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Abstract: Amyloid beta (Aβ) is a neurotoxic peptide and a key factor causing Alzheimer’s disease.
Cirsium japonicum var. maackii (CJM) has neuroprotective effects, but the protective effects of the
flower from CJM (FCJM) on the neural system remain unclear. This study aimed to identify the
fraction of FCJM with the highest neuroprotective potential and investigate its protective mechanisms
against Aβ25–35-induced inflammation in C6 glial cells. The cell viability and generation of reactive
oxygen species (ROS) were measured to investigate the positive effect of FCJM on oxidative stress.
Treatment with the FCJM extract or fractions increased the cell viability to 60–70% compared with
52% in the Aβ25–35-treated control group and decreased ROS production to 84% compared with 100%
in the control group. The ethyl acetate fraction of FCJM (EFCJM) was the most effective among all the
extracts and fractions. We analyzed the protective mechanisms of EFCJM on Aβ25–35-induced inflam-
mation in C6 glial cells using Western blot. EFCJM downregulated amyloidogenic pathway-related
proteins, such as Aβ precursor protein, β-secretase, presenilin 1, and presenilin 2. Moreover, EFCJM
attenuated the Bax/Bcl-2 ratio, an index of apoptosis, and upregulated the oxidative stress-related
protein, heme oxygenase-1. Therefore, this study demonstrated that FCJM improves cell viability
and inhibits ROS in Aβ25–35-treated C6 glial cells. Furthermore, EFCJM exhibits neuroprotective
effects in Aβ25–35-induced inflammation in C6 glial cells by modulating oxidative stress and amy-
loidogenic and apoptosis signaling pathways. FCJM, especially EFCJM, can be a promising agent for
neurodegenerative disease prevention.

Keywords: Cirsium japonicum var. maackii flower; C6 glial cells; neuroprotection; amyloid beta;
Alzheimer’s disease; phytochemistry

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative condition characterized by the
damage of neurons in the brain, and one of its potential pathogeneses involves the excessive
deposition of amyloid beta (Aβ) [1,2]. Senile plaques are formed in the brains of patients
with AD and are mainly located in various neuronal tangles, affecting the transmission of
nerve signals and causing oxidative damage and apoptosis of nerve cells, thereby resulting
in cognitive impairment [3,4]. The main constituent of a senile plaque is Aβ peptide. Its
generation is linked to the amyloid precursor protein (APP), which undergoes cleavage via
β-secretase (BACE) and γ-secretase, resulting in the production of Aβ [5,6]. The aggregation
of Aβ leads to the hyperphosphorylation of the tau protein, formation of neurofibrillary
tangles, and overproduction of reactive oxygen species (ROS), ultimately contributing to
AD progression [7–9].

Cirsium japonicum var. maackii (CJM) is a perennial herb known for its potential
anti-inflammation, anti-hepatitis, aldose-reductase inhibitory effects, and neuroprotective
effects [10–14]. In particular, the flower of CJM (FCJM) has shown promising effects in
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ameliorating skin aging and promoting melanogenesis [15,16], but the protective effects
of the FCJM on the neural system remain unclear. A previous study demonstrated that it
included the bioactive flavonoids, cirsimarin, cirsimaritin, and hispidulin, with cirsimaritin
being the most important [17]. Flavonoids have strong antioxidant activity and can neutral-
ize free radicals, reduce cell oxidative stress damage, and prevent the occurrence of many
chronic diseases, such as cardiovascular diseases, cancer, and neurodegenerative diseases.
Moreover, flavonoids have anti-inflammatory properties, which can help reduce inflam-
mation and inhibit the release of inflammatory mediators [18,19]. Given these findings,
we designed a series of experiments to investigate the potential neuroprotective efficacy
of FCJM extract/fractions. This study also targeted to identify the fraction of FCJM with
the highest neuroprotective activities and demonstrated its protective mechanisms against
Aβ25–35-induced neurotoxicity in C6 glial cells.

