264.7 cells than MO and B. lactis, and the expression of pro-inflammation 
cytokine (IL-6, IL-1β, TNFα) was significantly downregulated in LPS-activated macrophages following MO-B- 
treatment. MO-B also suppressed the TLR4/NF-κB pathway cells and ameliorated the PI3K/AKT and MAPK 
pathways, involved in the regulatory mechanisms underlying NF-κB-mediated inflammation. Our results suggest 
that MO-B have the possibility to be a novel anti-inflammatory agent for use in therapeutics or as an ingredient in 
functional foods.   

1. Introduction 

Inflammation plays a key role in the response to infection and injury 
by signaling the immune system to heal and repair damaged tissues. 
However, excessive inflammatory responses could increase the risk of 
diseases such as diabetes, cardiovascular disease, arthritis, allergies, 
psoriasis, and rheumatoid arthritis. Macrophages are vital members of 
the innate immune system that can detect anti-inflammatory and 
immunoregulatory agents (Shou et al., 2019). LPS, an endotoxin found 
in cell walls of gram-negative bacteria, stimulates macrophages to 
induce pro-inflammatory factors such as nitric oxide (NO), TNF-α, IL-1β, 
and IL-6, through Toll-like receptor 4 (TLR4), expressed on the surface of 
the cell (Akira & Hemmi, 2003; Chae, 2018). TLR4 activates NF-κB to 
respond the redox-sensitive reactions and mediates the expression of 
pro-inflammatory genes, leading to the accumulation of pro- 
inflammatory cytokines and resulting in inflammation and injury (Fan 
et al., 2016). Preventing activation of the MAPK and PI3K/AKT signaling 
pathways is thus considered a potential strategy to block the NF-κB 
pathway and ameliorate inflammation-related diseases (Bist et al., 

2017). In the present study, the anti-inflammatory potentials of MO, 
B. lactis and B. lactis-fermented MO were compared by evaluating the 
NF-κB, PI3K/AKT, and MAPK signaling pathways in LPS-stimulated 
murine macrophages. 

MO belonging to the Moringaceae family is commonly known as the 
drumstick tree. It is a traditional herb that is widely cultivated in many 
tropical and subtropical countries worldwide, including India, Pakistan 
and Nepal (Razis, Ibrahim, & Kntayya, 2014). MO leaves have been 
traditionally used to treat various conditions such as asthma, bronchitis, 
blood impurities, blackheads, chest congestion, skin infections, cholera, 
diabetes and hypertension (Razis, Ibrahim, & Kntayya, 2014). MO is rich 
in bioactive compounds including polyphenols, flavonoids, phenolic 
acids, and isothiocyanates, which have anti-cancer, antibacterial, anti- 
inflammatory, antioxidant, hepatoprotective, and neuroprotective ef-
fects (Kooltheat et al., 2014; Kou et al., 2018), and has attracted the 
interest of researchers owing to its excellent anti-inflammatory proper-
ties that are the result of its of abundant bioactive compounds. Some 
studies have reported that MO can suppress lipopolysaccharide (LPS)- 
mediated RAW 264.7 cell activation, decrease the cytokines production, 
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such TNFα, IL-6, and IL-8 and inhibit the NF-κB signaling pathway 
involved in inflammation (Vergara-Jimenez et al., 2017). Various 
cytotoxic bioactive substances have been extracted using various of 
harmful solvents, including acetone, ethanol, ethyl acetate, and meth-
anol (Cha et al., 2012). 

Fermentation can enhance the biochemical and physiological activ-
ities of compounds by modifying the original molecule; it is, therefore, 
possible for the bacterial hydrolysis and structural degradation of plant 
cell walls involved in the fermentation process to increase the amount of 
polyphenol and other bioactive compounds present within fermented 
plant products, resulting in increased biological functions (Jeong et al., 
2018; Wang et al., 2019). Previous studies have reported that fermented 
blueberry-blackberry has antioxidant, anti-inflammatory and anti- 
bacterial effects because the original phytochemical molecules are 
modified during the fermentation process (Johnson et al., 2013; Lavefve 
et al., 2020). The gastrointestinal microbiome plays a critical role in the 
human immune and metabolic systems (Luo et al., 2018; Strandwitz, 
2018). Scientific studies have confirmed the health-promoting effects of 
fermented cabbage products via antioxidant, and anti-inflammatory 
activities (Peñas et al., 2012; Peñas, Martinez-Villaluenga, & Frias, 
2017). B. lactis is a probiotic with several beneficial properties, 
including, immune response, anti-aging, anti-inflammation, anti- 
pathogenic and anti-tumor activities, all of which are of great benefit 
to human health (Delgado et al., 2020; Yu et al., 2019). Therefore in this 
study, we aimed to explore and confirm the therapeutic potential of 
B. lactis-fermented MO as an anti-inflammatory agent. 

