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Abstract: Phloroglucinol, a phenolic compound, is known to possess a potent antioxidant ability.
However, its role in retinal cells susceptible to oxidative stress has not been well elucidated yet. Thus,
the objective of this study was to evaluate whether phloroglucinol could protect against oxidative
damage in cultured human retinal pigment epithelium ARPE-19 cells. For this purpose, ARPE-19
cells were stimula ted with hydrogen peroxide (H2O2) to mimic oxidative stress. Cell viability,
cytotoxicity, apoptosis, reactive oxygen species (ROS) generation, mitochondrial function, DNA
damage, and autophagy were then assessed. Our results revealed that phloroglucinol ameliorated
cell viability, cytotoxicity, and DNA damage in H2O2-exposued ARPE-19 cells and blocked pro-
duction of ROS. Phloroglucinol also counteracted H2O2-induced apoptosis by reducing Bax/Bcl-2
ratio, blocking activation of caspase-3, and inhibiting degradation of poly (ADP-ribose) polymerase.
H2O2 caused mitochondrial impairment and increased expression levels of mitophagy markers
such as PINK1and PARKIN known to be associated with mitochondrial ROS (mtROS) generation
and cytosolic release of cytochrome c. However, these changes were significantly attenuated by
phloroglucinol. Mito-TEMPO, a selective mitochondrial antioxidant, further enhanced the protective
effect of phloroglucinol against dysfunctional mitochondria. Furthermore, H2O2 induced autophagy,
but not when ARPE-19 cells were pretreated with phloroglucinol, meaning that autophagy by H2O2

contributed to the pro-survival mechanism and that phloroglucinol protected ARPE-19 cells from
apoptosis by blocking autophagy. Taken together, these results suggest that phloroglucinol can
inhibit oxidative stress-induced ARPE-19 cell damage and dysfunction by protecting DNA damage,
autophagy, and subsequent apoptosis through mitigation of mtROS generation. Thus, phloroglucinol
might have therapeutic potential to prevent oxidative stress-mediated damage in RPE cells.
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1. Introduction

The retina expends excessive energy for the formation of visual perception. It is very
sensitive to oxidative stress. At the same time, the retina serves as a powerful generator
of reactive oxygen species (ROS) implicated in several major retinal diseases, including
age-related macular degeneration (AMD), a leading cause of vision loss [1,2]. Although the
etiology and mechanism of AMD induction remain unclear, oxidative stress-related injury
to the retinal pigment epithelium (RPE) is recognized as an early event in in AMD-like
pathology [3,4]. Appropriate levels of intracellular ROS including mitochondrial ROS
(mtROS) play important physiological roles as modulators of cellular signaling pathways.
However, excessive accumulation of ROS by persistent oxidative stress can lead to cellular
injury and death and contribute to the initiation of pathological damage to various organs,
including eyes [5,6]. In addition, apoptosis and autophagy of RPE cells due to excessive ROS
production are accompanied by mitochondrial and DNA damage, ultimately contributing
to retina dysfunction [7,8]. Furthermore, since mitochondrial damage in RPE degeneration
can induce a cellular defense mechanism known as mitophagy, mitophagy could be a
putative therapeutic target in retinal degenerative diseases such as AMD [9,10]. Therefore,
the level of ROS must be tightly controlled to protect normal functions of eyes.