C6 glial cells, or astrocytes in the brain, have been widely used as cell models in
AD research [20,21]. In our previous studies, C6 cells were used in Aβ25–35-induced
inflammation and oxidative stress experiments [13,22]. While similar studies have been
reported on the potential therapeutic effects of CJM on neurotoxicity [14], this present
study aimed to specifically focus on the neuroprotective effect of FCJM extract/fractions
on Aβ25–35-induced inflammation in C6 glial cells via oxidative stress, blood–brain barrier
(BBB) function, and the amyloidogenic pathway. We assessed cell viability and ROS
production to identify the most effective material among extracts/fractions of FCJM on
Aβ25–35-induced inflammation in C6 glial cells. Furthermore, we conducted a Western
blot to explore its protective effects and mechanisms. These findings may contribute to
the understanding of FCJM as a potential therapeutic agent in AD and provide a basis for
further research in this area.

2. Results
2.1. Effects of FCJM Extract and Fractions on Cell Viability

We conducted an MTT assay to assess whether FCJM affected cell viability [23]. Com-
pared with the normal group (100%), the cell viability of the Aβ25–35-treated control group
decreased to 52.59%, indicating that Aβ25–35 caused cytotoxicity, which led to cell via-
bility reduction (Figure 1). However, treatment with different concentrations (1, 5, and
10 µg/mL) of FCJM extract and fractions showed an obvious increase in cell viability. In
particular, the n-hexane and EtOAc fractions were the most effective in protecting the
C6 glial cells from the Aβ25–35-induced cytotoxicity among ethanol (EtOH) extract and
other fractions. These two fractions of FCJM significantly showed improvement in cell
viability within three concentrations (1, 5, and 10 µg/mL, p < 0.001, vs. control group).
Furthermore, among the extracts and fractions, the EtOAc fraction of FCJM (EFCJM) pre-
sented the best improvement in cell viability. These results suggested that FCJM, especially
EFCJM, had an ameliorative role in neuronal toxicity in C6 glial cells treated with Aβ25–35.
Meanwhile, the toxicity of FCJM extract and fractions on cell viability were not detected
(Supplementary Materials Figure S1).

2.2. Effects of FCJM Extract and Fractions on ROS Production

To examine whether FCJM possessed antioxidant activity in Aβ25–35-treated C6 glial
cells, we measured ROS production by detecting 2′,7′-dichlorofluorescein. The fluorescence
fluctuation of Aβ25–35-treated C6 glial cells was monitored for 60 min (Figure 2a). After
treatment with DCF-DA, fluorescence showed a time-dependent tendency in all groups.
Notably, Aβ25–35-treated C6 glial cells showed higher fluorescence counts, which indicated
that the ROS level increased due to Aβ25–35 compared to the normal cells. In contrast,
treatment with FCJM extracts and fractions showed a time-dependent inhibition in ROS
production. Figure 2b presents the fluorescence counts at 60 min. The ROS production was
significantly inhibited by EFCJM, which was the most effective material among the other
extract and fractions (p < 0.001 vs. control). Therefore, these results suggested that FCJM,
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especially EFCJM, had protective effects on oxidative damage induced by Aβ25–35, leading
to the inhibition of ROS production.
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Figure 1. Effect of CJM flower extracts and fractions on cell viability in Aβ25–35-treated C6 glial cells.
Values are means ± standard deviation. Ext., extract; Fr., fraction. a–c Means with different letters are
significantly different (p < 0.05) via Duncan’s multiple range test among extract- and fraction-treated
groups. Significant differences between the two groups are observed with Student’s t-test (* p < 0.001
vs. control). Aβ, Amyloid beta.
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Figure 2. Effect of CJM flower extract and fractions on ROS production in Aβ25–35-treated C6 glial
cells. (a) Time course of the change in the intensity of ROS fluorescence in 60 min. (b) The production
of ROS in C6 glial cells. Values are means ± standard deviation. Ext., extract; Fr., fraction. a–c Means
with different letters are significantly different (p < 0.05) via Duncan’s multiple range test among
extract- and fractions-treated groups. Significant differences between the two groups are observed
with Student’s t-test (* p < 0.001 vs. control). Aβ, Amyloid beta; ROS, reactive oxygen species.