2. Materials and methods 

2.1. Chemicals and reagents 

GeneDEPOT company (San Antonio, TX, USA) provided DMEM 
medium, penicillin-streptomycin (PS; CA005-010), and fetal bovine 
serum (FBS; F0900-050) (made in USA). Dimethyl sulfoxide (DMSO; 
D2650-100 ML), and 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenylte-
trazolium bromide (MTT; M6494), and lipopolysaccharide from 
Escherichia (LPS; L2880-10MG) reagents were obtained from Sigma- 
Aldrich (St Louis, MO, USA). DeMan, Rogosa, and Sharp (MRS; 9765) 
broth was procured from Company (BD, San Jose, CA USA). Macrogen 
company (Geumcheon-gu, Seoul) engineered primers for IL-6, TNF-α, IL- 
1β, NF-κB, and IKKα. Primary antibodies against: p38 (#8690), p-p38 
(#4511), ERK (#9102), p-ERK (#9101), JNK (#9252), p-JNK (#9251), 
p65, IκBα (#9242), p-IκBα (#9246), p-p65 (#3033) and β-actin (#3700) 
antibodies were obtained by Cell Signaling Technology (CST, MA, USA). 
Standard references, such as (+)-catechin (CAS No. 154-23-4), 
quercetin-3-glucuronide (CAS No. 22688-79-5), ellagic acid (CAS No. 
476-66-4) and kaemferol (CAS No. 520-18-3) were provided by Natural 
Product Institute of Science and Technology (Anseong, South Korea). 

2.2. MO extraction 

MO leaves were purchased from a local market in Coimbatore, Tamil 
Nadu, India, and their identity verified by Professor P. Jayaraman (Plant 
Anatomy Research Center). The specimen voucher number is PARC/ 
2017/3906. MO leaves were completely washed, dried and then ground. 
10 g of the resulting MO powder was soaked in 50 mL of ethanol (70%) 
at 37 ◦C for 24 h under dark conditions, and repeated three times. The 
extracted solution was then filtered through a Whatman No. 1 filter 
paper, and a rotary vacuum evaporator was used to evaporate the sol-
vent at 50 ◦C. The resulting sample was kept at 4 ◦C. The extract was first 
dissolved in distilled water before use. A total yield of approximately 
5–6% was obtained. 

2.3. MO and B. lactis fermentation (MO-B) 

The 16S rRNA sequence of B. lactis was obtained from a Korean 

company and deposited in NCBI GenBank under the accession number 
CP001606. B. lactis was anaerobically cultured in sterile MRS broth 
containing 0.05% L-cysteine-HCl at 37 ◦C in the non-shaking incubator. 
The culture reached an optical density of 1.2 at 600 nm, or reached 
stationary phase, the cells 107 CFU/mL after 48 h. MO (2 mg/mL) was 
fermented with B. lactis at 37 ◦C in incubator. Samples were sonicated 
for 40 min, then centrifuged at 4,000 rpm, 4 ◦C for 15 min after 24 h. The 
supernatant was collected and freeze dried for further experiments. 

2.4. Determination of total polyphenol and total flavonoid content 

The total phenol contents of MO-B and MO were determined using 
the Folin-Ciocalteau method (Baba & Malik, 2015) with some modifi-
cations. Briefly, 10 μL (1 μg/mL) samples solution was mixed with 10 μL 
Na2CO3 2% with 200 μL FolinCiocalteu reagent 50% in every well of a 
96-well plate, and kept in the dark at room temperature. After 30 min 
the microplate was measured by SpectraMax® ABS plus machine at 750 
nm. Gallic acid equivalents (0–500 µg/mL) were used to calculate total 
phenols, with the mean represented in mg of gallic acid equivalents per 
gram (mg GAE/g). 