Natural resources have long received great attention as sources of drug development.
Among them, phenolic compounds derived from natural products having excellent an-
tioxidant activity have attracted attention. Their antioxidant activities mainly involve
scavenging of ROS and activation of intracellular antioxidant signaling pathways [5,11,12].
Phloroglucinol, a polyphenol trihydroxybenzene with an aromatic phenyl ring and three
hydroxyl groups, is a naturally occurring secondary metabolite present in a variety of
organisms including plants, algae, and bacteria [13,14]. This phenolic compound is known
to have various pharmacological potentials such as antibacterial, anticonvulsant, anti-
allergic, antithrombotic, anti-inflammatory, and cancer chemopreventive activities [15,16].
Recently, the antioxidant potential of phloroglucinol has been validated in several in vitro
and in vivo models. For example, Drygalski et al. [17] have reported that phloroglucinol
can strengthen antioxidant defense and ameliorate hepatic steatosis and inflammatory
response by reducing oxidative/nitrogen damage to cellular macromolecules. In addition,
it has been confirmed that phloroglucinol can block oxidative damage caused by hydrogen
peroxide (H2O2) treatment and γ-ray irradiation by regulating activities of antioxidant and
detoxifying enzymes in the retinal epithelium, hippocampal nerve, renal epithelial cells,
and lung fibroblasts [18–20]. Moreover, phloroglucinol as an ROS scavenger can modulate
synaptic plasticity to attenuate pathological phenomena of neurodegenerative diseases such
as Alzheimer’s disease and Parkinson’s disease [21,22]. Our previous study has shown that
phloroglucinol can inhibit DNA damage and apoptosis in H2O2-exposed HaCaT human
keratinocytes [23]. Similar results have been confirmed in ultraviolet (UV) B-irradiated
keratinocytes and all-trans-retinal-exposed primary rat RPE and mouse photoreceptor
cells [19,24]. Recently, Kuo et al. [25] have reported that phloroglucinol can block oxidative
cytotoxicity induced by potassium bromate, an AMD inducer, in human RPE ARPE-19
cells by inhibiting ROS production. These results suggest that phloroglucinol could play an
antioxidant role in ARPE-19 cells as suggested by Moine et al. [26]. Nevertheless, studies
on the protective role of phloroglucinol against cellular damage induced by oxidative stress
in RPE cells are lacking. Therefore, the purpose of the current study was to investigate
effects of phloroglucinol on oxidative stress-induced mitochondrial and DNA damage and
induction of apoptosis and autophagy in RPE cells. For this purpose, a human RPE-derived
ARPE-19 cell model treated with H2O2 to mimic oxidative stress was used.

2. Materials and Methods
2.1. Cell Culture and Treatment

ARPE-19 cells (CRL-2302) were purchased from the American Type Culture Collection
(Manassas, VA, USA) and routinely cultured in Dulbecco’s Modified Eagle Medium/F-12
supplemented with 10% fetal bovine serum and 1% penicillin-streptomycin (WELGENE
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Inc., Gyeongsan, Republic of Korea) as described previously [27]. To investigate beneficial
effects of phloroglucinol on oxidative damage, cells were cultured in media containing
desired concentrations of phloroglucinol and H2O2 (Thermo Fisher Scientific, Inc., Waltham,
MA, USA) for 24 h or pretreated with phloroglucinol, N-acetyl-L-cysteine (NAC), Mito-
TEMPO, and/or 3-methyladenine (3-MA, Sigma-Aldrich Co., St. Louis, MO, USA) for 1 h
prior to treatment with H2O2 for 24 h. To investigate the blocking effect of phloroglucinol
on the generation of ROS induced by H2O2, cells were pretreated with phloroglucinol,
NAC, and Mito-TEMPO for 1 h and then treated with H2O2 for 1 h. To acquire fluorescence
images of ROS generation, γH2AX expression, and autophagic vacuoles, cells cultured on
coverslips were stimulated with H2O2 in the presence or absence of phloroglucinol, NAC,
and/or Mito-TEMPO. After treatment, cells were washed with phosphate-buffered saline
and subjected to fluorescence staining.