2.3. Regulation of the HO-1 Protein Expression Level by EFCJM in Aβ25–35-Treated C6 Glial Cells

To ascertain how FCJM modulates neuroprotective effects, we chose EFCJM, the most
effective fraction among the others, and performed Western blotting. We evaluated whether
EFCJM regulated HO-1 expression level in Aβ25–35- treated C6 glial cells (Figure 3). Our
results showed that treatment with Aβ25–35 decreased HO-1 expression level compared
with that in normal cells. In contrast, treatment with EFCJM dose-dependently increased the
HO-1 expression level. These results suggested that EFCJM treatment showed a protective
effect on oxidative stress by regulating the HO-1 expression level in Aβ25–35-treated C6
glial cells.
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2.4. Regulation of the Apoptosis-Related Protein Expression Level by EFCJM in Aβ25–35-Treated
C6 Glial Cells

We also evaluated the effect of EFCJM on improving apoptosis in Aβ25–35-treated C6
glial cells. As presented in Figure 4, Aβ25–35-treated C6 glial cells showed a significant
increase in Bax protein expression and a significant decrease in Bcl-2 protein, which in-
dicated that Aβ25–35 activated apoptosis signaling in C6 glial cells. However, treatment
with EFCJM decreased the Bax expression level and increased the Bcl-2 expression level.
Furthermore, the ratio of Bax/Bcl-2 also showed a significant increase on treatment with
Aβ25–35 compared with that in normal cells, and treatment with EFCJM decreased the
Bax/Bcl-2 ratio, which indicated that EFCJM showed an ameliorating effect on apoptosis.
These results suggested that EFCJM ameliorated the Aβ25–35-induced apoptosis in C6 glial
cells by regulating apoptosis-related proteins.
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Figure 4. Effects of the ethyl acetate fraction of EFCJM on apoptosis-related protein expression in
C6 glial cells treated with Aβ25–35. (a) Bands of Bax and Bcl-2 proteins expression level. (b) Bax and
protein expression level. (c) Bcl-2 protein expression level. (d) Ratio of Bax/Bcl-2 proteins expression
level. Values are mean± standard deviation. a–e Means with different letters are significantly different
(p < 0.05), as determined via Duncan’s multiple range test. Bax, B-cell lymphoma 2-associated X
protein; Bcl-2, B-cell lymphoma 2.
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2.5. Regulation of the RAGE and IDE Protein Expression Level by EFCJM in Aβ25–35-Treated C6
Glial Cells

We further investigated whether EFCJM regulated RAGE and IDE protein expres-
sion. RAGE acts as a receptor for Aβ and promotes its uptake and transportation, and
IDE accelerates Aβ degradation. Figure 5 shows that treatment with Aβ25–35 slightly in-
creased RAGE expression and decreased IDE expression. However, after supplementation
with EFCJM, a significant decrease was shown in RAGE expression and a significant up-
regulation in IDE expression. These results suggested that EFCJM might inhibit Aβ uptake
and transportation via the down-regulation of RAGE and promote Aβ degradation via the
up-regulation of IDE expression in Aβ25–35-treated C6 glial cells.
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Figure 5. Effects of the ethyl acetate fraction of EFCJM on protein levels of IDE and RAGE in C6 glial
cells treated with Aβ25–35. (a) Bands of IDE and RAGE protein expression. (b) IDE protein expression
level. (c) RAGE protein expression level. Values are mean ± standard deviation. a–d Means with
different letters are significantly different (p < 0.05), as determined via Duncan’s multiple range test.
RAGE, IDE.