The aluminum chloride technique was used to determine total 
flavonoid content (Zhishen, Mengcheng, & Jianming, 1999) with slight 
modifications. Briefly, 10 μL (1 mg/mL) samples and 80 μL EtOH 80% 
were mixed into microplate wells and 20 μL of AlCl3 10%, 20 μL of 
NaNO2 (1 M), and 80 μL EtOH 80% were added to the reaction mixture, 
which was then shaken, and the absorbance was determined at 415 nm. 
Various quercetin (0–200 μg/ mL) concentrations were prepared as a 
standard. The mean was presented as mg of quercetin equivalent per 
gram (mg QE/g). 

2.5. HPLC analysis 

(+)-Catechin, ellagic acid, quercetin-3-glucuronide, and kaempferol 
were considered as major compounds in MO, so their contents in MO 
and MO-B were quantitatively analyzed. The extract of MO (20 mg) and 
MO-B (20 mg) were dissolved in 1 mL of MeOH, respectively. MO and 
MO-B (20 mg/mL) were dissolved using an ultrasonic bath for 20 min. 
The suspension was filtered with a 0.45 μm PVDF membrane and the 
supernatant was used for HPLC analysis. The standard compounds 
including (+)-catechin, ellagic acid, quercetin-3-glucuronide, and 
kaempferol were dissolved in MeOH with concentration at 1 mg/mL and 
processed under the same conditions. 

The contents of (+)-catechin, ellagic acid, quercetin-3-glucuronide, 
and kaempferol in MO and MO-B were analyzed using the Waters Alli-
ance HPLC System (USA). A (0.1% trifluoroacetic acid in H2O) and B 
(MeCN) were used to prepare the mobile phases. The gradient program 
is presented in Table S1. The sample volume was 10 μL, and the flow rate 
was set to 1.0 mL/min. The standard curves of (+)-catechin, ellagic acid, 
quercetin-3-glucuronide, and kaempferol were showed in Fig. S1. 

2.6. Cell culture and viability examination 

RAW 264.7 cells were cultured in full DMEM medium (10% FBS 
and1% PS) in a 5% CO2 humidified incubator at 37 ◦C. The cytotoxicity 
of MO-B, MO, and B. lactis was assessed using an MTT assay. Cells were 
separated and cultured overnight in 96-well plates at a density of 1x105 

cells/mL. Cells were activated with LPS (1 μg/mL) for 1 h, and treated 
with different concentrations of MO-B, MO, and B. lactis (50, 75, 100, 
150, and 200 μg/mL). After 24 h, MTT (0.5 mg/mL) solution was added, 
and the cells were kept in an incubator at 37 ◦C for 2 h. Formazan 
crystals were dissolved in DMSO. The absorbance was analyzed at 560 
nm (SpectraMax® ABS plus) for each well. 

2.7. NO determination 

RAW 264.7 cells were treated with several concentrations of MO-B, 
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MO, and B. lactis (50, 75, 100, 150 and 200 μg/mL) and LPS (1 μg/mL) 
for 1 h. After 24 h, 100 µL of culture medium supernatant was trans-
ferred to another 96 well-plate and mixed with 100 µL Griess reagent 
(Thermo Fisher Scientific). The plate was then incubated at room tem-
perature for 10 min, and the absorbance was measured at 570 nm by 
spectrophotometric microplate. Nitric production (NaNO2) was used as 
standard to determine NO production. 

2.8. ROS production 

RAW 264.7 cells were cultured on glass slides in a small plate and 
treated with MO-B (100, 150, and 200 μg/mL), MO, and B. lactis (200 
μg/mL) with LPS (1 μg/mL) over 24 h. Cells were then washed and 
treated using a cellular ROS/Superoxide Detection Assay Kit (Abcam, 
Cambridge, UK). A Leica DMLB fluorescence microscope was used to 
measure the fluorescence using rhodamine (Ex/Em = 550/620 nm) and 
fluorescein (Ex/Em = 490/525 nm) filter sets. 

2.9. qRT-PCR analysis 

RAW 264.7 cells were treated with MO, MO-B, B. lactis, or LPS (1 µg/ 
mL) for 24 h. TRIsureTM (Bioline, Luckennwalde, Germany) reagent was 
used to extract total RNA, which was diluted to 500 ng and mixed with 
amfiRivert cDNA Synthesis Platinum Master Mix (GenDEPOT, TX, USA) 
for transcription into cDNA. Each qRT-PCR reaction was performed in a 
20 μL volume mixture containing 500 ng cDNA, primer and amfiSure 
qGreen Q-PCR Master Mix (GenDEPOT, TX, USA). Table S2 showed the 
list of inflammation-related genes. Relative gene expression was calcu-
lated by the 2-ΔΔCt method. The housekeeping gene, GAPDH, was used as 
a standard to analyze the expression levels of related genes. 