2.2. Cell Viability Assay

To investigate viability of ARPE-19 cells cultured under various conditions, 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetra-zolium bromide (MTT) assay was performed. In
brief, after the necessary experimental treatment, cells were incubated with MTT solution
(Thermo Fisher Scientific, Inc.) for 3 h. Formed insoluble formazan products were then
dissolved in dimethyl sulfoxide (DMSO, Thermo Fisher Scientific, Inc.) and the absorbance
was read at 570 nm using an enzyme-linked immunosorbent assay (ELISA) microplate
reader (Molecular Device Co., Sunnyvale, CA, USA) according to a previously described
method [28]. Cell viability was expressed as a percentage of untreated control cells.

2.3. Cytotoxicity Assay

To assess cytotoxicity, lactate dehydrogenase (LDH) release was detected using an
LDH Cytotoxicity Assay Kit (Thermo Fisher Scientific, Inc.) according to the manufacturer’s
instructions. In brief, culture medium obtained from conditions treated with H2O2 in the
presence or absence of phloroglucinol was transferred to a 96-well plate and the amount of
released LDH was measured at 490 nm with an ELISA microplate reader.

2.4. Quantitative Assessment of Apoptosis

Annexin V-Fluorescein Isothiocyanate (FITC) Apoptosis Detection Kit was purchased
from Abcam Inc. (Cambridge, UK) and used for quantitative evaluation of apoptosis-
induced cells upon treatment with phloroglucinol and/or H2O2. After treatment, collected
cells were suspended in annexin binding buffer containing annexin V- FITC and propidium
Iodide (PI) following the manufacturer’s instructions. The fluorescence of 10,000 events
was then acquired using a flow cytometer (Becton Dickinson, San Jose, CA, USA). Annexin
V-positive cells were considered as apoptosis-induced cells as described previously [27].

2.5. DNA Fragmentation Assay

To observe fragmented DNA, an apoptosis marker, cell pellet was suspended in a lysis
solution as described previously [29]. The supernatant was then incubated with RNase
A and proteinase K (Sigma-Aldrich Co.). DNA was precipitated with isopropyl alcohol
(Sigma-Aldrich Co.). The extracted DNA was fractionated using 1.0% agarose gel and then
stained with ethidium bromide (EtBr, Thermo Fisher Scientific, Inc.) to visualize DNA
fragmentation pattern, a characteristic of apoptosis, under UV light.

2.6. Protein Isolation and Western Blotting

Total protein to be used for Western blot analysis was extracted as described previ-
ously [30]. Cytoplasmic and mitochondrial proteins were isolated using a Mitochondrial
Fractionation Kit (Thermo Fisher Scientific, Inc.) following the manufacturer’s instruc-
tions. In brief, proteins were separated by sodium dodecyl sulfate-polyacrylamide gel
electrophoresis and transferred to Immobilon®-P PVDF membranes (Merck Millipore, Bed-
ford, MA, USA). These membranes were then incubated with specific primary antibodies
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overnight followed by reaction with horseradish peroxidase-conjugated secondary anti-
bodies (Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA) at room temperature for 1 h.
Immune complexes were visualized with enhanced chemiluminescence reagent (Thermo
Fisher Scientific, Inc.) according to the manufacturer’s instruction [31]. Densitometric
analysis of the data was performed using the ImageJ® software (v1.48, NIH, Bethesda, MD,
USA). Primary antibodies were obtained from Santa Cruz Biotechnology, Inc. and Cell
Signaling Technology (Beverly, MA, USA). All antibodies used in this study are listed in
Table 1.

Table 1. List of antibodies used in this study.

Antibody Species Dilution Catalog No. Vendor

Bax Mouse monoclonal 1:1000 sc-7480 Santa Cruz Biotechnology Inc.
Bcl-2 Mouse monoclonal 1:1000 sc-509 Santa Cruz Biotechnology Inc.

Caspase-3 Mouse monoclonal 1:1000 sc-56052 Santa Cruz Biotechnology Inc.
PARP Mouse monoclonal 1:1000 sc-8007 Santa Cruz Biotechnology Inc.
Pink1 Mouse monoclonal 1:1000 sc-517353 Santa Cruz Biotechnology Inc.
Parkin Mouse monoclonal 1:1000 sc-32282 Santa Cruz Biotechnology Inc.