2.6. Regulation of the Amyloidogenic Pathway-Related Protein Expression Level by EFCJM in
Aβ25–35-Treated C6 Glial Cells

Figure 6 presents the expressions of amyloidogenic pathway-related proteins and the
ameliorating effects of EFCJM treatment for each concentration in Aβ25–35-treated cells.
The expression levels of APP, BACE, PS1, and PS2 were significantly higher in Aβ25–35-
treated cells than in untreated normal cells. Compared with the EFCJM treated groups,
the expressions of APP, BACE, PS1, and PS2 proteins were decreased (1, 5, 10 µg/mL).
These results suggested that EFCJM treatment ameliorated Aβ production by modulating
amyloidogenic pathway-related proteins.
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Figure 6. Effects of the ethyl acetate fraction of EFCJM on expression levels of the amyloidogenic
pathway proteins in C6 glial cells treated with Aβ25–35. (a) Bands of amyloidogenic pathway proteins
expression. (b) APP protein expression level. (c) BACE protein expression level. (d) Presenilin1
protein expression level. (e) Presenilin2 protein expression level. Values are mean ± standard
deviation. a–c Means with different letters are significantly different (p < 0.05), as determined via
Duncan’s multiple range test. PS1, presenilin 1; PS2, presenilin 2; BACE.

3. Discussion

CJM is presented in the Korean and Chinese pharmacopeias; it is considered a
traditional medicine and used as an anti-hemorrhagic, anti-hepatitis, and uretic agent
in East Asian regions [24]. The biological activities of CJM have been demonstrated
in various chronic disease-related research fields, such as AD, diabetes mellitus, and
hypertension [25–27]. CJM with medicinal benefits can be consumed as dietary supple-
ments, which can improve health and prevent diseases. In particular, Wagle et al. [26]
reported that CJM may be a potential dietary supplement in the treatment of diabetes
mellitus and AD. However, the clinical study of CJM on neural systems has not been
carried out yet. In 2021, the United States Food and Drug Administration approved ad-
ucanumab as the treatment of AD targeting the Aβ plaque. But there was insufficient
evidence for drug efficacy and safety [28]. Our study group has investigated and verified
the neuroprotective effect of CJM in vitro and in vivo [25,29]. Further, the neuroprotective
effects of CJM flowers have not yet been properly studied. In this present study, we focused
on the FCJM based on its biological activities, bioactive constituents, and usefulness as a
food additive (for example, garnish and tea).

Many studies have shown that the accumulation of Aβ can induce mitochondrial
dysfunction and oxidative stress and ultimately lead to cell apoptosis [30–32]. Compared
with Aβ1–42, Aβ25–35 causes stronger toxicity and is consequently more suitable for neuro-
toxicity studies using AD models [33,34]. Meanwhile, as the astrocytes in the brain, C6 glial
cells have been used as cell models for AD research after treatment with Aβ25–35 [35,36].
Astrocytes are involved in the immune response of the central nervous system. In the
early stage of AD, astrocytes are activated in response to the accumulation of Aβ plaques,
which in turn release chemokines and cytokines, such as transforming growth factor-β and
monocyte chemoattractant protein-1, and respond to pro-inflammatory cytokines, such as
interleukin-6 and tumor necrosis factor-α, simultaneously increasing Aβ production and
resulting in the inability of the BBB to maintain normal function [37–41].
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C6 glial cells are widely used in neuroscience research since they play a crucial role in
supporting and regulating neuron functions in the central nervous system and have high
stability and repeatability, which makes them widely used in neuroscience research [42].
Moreover, C6 glial cells can release a variety of cytokines and demonstrate a heightened
sensitivity to oxidative damage and inflammatory response [43,44]. The stimulation of Aβ

to C6 glial cells can cause cytotoxicity and oxidative stress, thereby affecting the survival
and apoptosis of C6 glial cells [45,46]. Moreover, C6 glial cells have been widely used to
evaluate the effects of various drugs and therapeutic strategies on Aβ-induced cytotoxic
and inflammatory responses [47,48]. Therefore, we applied the Aβ-induced C6 glial cell
model in our study to evaluate the neuroprotective effect of the CJM flower. Our previous
study showed that Aβ25–35 treatment downregulated the viability of C6 glial cells [49,50].
Similarly, our data showed that C6 glial cells treated with Aβ25–35 showed decreased cell
viability. However, after treatment with FCJM extract/fractions, the cell viability was
recovered, indicating that FCJM had a protective effect on Aβ25–35-induced cell injury.
Furthermore, among the EtOH extract and four fractions of FCJM, we found that the EtOAc
fraction showed the highest improvement in cell viability. Death of nerve cells is one of
the reasons for accelerating the development of AD pathology [51]. Our experimental
data suggested that FCJM extract/fractions, especially the EtOAc fraction, had a protective
effect on Aβ25–35-induced C6 glial cell damage.