2.10. ELISA and western blot analysis 

RAW 264.7 cells were cultured in 60 mm dishes for 24 h and then 
treated with various concentrations of MO, MO-B, B. lactis and LPS (1 
µg/mL) for 24 h. The culture supernatant was collected, and ELISA was 
used to quantify the IL-6 (BD Biosciences, San Diego, CA, USA) and TNF- 
α (Thermo Fisher Scientific) levels in the supernatant. Cells were then 
washed in PBS, collected using a scraper and lysed using Pierce™ RIPA 
Buffer. The lysate as centrifuged at 12,000 rpm for 20 min at 4 ◦C. 
Bradford reagent was used to determine protein concentration. Total 
protein (50 ng) was run on a 10 % polyacrylamide gel electrophoresis, 
and the separated protein bands were transferred onto a PVDF mem-
brane. After 1 h, the membrane was blocked with 5 % skim milk and 
probed with appropriate primary antibodies overnight at 4 ◦C. The 
membrane was then incubated with a horseradish peroxidase-linked 
secondary antibody (goat anti-mouse/rabbit IgG 1:2000) at room tem-
perature for 2 h. Finally, an improved chemiluminescence (ECL) 
detection system (GenDEPOT, USA) was used with the Alliance Mini 
HD9 (Uvitec, Cambridge, UK) to detect the protein expression levels. 
ImageJ software was used to measure the intensity of the bands. 

2.11. Statistical analysis 

The experiment was repeated three times independently, and the 
results are presented as mean ± standard deviation or standard error for 
each experiment. The p-value of *p < 0.05, **p < 0.01, ***p < 0.001 and 
#p < 0.05, ##p < 0.01, ###p < 0.001 was considered statistically 
significant. 

3. Results 

3.1. Quantification of phenolic content in MO-B and MO 

The characteristics of MO-B and MO were identified to determine the 
biomedical properties of our sample (Table 1). The total polyphenol and 

flavonoid contents of MO were 11.75 ± 0.73 mg GAE/g and 4.72 ± 0.22 
mg QE/g, respectively, whereas those of MO-B were 39.93 ± 3.09 mg 
GAE/g and 9.05 ± 0.1 mg QE/g, respectively, for MO-B, which is a 
significant increased. 

Several phenolic compounds identified via HPLC analysis included 
(+)-catechin, ellagic acid, quercetin-3-glucuronide, and kaempferol as 
the main active compounds in MO and MO-B. The amount of (+)-cate-
chin, ellagic acid, and quercetin-3-glucuronide (13.51 ± 0.16 mg/g, 
0.59 ± 0.00 mg/g, and 9.88 ± 0.08 mg/g, respectively) was higher in 
MO-B than those in MO (Fig. 1). Kaempferol, not detected in the un-
fermented MO extract, was observed only after fermentation with 
B. lactis. These phenolic compounds have potent anti-inflammatory ef-
fects, indicating that fermentation may be the source of the enhanced 
anti-inflammatory properties observed. 

3.2. Cytotoxicity of MO-B in RAW 264.7 cells 

MTT assay was used to ascertain cytotoxicity in RAW 264.7 cells 
treated with MO-B. Fig. 2A indicates that no toxicity was associated with 
MO-B, MO, or B. lactis at the studied concentrations (from 50 to 200 μg/ 
mL) in RAW 264.7 cells pretreated with LPS (1 μg/mL). 

3.3. Effects of MO-B on NO production and iNOS expression in LPS- 
induced RAW 264.7 cells 

Nitrite levels were evaluated using Griess to determine the extent to 
which NO production was inhibited by MO-B in LPS-activated RAW 
264.7 cells. LPS (1 μg/mL) led to a marked increase in excess NO; 
however, NO decreased significantly (from 34.34 µM to 9.18 µM) in 
macrophages following treatment with MO-B (50–200 μg/mL) as 
compared to that in macrophages treated with same concentrations of 
MO and B. lactis (Fig. 2B). 

iNOS has previously been found to regulate NO secretion in RAW 
264.7 cells after LPS treatment (Xie et al., 2019). We, therefore, assessed 
the iNOS mRNA expression following treatment with MO-B, MO, and 
B. lactis, with results suggesting that MO-B significantly suppressed iNOS 
mRNA expression (1.3-, 2.3-, and 2.5-fold) in LPS-stimulated RAW 264.7 
cells (Fig. 2C), while MO and B. lactis reduced iNOS mRNA expression 
only slightly (1.0- and 1.1-fold, respectively) in LPS-activated macro-
phages. These results indicate that MO-B suppresses NO production by 
inhibiting the production of iNOS mRNA in LPS-activated RAW 264.7 
cells. 