Cytochrome c Mouse monoclonal 1:1000 sc-13560 Santa Cruz Biotechnology Inc.
LC3 Rabbit polyclonal 1:1000 3868s Cell Signaling Technology Inc.

Beclin-1 Rabbit polyclonal 1:1000 3495s Cell Signaling Technology Inc.
p62 Rabbit polyclonal 1:1000 5114 Cell Signaling Technology Inc.

COX IV Rabbit polyclonal 1:1000 4844 Cell Signaling Technology Inc.
Actin Mouse monoclonal 1:1000 sc-47778 Santa Cruz Biotechnology Inc.

2.7. Caspase-3 Activity Assay

Caspase 3 activity was quantified using a Caspase-3 Colorimetric Assay Kit (Abcam,
Inc.). In brief, aliquots of cytosolic extracts were mixed with a fluorescent substrate of
caspase-3, acetyl-Asp-Glu-Val-Asp-chromophore-p-nitroanilide (Ac-DVAD-pNa), in the
buffer provided in the kit according to the manufacturer’s instructions. Enzyme-catalyzed
release of pNa was monitored at 405 nm using an ELISA microplate reader. The activity of
caspase-3 was presented relative to the control [32].

2.8. Assessment of ROS Generation

Levels of intracellular ROS and mtROS production were detected using fluorescent
probes 2′,7′-dichlorofluorescein diacetate (DCF-DA) and MitoSOX (Sigma-Aldrich Co.),
respectively. Following exposure to H2O2 with or without phloroglucinol, NAC, and/or
Mito-TEMPO, cells were reacted with DCF-DA and MitoSOX to assess levels of intracellular
and mitochondrial peroxides, respectively, using flow cytometry. In parallel, fluorescence
images of DCF-DA- and MitoSOX-stained cells cultured on coverslips were observed under
a fluorescence microscope (Carl Zeiss, Oberkochen, Germany) at Core-Facility Center for
Tissue Regeneration, Dong-eui University (Busan, Republic of Korea).

2.9. Comet Assay

The inhibitory effect of phloroglucinol on H2O2-induced DNA damage after appropri-
ate treatment was determined using comet assay (single cell gel electrophoresis). Briefly,
collected cells were suspended in 1% low melting point agarose and then spread on comet
slides according the manufacturer’s protocol in of a commercially available Comet Assay
Kit (Trevigen, Inc., Gaithersburg, MD, USA). After DNA denaturation, electrophoresis was
performed and slides were stained with an asymmetric cyanine dye. Resulting images
were acquired under a fluorescence microscope.

2.10. γH2AX Immunofluorescence Assay

Immunofluorescence assay was applied to analyze the expression of phosphory-
lated histone H2AX (p-γH2AX) in cells treated with or without phloroglucinol or NAC
before adding H2O2. Following treatment, cells were fixed with formaldehyde, permeabi-
lized with Triton X-100 solutions (Thermo Fisher Scientific, Inc.), and then blocked with
bovine serum albumin solution (Sigma-Aldrich Co.). Thereafter, cells were probed with
an anti-p-γH2AX antibody (Cell Signaling Technology, Inc.) and then reacted with Alexa
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Fluor 555-conjugated secondary antibody (Thermo Fisher Scientific, Inc.). For nuclear
counterstaining, cells were immersed in a 4’,6-diamidino-2-phenylindol (DAPI) solution
(Sigma-Aldrich Co.). Then, p-γH2AX and DAPI fluorescence images were captured using
a fluorescence microscope.