Mitochondria is the site of intracellular ROS generation [52]. ROS includes superox-
ide anion radical (O2

−), hydroxyl radical (·OH), nonradical oxidants hydrogen peroxide
(H2O2), and singlet oxygen (1O2) [53]. When ROS is overproduced, they continue to act on
NADH-link electron transfer to increase O2

− formation and induce oxidative stress, which
causes neurodegenerative disease [54,55]. In the ROS production assay of this present
study, we found that treatment with Aβ25–35 increased ROS production compared with
that in untreated normal C6 glial cells, similar to previous reports [56,57]. Furthermore,
our data showed that treatment with FCJM extract/fractions decreased ROS production in
Aβ25–35-treated C6 glial cells. Among EtOH extracts and four fractions of FCJM, the CHCl3
and EtOAc fractions presented excellent ROS inhibition at concentrations of 1 and 5 µg/mL,
but the EtOAc fraction showed more effective ROS inhibition at 10 µg/mL. Meanwhile,
our previous study showed that FCJM extract/fractions had the ability to scavenge free
radicals, such as 2,2-diphenyl-1-picrylhydrazyl, OH, O2

−, and nitric oxide [58]. Addition-
ally, compared with the EtOH extract and other fractions, the EtOAc fraction showed the
highest free radical scavenging ability. To conclude, FCJM, especially EFCJM, inhibited ROS
production in Aβ25–35-treated C6 glial cells because of its free radical scavenging capacity.

The literature studies in relation to CJM include various bioactivities, such as anti-
oxidant, anti-inflammatory, anti-fungal, anti-cancer, anti-diabetic, and anti-AD [10,11,26].
Moreover, in our previous study [14], we reported the protective effects of the aerial part of
CJM on Aβ25–35-treated C6 glial cells regarding cell viability, ROS, inflammation-related
proteins (COX-2, IL-1β, and IL-6), and apoptosis-related proteins (Bax and Bcl-2). However,
FCJM, the flower part of CJM, has not been studied in biological activities in detail. Hence,
in this present study, we investigated the neuroprotective effects of FCJM. The EtOAc
fraction prominently showed the strongest neuroprotective activities in cell viability and
ROS evaluation. We further investigated the multiple mechanisms for neurodegeneration-
related protein expressions.

Therefore, in this present study, considering that EFCJM presented the strongest
protective effects against cell damage in the MTT assay, the highest inhibition in ROS
overproduction compared with the other extract/fractions of FCJM, as well as the outstand-
ing free radical scavenging capacity, we chose EFCJM to evaluate how it modulates its
neuroprotective effects in Aβ25–35-treated C6 glial cells. First, to investigate the molecular
mechanism of EFCJM in antioxidation, we measured the protein expression of HO-1 after
treatment with EFCJM in Aβ25–35-treated C6 glial cells. HO-1 is an essential enzyme for
heme catabolism; it can split heme and form biliverdin, as well as synthesize carbon monox-
ide and ferrous iron [59]. Numerous studies have shown that up-regulation of HO-1 protein
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expression helps prevent cell death and inflammation caused by oxidative stress [60–62]. In
addition, our previous study presented that treatment with Aβ25–35 inhibited HO-1 protein
expression in C6 glial cells [22]. In this present study, we found that treatment of C6 glial
cells with Aβ25–35 downregulated the protein expression of HO-1; however, treatment with
EFCJM increased the HO-1 protein expression. These findings suggested that EFCJM could
exert its antioxidant effect by regulating the protein expression of HO-1 in Aβ25–35-treated
C6 glial cells.