3.4. Effect of MO-B on ROS production 

ROS is considered necessary for mediating LPS-induced inflamma-
tion (J. Park et al., 2015). The ROS levels in RAW 264.7 cells pretreated 
with LPS showed a significant increase (10.5-fold) compared to those in 
control cells (Fig. 2D). However, the fluorescence intensity of LPS- 
stimulated RAW 264.7 cells decreased 4.2-, 4.3-, and 1.8-fold 
following MO-B treatment at the three concentrations 50, 100, and 
200 µg/mL, respectively, and the effects obtained using MO-B were 
more significant than those for MO (9.3-, 7.2-, and 6.3-fold) and B. lactis 
(10.1-fold) at 200 µg/mL under the same conditions. 

Table 1 
Total polyphenol, total flavonoid of MO-B and MO.  

Samples Total Polyphenol 
(mg GAE/g) 

Total Flavonoid 
(mg QE/g) 

MO-B 39.9 ± 3.09*** 9.1 ± 0.1*** 

MO 11.8 ± 0.73 4.7 ± 0.22 

Values are presented as mean ± standard deviation. 
**P < 0.001 (vs MO). 

T.H.M. Tran et al.                                                                                                                                                                                                                              



Journal of Functional Foods 109 (2023) 105752

4

3.5. Effects of MO-B on pro-inflammatory cytokines 

Pro-inflammatory cytokines, such as IL-6, TNF-α, and IL-1β, play a 
vital role in the inflammatory process. To investigate the effects of the 
fermented plant on these cytokines, RNA was isolated from LPS- 
stimulated RAW 264.7 cells treated with MO-B, MO, and B. lactis. As 
shown in Fig. 3A–C, the mRNA expression of IL-1β, TNF-α, and IL-6 
significantly increased after LPS stimulation. However, the mRNA 
expression of these cytokines in the MO-B group decreased in a dose- 
dependent manner compared to that observed in the MO and B. lactis 
treatment groups. IL-1β, TNF-α, and IL-6 mRNA levels were dramatically 
reduced in the MO-B treatment group at a concentration of 200 µg/mL 
(3-, 5-, and 23-fold, respectively). Furthermore, MO-B strongly sup-
pressed the secretion of TNFα and IL-6 in a dose-dependent manner 
compared to MO or B. lactis (Fig. 3D-E). Interestingly, IL-6 expression in 
the MO-B group was highly suppressed according to the qRT-PCR and 
ELISA results, suggesting that IL-6 may be the most significant target of 
MO-B. These results indicate that MO-B may mediate anti-inflammatory 

effects by inhibiting pro-inflammation cytokines. 

3.6. Effect of MO-B on the TLR4/NF-κB signaling pathway 

TLR4, a member of the TLR family, is considered an indispensable 
component of the immune system (Tao et al., 2020). Previous studies 
have indicated that inflammatory responses occur when antigens acti-
vate the TLR4/NF-κB signaling pathway by binding to TLRs (Tao et al., 
2020). The mRNA expression of TLR4 in RAW264.7 cells activated with 
LPS was markedly increased; however, treatment with MO-B attenuated 
the TLR4 mRNA expression level as the concentration was increased 
from 100 µg/mL to 200 µg/mL (Fig. 4A). To further investigate the anti- 
inflammatory mechanisms of MO-B in terms of the NF-κB pathway, IKKα 
was used to regulate IκBα, which was downregulated by MO-B as the 
dose increased in LPS-stimulated RAW 264.7 cells, leading to active 
phosphorylation via IκBα and NF-κB. Fig. 4B-C shows the dose- 
dependent attenuation in the mRNA expression of IKKα and p65 in 
LPS-activated RAW macrophages compared to the MO or B. lactis 

Fig. 1. The HPLC analysis of (A) MO-B and MO, (B) The content of (+)-Catechin, Ellagic, Quercetin 3-glucuronide, and Kaempferol in MO-B and MO.  
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groups. LPS activated IκBα and p65 phosphorylation (Fig. 4D–E); how-
ever, the activation of these pathways was decreased by MO-B in a dose- 
dependent manner. Specifically, the protein expression of phosphory-
lated IκBα and p65 in the MO-B (200 µg/mL) group was dramatically 
reduced (5- and 2-fold, respectively) in the LPS-activated RAW macro-
phages, suggesting that IκBα inhibition prevented p65 activation. These 
results indicate that MO-B may mediate anti-inflammatory effects by 
blocking the NF-κB signaling pathway. 