2.11. Measurement of 8-Hydroxy-2′-Deoxyguanosine (8-OHdG)

To measure 8-OHdG, a deoxyriboside form of 8-oxoGuanine, an OxiSelect Oxidative
DNA Damage ELISA Kit (Cell Biolabs, San Diego, CA, USA) was used. Briefly, DNA was
extracted from cells cultured under the same conditions as described above. Subsequently,
the DNA of each isolated sample was digested with DNase I (Sigma-Aldrich Co.). The
absorbance of the ELISA reaction was then measured at 450 nm following the protocol
presented in the kit.

2.12. Mitochondrial Membrane Potential (MMP) Measurement

MMP level was monitored by staining with 5,5′,6,6′-tetrachloro-1,1′3,3′-tetraethyl-
imidacarbocyanune iodide (JC-1), a fluorescent carbocyanine probe. For this assay, cells
treated with H2O2 in the presence or absence of phloroglucinol or Mito-TEMPO were
stained with JC-1 solution (Thermo Fisher Scientific, Inc.). The percentage of JC-1 monomer
was analyzed with a flow cytometer to indicate cells that lost MMP.

2.13. Autophagy Detection

Formation of autophagosomes was assessed using a CYTO-ID® Autophagy Detection
Kit purchased from Enzo Life Sciences, Inc. (Farmingdale, NY, USA). First, cells were
collected for quantitative analysis of autophagy induction. Cyto-ID staining procedure
was then performed according to the manufacturer’s instructions. In brief, cells cultured
under various conditions were washed with assay buffer included in the kit and fixed with
paraformaldehyde. Fluorescently labeled cells were then analyzed by flow cytometry. Next,
cells were subjected to DAPI staining after CYTO-ID staining to monitor localizations of
autophagosomes and nuclei. To monitor localizations of autophagosomes and nuclei, cells
were further subjected to DAPI staining after CYTO-ID staining. The autophagic signal
(green) and the nuclear signal (blue) were collected under a fluorescence microscope.

2.14. Statistical Analysis

All statistical analyses were performed using GraphPad Prism (Graphpad Inc., San
Diego, CA, USA). Statistical differences were determined by one-way analysis of variance
with Tukey’s test. Statistical significance was considered when p-value was less than 0.05.
All data are expressed as mean ± standard deviation (SD) (* p < 0.05, ** p < 0.01 and
*** p < 0.001 vs. unstimulated control; ## p < 0.01 and ### p < 0.001 vs. H2O2 alone treatment;
& p < 0.05 and &&& p < 0.001 vs. phloroglucinol + Mito-TEMPO group).

3. Results
3.1. Phloroglucinol Restores Reduced Cell Viability and Increased Cytotoxicity Caused by H2O2

We performed an MTT assay to select the concentration of H2O2 that could induce
oxidative damage in ARPE-19 cells. As expected, H2O2 treatment significantly suppressed
cell viability in a dose-dependent manner (Figure 1A). At concentration of 0.5 mM, H2O2
reduced the cell viability to be about 60% of the control group (untreated cells). Thus,
0.5 mM was set as the cytotoxicity-inducing concentration of H2O2. In addition, in an
experiment to determine the appropriate concentration range of phloroglucinol to evaluate
its inhibitory effect on H2O2-induced cytotoxicity, it was found that phloroglucinol had
no significant effect on cell survival at concentration up to 20 µg/mL (Figure 1B). There-
fore, the highest optimal concentration of phloroglucinol was determined to be 20 µg/mL.
Subsequently, we assessed the inhibitory effect of phloroglucinol on H2O2-induced cytotox-
icity and found that phloroglucinol significantly restored H2O2-induced reduction in cell
viability (Figure 1C). In parallel, pretreatment with NAC, an ROS scavenger used as a posi-
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tive control, also completely inhibited the downregulation of cell viability in response to
H2O2, demonstrating that oxidative stress triggered by H2O2 might mediate H2O2-induced
reduction in cell viability. Further analysis of the protective effect of phloroglucinol us-
ing the LDH leakage assay showed that phloroglucinol and NAC significantly reduced
H2O2-induced LDH release into the cell culture medium (Figure 1D).
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Figure 1. Phloroglucinol reverses H2O2-induced viability reduction and cytotoxicity of ARPE-19 cells.
Cells were treated with different concentrations of phloroglucinol (PHG) or H2O2 alone for 24 h (A,B),
or pretreated with or without phloroglucinol and/or N-acetyl-L-cysteine (NAC) for 1 h followed by
treatment with phloroglucinol for 24 h (C,D). (A–C) 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetra-
zolium bromide (MTT) assay was performed to determine cell viability. (D) Cytotoxicity was
measured by lactate dehydrogenase (LDH) assay. * p < 0.05 and *** p < 0.001 vs. unstimulated control;
# p < 0.05 and ### p < 0.001 vs. H2O2 alone treatment.