Bcl-2 is a typical anti-apoptotic factor in the Bcl family, and Bax is a typical pro-
apoptotic factor. Several researchers reported that the ratio of Bax/Bcl-2 plays an important
role in mitochondrial function [63,64]. The Bcl-2 family regulates mitochondrial function by
controlling the permeability of mitochondrial membranes [65]. Bcl-2 inhibits cytochrome
c release at the mitochondrial outer membrane; in contrast, Bax from the cytoplasm is
translocated into mitochondria after receiving a death signal and promotes cytochrome c
release [66,67]. Many studies reported that Aβ over-deposition in the brain would cause
neuronal apoptosis by modulating the expression of the Bax/Bcl-2 ratio and result in
cognitive impairment and neurodegenerative disease [68,69]. Moreover, our previous
study described that treatment with Aβ25–35 increased the expression of Bax and reduced
the expression of Bcl-2 in C6 glial cells, which revealed the effects of Aβ25–35 on cell
apoptosis [70]. In this present study, our data showed that treatment with Aβ25–35 increased
the ratio of Bax/Bcl-2 expression, and the EFCJM-treated groups showed significantly
decreased expression of Bax/Bcl-2. These results suggested that EFCJM improved Aβ25–35-
induced apoptosis of C6 glial cells by inhibiting the Bax/Bcl-2 expression ratio.

The BBB is a semipermeable chemical barrier that protects the internal stability of the
brain from harmful agents in systemic circulation [71]. In the BBB system, the main function
of RAGE as a transmembrane protein is to receive and transport Aβ from the extracellular
to the intracellular space [72]. A previous study reported that blocking the function of
RAGE could be helpful in developing a treatment or prevention technique for AD [73]. Our
results showed that treatment with Aβ25–35 increased RAGE protein expression compared
with that in untreated normal C6 glial cells. However, the EFCJM treatment group showed
a dose-dependent decreased RAGE protein expression. Our data suggested that EFCJM
might inhibit Aβ transportation by regulating RAGE protein expression.

Aβ25–35 is transported to the cell membrane via the RAGE protein, and Aβ25–35 in-
duces mitochondrial dysfunction, which increases ROS production and the Bax/Bcl-2 ratio,
suggesting that Aβ25–35 leads to cell apoptosis. However, treatment with EFCJM showed
improvement in Aβ25–35-induced mitochondrial dysfunction and cell apoptosis. Therefore,
to investigate the potential protective mechanisms of EFCJM, we also examined the clear-
ance function of EFCJM on Aβ25–35-treated C6 glial cells. Many studies have shown that the
Aβ clearance mechanism is promising in the development of AD therapeutics [74–76]. One
of the widely known targets is the IDE protein; it is a zinc metalloendopeptidase, has an
important physiological role in insulin metabolism, and mainly exists in the mitochondria
and peroxidase [77]. Studies reported that Aβ levels were increased in the IDE knockout
mice brain, while another study described that increasing IDE expression reduced soluble
and insoluble Aβ formation. Another study suggested that IDE played a clearance role by
keeping Aβ away from fibrillogens to prevent Aβ deposition in cells [78–80]. Moreover,
our previous study showed that Aβ25–35-treated C6 glial cells presented a decrease in IDE
expression [22]. In this present study, we found that treatment with Aβ25–35 decreased
the expression of IDE in C6 glial cells. However, the treatment with EFCJM increased the
IDE protein expression level at concentrations of 5 and 10 µg/mL. Meanwhile, EFCJM
treatment at 1 µg/mL showed no changes in IDE protein expression level. We suggest that
the concentration of 1 µg/mL EFCJM was too low to cause an up-regulatory effect on IDE
expression. Therefore, our present findings suggested that EFCJM might cause a neuropro-
tective impact on Aβ25–35-treated C6 glial cells by modulating IDE protein expression to
degrade Aβ.
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In the normal stage, signal transduction is developed along the non-amyloidogenic
pathway, but in the AD stage, signal transduction is developed along the amyloidogenic
pathway [81]. APP is cleaved via BACE, which is the key enzyme, thereby simultaneously
producing Aβ and the presenilin proteins (PS1 and PS2) [82]. Accumulated studies reported
that APP and BACE were overexpressed in AD models [83,84]. Aβ25–35 has been used to
build neurotoxicity models for AD research in vitro and in vivo [85,86]. The previous study
also used Aβ25–35-treated C6 glial cells to build an in vitro model of neuroinflammation
for neurotoxicity research [87]. In our present study, we found that APP expression was
increased in Aβ25–35-treated C6 glial cells. Most of the research on APP was focused on
neurotoxicity, and higher expression of APP indicated Aβ25–35 induced neurotoxicity in
C6 glial cells [88,89]. However, after treatment with EFCJM, the expression of APP was
significantly decreased. Moreover, the expression levels of BACE, PS1, and PS2 proteins
were also decreased at the concentration of 10 µg/mL compared with those in the control
group. Our findings suggested that EFCJM might exhibit a neuroprotective effect by
modulating amyloidogenic pathway-related proteins.