3.7. Effect of MO-B on the MAPK signaling pathway 

To investigate whether MO-B could inhibit the MAPK pathway, the 
expression of several proteins related to the MAPK family, such as ERK, 
JNK, and p38, was evaluated in LPS-stimulated RAW 264.7 cells treated 
with MO-B. As shown in Fig. 5, western blotting results confirmed a 
significant decrease in the levels of p-JNK, p-p38, and p-ERK in the LPS- 
stimulated RAW 264.7 cells following treatment with MO-B (100, 150, 
and 200 µg/mL), whereas negligible inhibition of the MAPK signaling 
pathway was observed in the MO and B. lactis treatment groups. Thus, 
MO-B significantly suppressed JNK, p38, and ERK phosphorylation in 
LPS-activated RAW 264.7 cells, and this phenomenon may subsequently 

suppress NF-κB activation. 

3.8. Effect of MO-B on the PI3K/AKT signaling pathway 

PI3K/AKT plays a critical role in inflammation by activatingv the NF- 
κB pathway. As shown in Fig. 6 A–D, western blotting and qRT-PCR 
analyses showed that treatment with MO-B at different concentrations 
suppressed the expression of AKT and PI3K in LPS-stimulated RAW 
264.7 cells compared to those under MO or B. lactis treatment. In 
particular, p-PI3K protein expression was significantly decreased in the 
MO-B treatment group but not in the MO or B. lactis treatment groups. 
These results indicate that MO-B successfully inhibited the PI3K/AKT 
signaling pathway. We, therefore, assume that MO-B significantly sup-
presses the phosphorylation of PI3K and AKT in LPS-stimulated RAW 
264.7 cells. 

4. Discussion 

Fermentation has been used as a method of preserving food for 
millennia. The microorganisms involved in fermentation produce sub-
stances that are useful to the body (Lee et al., 2020), and several studies 

Fig. 2. The inhibition in inflammation of MO-B, MO, B. lactis in LPS-activated macrophages. (A) MTT assay, (B) NO production, (C) iNOS mRNA expression, and (D) 
ROS staining. The data was presented as a mean S.D. ***p < 0.001 compared vs. control. #p < 0.05, ##p < 0.01, ###p < 0.001 compared vs. LPS group. 
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have suggested that fermented foods may improve the absorption rate 
and enrich phytochemicals and bioactive compounds in health- 
promoting foods (Lee et al., 2020; Shahbazi et al., 2021). Lee et al. 
indicated that fermented Zanthoxylum schinifolium has enriched poly-
phenol content, resulting in improved antioxidant and anti- 
inflammatory effects (Lee et al., 2020). Hur et al. reported that fer-
mented MO utilizes Rhizopus oligosporus to alleviate atopic dermatitis, an 
inflammation-associated skin disease (Hur et al., 2018); however, the 
mechanism by which this occurs was not studied in depth. In this study, 
we fermented MO with B. lactis to investigate its anti-inflammatory 
activity and the underlying mechanisms of LPS-stimulated RAW 264.7 
macrophages. 

Fermentation can convert phenolic substances into plant compo-
nents, enhancing their bioactivity (Le, Thi, Anh, & Yang, 2020). During 
fermentation process, probiotics produce a large number of enzymes 
that catalyze the hydrolysis of glycosidic bonds in some phenolic com-
pounds. It is believed that enzymatic hydrolysis could enhance the 
amount of free polyphenols present (Lee et al., 2015). Haile et al. re-
ported that the levels of polyphenols and flavonoids in green coffee 
beans significantly increased after fermentation with yeast (Haile & 
Kang, 2019). Our results showed a notable increase in the total poly-
phenol and total flavonoid contents of MO-B as compared to MO. These 
results clearly suggested that fermentation (with B. lactis) made the MO 
rich in polyphenols and flavonoids contents via different enzymic reac-
tion that could stimulate the synthesis of polyphenols or flavonoids 
(Chiu et al., 2019). The detailed compositions in MO and MO-B were 
further analyze using HPLC. The HPLC analysis results of moringa 
extract and Moringa extract fermented with B. lactis were also compared, 
with results indicating that similar to the changes in total polyphenol 
and flavonoid content, the content of several phenolic compounds, such 
as (+)-catechin, ellagic acid, and quercetin-3-glucuronide were signifi-
cantly increased after fermentation. Moreover, we observed that the 
fermented MO contains kaempferol, which could not be detected in the 