3.2. Phloroglucinol Reveres H2O2-Induced Apoptosis

We next investigated whether the loss of cell survival and induction of cytotoxic-
ity in H2O2-exposued ARPE-19 cells were associated with induction of apoptosis. As
demonstrated in Figure 2A,B, flow cytometry results after annexin V/PI staining revealed
that much more apoptosis was induced in H2O2-treated cells than in untreated control
cells. However, the induction of apoptosis by H2O2 was remarkably attenuated in cells
treated with phloroglucinol. Subsequently, DNA fragmentation assay was performed to
verify that phloroglucinol prevented H2O2-induced apoptosis. As shown in Figure 2C,
H2O2-treated cells exhibited DNA laddering and oligonucleosome-sized DNA fragments.
Such patterns were not observed in untreated control cells. However, these patterns were
markedly attenuated in cells preincubated with phloroglucinol. H2O2 treatment also
suppressed the Bcl-2/Bax ratio known to be correlated with activation of caspase-3 and
cleavage of poly(ADP-ribose) polymerase (PARP), a representative substrate protein of
activated caspase-3. However, these changes were greatly ameliorated in cells pretreated
with phloroglucinol (Figure 2D–F). These results suggest that phloroglucinol can effectively
reduce H2O2-induced ARPE-19 cell apoptosis by modulating apoptosis regulators.
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Figure 2. Phloroglucinol inhibits apoptosis in H2O2-treated ARPE-19 cells. Cells were pretreated
with phloroglucinol for 1 h and then treated with or without phloroglucinol for 24 h. (A,B) To
quantitatively measure the frequency of apoptosis induction, flow cytometry was performed after
double staining with annexin V and propidium iodide (PI). Representative histograms of (A) and
quantitative analysis (B) are shown. (C) DNA isolated from cells was stained with ethidium bromide
(EtBr) and then observed under UV light. (D) After extracting cell lysate of each treatment group,
expression levels of presented proteins were investigated through immunoblotting. (E) Bar diagram
showing the relative protein density after normalization with actin based on Western blot analysis.
(F) Activity of caspase-3 was measured by DEVDase activity assay using cytoplasmic extracts and
presented as relative values compared to control. *** p < 0.001 vs. unstimulated control; ## p < 0.01
and ### p < 0.001 vs. H2O2 alone treatment.

3.3. Phloroglucinol Abrogates H2O2-Induced ROS Generation

To clarify antioxidant properties of phloroglucinol, intracellular ROS generation was
determined using DCFH-DA probe. As exhibited in Figure 3A,B, results of flow cytom-
etry indicated that the production of intracellular peroxides in cells treated with H2O2
was greatly increased compared to that in untreated control cells, whereas it was signifi-
cantly inhibited by pretreatment with phloroglucinol. In addition, ROS hardly occurred
in cells treated with phloroglucinol alone. H2O2 treatment was unable to increase ROS
levels in cells treated with phloroglucinol, even in the presence of NAC, indicating that
phloroglucinol could act as an ROS scavenger. These results were confirmed through fluo-
rescence microscopic observation of cells stained with DCF-DA. It was found pretreatment
with phloroglucinol significantly scavenged H2O2-induced DCF fluorescence intensity
(Figure 3C).