4. Materials and Methods
4.1. Materials

Aβ25–35 was purchased from Sigma Aldrich (Saint Louis, MO, USA). Dimethyl sulfoxide
(DMSO) was purchased from Daejung (Gyeonggi-do, Republic of Korea). 3-(4,5-Dimethyl-
2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) was purchased from Bio Pure
(Kitchener, ON, Canada). 2′,7′-Dichlorofluorescein diacetate (DCF-DA) was purchased from
Sigma-Aldrich (Saint Louis, MO, USA). Dulbecco’s modified eagle medium (DMEM), fetal
bovine serum (FBS), penicillin-streptomycin, and trypsin-ethylenediaminetetraacetic acid
(EDTA) solutions were obtained from Welgene (Daegu, Republic of Korea). Polyvinylidene
fluoride (PVDF) membrane was provided by Millipore Co. (Billerica, MA, USA). The
radioimmunoprecipitation (RIPA) buffer was provided by Elpis Biotech. (Daejeon, Republic
of Korea). Enhanced chemiluminescence (ECL) substrate solution was obtained from Bio-
Rad Laboratories (Hercules, CA, USA). We used the following primary antibodies: APP
from Sigma Aldrich (Saint Louis, MO, USA); BACE, presenilin 1 (PS1), presenilin 2 (PS2),
β-actin, and B-cell lymphoma 2-associated X protein (Bax) from Cell Signaling Technology
(Danvers, MA, USA); RAGE and IDE from Santa Cruz (CA, USA). B-cell lymphoma 2
(Bcl-2) and heme oxygenase 1 (HO-1) were from Abcam (Cambridge, UK). The secondary
antibodies included anti-rabbit IgG horseradish peroxidase (HRP)-link and anti-mouse IgG
HRP-link from Cell Signaling Technology (Danvers, MA, USA).

4.2. Sample Preparation

FCJM was obtained from Imsil Herbal Medicine (Imsil, Republic of Korea). It was
botanically authenticated by the Korea National Arboretum. FCJM was supplied in a dried
form. The dried FCJM (3 kg) was extracted with 15 L EtOH for 3 h at 65–70 ◦C under reflux,
and 470 g of EtOH extract was obtained. The solvent of EtOH extract was removed in
vacuo. The extract was partitioned sequentially with n-hexane (17.4 g), chloroform (2.1 g),
EtOAc (3.0 g), and n-butanol (7.7 g). FCJM extract or fractions were dissolved in DMSO
at a concentration of 0.1 g/mL and diluted with DMEM prior to use. Moreover, in our
previous study, the bioactive components of FCJM were analyzed in the reverse-phase
HPLC system [15].

4.3. Cell Culture

C6 glial cells were obtained from KCLB (Korean Cell Line Bank, Seoul, Republic of
Korea; reference number, KCLB No. 10107). These were cultured in 10% (v/v) FBS and
1% (v/v) penicillin-streptomycin containing DMEM and incubated under 5% CO2/95%
air humidity at 37 ◦C. After culturing the cells for 1–2 days, we discarded the medium,
washed the cells with phosphate-buffered saline (PBS, PH 7.4), and then separated the cells
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with 0.02% ETDA containing trypsin. After centrifugation at 1000 rpm for 3 min, the cells
were resuspended in DMEM for subculture and used in our experiments.