MO extract. These results imply that B. lactis enhances the biological 
properties of MO extract by producing phytochemicals. Several studies 
suggest that (+)-catechin, ellagic acid, kaempferol, and quercetin-3- 
glucuronide can suppress inflammation (Boesch-Saadatmandi et al., 
2011; Cheng et al., 2019; Devi et al., 2015; Kassim et al., 2010). In 
particular, catechin exhibited significant anti-inflammation effect in 
LPS-activated RAW 264.7 by regulating ferroptosis pathway (Kuang 
et al., 2022). Furthermore ellagic acid, kaempferol, and quercetin-3- 
glucuronide remarkably reduced inflammation in LPS-activated RAW 
264.7 cells through inhibiting NO production and pro-inflammation 
cytokines expression (BenSaad et al., 2017; Lin et al., 2003; Nishikawa 
et al., 2022). Accordingly, the increase of these phenolic compounds 
may improve the anti-inflammatory properties of fermented Moringa. 
Therefore, MO fermented with B. lactis might have anti-inflammatory 
properties and could be used as a food additive. We speculate that 
MO-B exerts stronger activity than MO or B. lactis alone. 

Macrophages, the main modulators of inflammation, are associated 
with the autoimmune and autoinflammatory processes that lead to 
chronic inflammation-related diseases (Saqib et al., 2018). Macrophages 
release pro-inflammatory cytokines and inflammatory mediators, such 
as IL-1β, TNF-α, IL-6, NO, iNOS, and ROS, inducing cell damage (H. H. 
Lee et al., 2020). In our study, MO-B remarkably inhibited the produc-
tion of IL-1β, TNF-α, IL-6, NO, and iNOS in LPS-stimulated RAW 264.7 
cells compared to MO or B. lactis. One previous study suggested that 
fermentation can elevate anti-inflammatory activity by converting 
phenolic compounds (Le, Thi, Anh, & Yang, 2020). Following the 
fermentation of MO with B. lactis, the contents of (+)-catechin, ellagic 
acid, and quercetin-3-glucuronide were markedly higher than those 
obtained from MO alone. These phenolic compounds show anti- 
inflammatory ability by modulating the secretion of pro-inflammatory 
cytokines (IL-1β, TNF-α, and IL-6) and inflammatory mediators (NO 
and iNOS) (Boesch-Saadatmandi et al., 2011; Du et al., 2018; Yamaguchi 
& Levy, 2019). Thus, the elevation of these chemical components may 

Fig. 3. The inhibition of MO-B, MO, B. lactis on pro-inflammation in macrophage treated with LPS. (A) IL-1β, (B) TNFα, (C) IL-6 mRNA expression by qRT-PCR, (D) 
TNFα and (E) IL-6 secretion by ELIZA kit. The data was presented as a mean S.D. ***p < 0.001 compared vs. control. #p < 0.05, ##p < 0.01, ###p < 0.001 compared 
vs. LPS group. 
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contribute to the improved anti-inflammatory activity of MO-B. 
Inflammation is related to excess ROS in cells, which alter the pro- 

inflammatory cytokines by activating the transcription of 
inflammation-related genes (J. Park et al., 2015). Specifically, ROS are 

secreted mainly by the mitochondria, peroxisomes, and endogenously 
activated inflammatory cells (Mohsenzadegan & Mirshafiey, 2012). Our 
results indicate that LPS induces intracellular ROS accumulation in 
RAW264.7 cells and that elevated ROS production can be significantly 

Fig. 4. Effect of MO-B, MO, B. lactis on TLR4/NF-κB signaling pathway, including IKKα, IκBα, NF-κB. (A) TLR4, (B) IKKα, and (C) p65 mRNA expression, (D) IκBα and 
(E) p65 protein expression. The data was presented as a mean S.D. ***p < 0.001 compared vs. control. #p < 0.05, ##p < 0.01, ###p < 0.001 compared vs. LPS group. 