4.4. Cell Viability Assay

C6 glial cells were seeded at a density of 5 × 104 cells/well in a 96-well plate and
cultured in DMEM at 37 ◦C for 24 h. Meanwhile, Aβ25–35 was dissolved in double distilled
water at a concentration of 1 mM, incubated at 37 ◦C for 72 h, and diluted with cell culture
medium prior to use. Cells were then incubated with 1, 5, and 10 µg/mL FCJM extract
or fractions for 4 h, followed by incubation with 25 µM Aβ25–35 for 24 h. The Aβ25–35-
treated cells were further treated with 5 mg/mL MTT solution for 4 h, and the formazan
crystals were dissolved using DMSO solution. After a 30 min interaction with DMSO, the
absorbance of each well was measured at 540 nm.

4.5. Measurement of ROS Production

C6 glial cells were seeded at a density of 5 × 104 cells/well in a black 96-well plate
and incubated for 24 h. The cells were treated with 1, 5, and 10 µg/mL FCJM extract or
fractions for 4 h and then incubated with 25 µM Aβ25–35 for 24 h. Additionally, cells were
incubated with 80 µM DCF-DA for 30 min, and fluorescence (excitation: 480 nm, emission:
535 nm) was continuously measured for 60 min.

4.6. Western Blot Analysis

C6 glial cells were treated with EFCJM (1, 5, and 10 µg/mL), and 25 µM Aβ25–35
was added for the following experiments. Cells were harvested and lysed in an ice-cold
lysis buffer containing RIPA buffer and 1% protease inhibitor cocktail. The mixture was
centrifuged, and only the upper layer of protein was used for quantification. The protein
(15 ug) was then separated using 8–13% sodium dodecyl sulphate-polyacrylamide gel and
transferred to PVDF membranes in a cold transfer buffer for 2 h at 90 V. The membranes
with the transferred proteins were incubated at 4 ◦C overnight with primary antibodies
(APP, 1:1000, catalog number A8717; BACE, 1:1000, catalog number 5606; PS1, 1:1000,
catalog number 5643; PS2, 1:1000, catalog number 9979; RAGE, 1:500, catalog number
sc-365154; IDE, 1:500, catalog number sc-393887; Bax, 1:500, catalog number 2772; Bcl-2,
1:500, catalog number ab32124; HO-1, 1:1000, catalog number ab13243). The following
day, the membranes were incubated with secondary antibodies (anti-Rabbit IgG, 1:1000,
catalog number 7074; APP, BACE, PS1, PS2, Bax, Bcl-2, HO-1 anti-mouse IgG, 1:1000,
catalog number 7076; IDE; and RAGE) for 1 h at room temperature and then treated with
an enhanced chemiluminescence solution and imaged using a chemiluminescence imaging
system (Davinch-ChemiTM, Davinchi-K, Seoul, Republic of Korea). The original western
band images were shown in Supplementary Materials from Figure S2–S5.

4.7. Statistical Analysis

All data are presented as means ± standard deviations. Statistical significance was
checked using one-way analysis of variance, followed by Duncan’s multiple tests (p < 0.05).
Significant differences between the two groups were observed using Student’s t-test
(* p < 0.001 vs. control).

5. Conclusions

In summary, our results suggested that extract or fractions of FCJM inhibited Aβ25–35-
induced ROS production and increased cell viability. The neuroprotective activities, which
reside mainly in EFCJM, thus justify its application as a promising agent for AD treatment.
Meanwhile, there is a need to compare EFCJM with the major pure bioactive compounds
in the EFCJM for further study.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/life13071453/s1, Figure S1: Effect of CJM flower extract and
fractions on C6 glial cells; Figure S2: Effects of EFCJM on protein levels of HO-1 in C6 glial cells
treated with Aβ25–35; Figure S3: Effects of EFCJM on apoptosis-related protein expression in C6 glial
cells treated with Aβ25–35; Figure S4: Effects of EFCJM on protein levels of IDE and RAGE in C6 glial
cells treated with Aβ25–35; Figure S5: Effects of EFCJM on expression levels of the amyloidogenic
pathway proteins in C6 glial cells treated with Aβ25–35.
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