Fig. 5. Effect of MO-B, MO, B. lactis on MAPK signaling pathway. A) JNK, (B) ERK, (C) p38 protein expression. The data was presented as a mean S.D. ***p < 0.001 
compared vs. control. #p < 0.05, ##p < 0.01, ###p < 0.001 compared vs. LPS group. 
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reduced by treatment with B. lactis-fermented MO. Huang et al. 
confirmed that kaempferol is a potent flavonoid that reduces LPS- 
induced ROS in RAW264.7 macrophages (Huang et al., 2014). In this 
study, kaempferol appeared in MO fermented with B. lactis, whereas it 
was not observed in the MO extract. The inhibitory effect of MO-B on 
ROS production may thus be partially attributed to the presence of 
kaempferol. 

NF-κB is the most important transcription factor that regulates the 
expression of inflammatory factors (C. Park et al., 2021). The binding of 
antigens onto TLRs activates the TLR4/NF-κB signaling pathway, lead-
ing to inflammation (Zusso et al., 2019). Park et al. determined that 
morroniside inhibited LPS-induced inflammation in LPS-activated RAW 
264.7 cells by blocking the TLR4/NF-κB signaling pathway (C. Park 
et al., 2021). Therefore, the expression levels of TLR4, NF-κB, and IκBα 
were investigated to evaluate the mechanism by which the LPS-induced 
inflammatory response is prevented by MO-B. MO-B reduced the mRNA 
expression of NF-κB and IKKα dose-dependently. The protein activation 
of NF-κB and IκBα was also prevented by MO-B treatment in LPS- 
stimulated RAW 264.7 cells. These results suggest that MO-B can 
reduce LPS-mediated macrophages by inhibiting TLR4-induced NF-κB 
signaling via the binding of TLR4 and LPS. 

Furthermore, the MAPK signaling pathway, activated in the LPS- 
activated macrophages, modulates the expression of inflammation me-
diators via NF-κB activity (Kaminska, 2005). A previous study reported 
that fermented Asparagus cochinchinensis could reduce activation of the 

MAPK signaling pathway in LPS-mediated RAW 264.7 cells (H. A. Lee 
et al., 2017). Our investigation revealed that MO-B significantly sup-
pressed JNK, p38, and ERK phosphorylation in LPS-activated RAW 
264.7 cells in a dose-dependent manner. Previous report has demon-
strated that the PI3K/AKT signaling pathway is closely related to NF-κB 
activation and contributes to the production of inflammatory mediators 
(Nguyen et al., 2020). The activity of NF-κB is regulated via AKT phos-
phorylation, inducing the production of pro-inflammatory mediators. In 
this study, MO-B significantly suppressed the phosphorylation of PI3K 
and AKT in LPS-stimulated RAW 264.7 cells. Our results indicate that 
MO-B may inhibit LPS-induced NF-κB activation by reducing MAPKs 
and PI3K/AKT phosphorylation. 

5. Conclusion 

In summary, B. lactis-fermented MO-B inhibits the production of NO 
and pro-inflammatory cytokines, resulting in anti-inflammatory effects 
in the LPS-activated macrophages. MO-B showed greater anti- 
inflammatory activity than MO and B. lactis, which was likely attrib-
uted to high levels of ellagic acid, (+)-catechins, and quercetin-3- 
glucuronide. Kaempferol, a potent flavonoid, was found only in MO-B. 
Moreover, MO-B strongly inhibited the inflammatory response by 
blocking the TLR4/NF-κB signaling pathway and preventing activation 
of the PI3K/AKT and MAPK signaling pathways in LPS-stimulated RAW 
264.7 cells, thus inhibiting inflammation. Overall, our results 

Fig. 6. Effect of MO-B, MO, B. lactis on PI3K/AKT in LPS-activated RAW 264.7 cells. (A) PI3K, (B) AKT mRNA expression, (C) PI3K and (D) AKT protein expression. 
The data was presented as a mean S.D. ***p < 0.001 vs. control, # p < 0.05, ## p < 0.01, ###p < 0.001 compared vs. LPS group. 
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demonstrate that B. lactis-fermented MO-B possesses anti-inflammatory 
properties and that it should be further investigated. 
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