3.4. Phloroglucinol Abolishes H2O2-Induced DNA Damage

Next, we evaluated whether phloroglucinol could prevent H2O2-induced DNA dam-
age in ARPE-19 cells. The blocking effect of phloroglucinol on DNA damage induced by
H2O2-treatment was first investigated using a comet assay. As expected, an increase in
comet tail moment was clearly observed in H2O2-treated cells, indicating that DNA damage
was induced by H2O2 treatment (Figure 4A). To validate this finding, the expression of
γH2AX was analyzed. Immunofluorescence results demonstrated that the fluorescence
intensity of γH2AX in the nuclei of H2O2-treated cells was clearly increased compared
to that in the nuclei of untreated cells. Further testing to quantify oxidative damage to
nucleic acids also showed that levels of 8-OHdG were significantly elevated upon expo-
sure to H2O2 (Figure 4C). However, increases of DNA migration, γH2AX expression, and
8-OHdG/8-oxoGuanine ratio caused by H2O2 treatment were markedly weakened in the
presence of NAC as well as phloroglucinol, suggesting that phloroglucinol could attenuated
oxidative DNA damage caused by H2O2.
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images of γH2AX immunofluorescence (red) observed with a fluorescence microscope are shown.
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contents of 8-hydroxy-2′-deoxyguanosine (8-OHdG) were measured using an ELISA kit. *** p < 0.001
vs. unstimulated control; ### p < 0.001 vs. H2O2 alone treatment.

3.5. Phloroglucinol Reduces H2O2-Induced mtROS Production

To determine whether mitochondria are major sources of H2O2-induced ROS and
whether phloroglucinol can inhibit them, we used MitoSOX-red, a mitochondrial superoxide-
specific dye. As shown in Figure 5A, strong red fluorescence intensity was evident in H2O2-
treated ARPE-19 cells, but not in untreated control cells or cells treated with phloroglucinol
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alone. However, H2O2-induced fluorescence intensity was suppressed in the presence
of phloroglucinol. It was further eliminated in cells pretreated with phloroglucinol and
Mito-TEMPO, a mitochondria-targeted antioxidant. These results were consistent with
flow cytometry results, which directly measured the frequency of MitoSOX-red-positive
cells (Figure 5B,C). Moreover, phloroglucinol suppressed H2O2-induced accumulation of
PINK1 and PARKIN known to be key mitochondrial autophagy proteins (Figure 5D). These
findings suggest that phloroglucinol can contribute to mitophagy inhibition through its
role as a scavenger of H2O2-induced mtROS in ARPE-19 cells.
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Figure 5. Phloroglucinol eliminates H2O2-mediated mtROS generation in ARPE-19 cells. MitoSOX
staining was performed to determine the abundance of mtROS in cells treated with H2O2 for 24 h
after pretreatment for 1 h with or without phloroglucinol and/or Mito-TEMPO. (A) Representative
images of cells stained for mitochondrial peroxide (MitoSOX, red) and nuclei (4’,6-diamidino-2-
phenylindol, DAPI, blue) are shown. (B,C) For quantitative evaluation of mtROS production, flow
cytometric analysis was performed. Representative histograms (B) and average values (C) are
shown. (D) Isolated total cell lysates were immunoblotted with antibodies corresponding to indicated
mitophagy-marker proteins. (*** p < 0.001 vs. unstimulated control; ### p < 0.001 vs. H2O2 alone
treatment; &&& p < 0.001 vs. phloroglucinol + Mito-TEMPO group.

3.6. Phloroglucinol Protects H2O2-Induced Mitochondrial Impairment

To determine whether phloroglucinol could protect against H2O2-induced mitochon-
drial damage, we estimated MMP following JC-1 staining. Flow cytometry analysis results
(Figure 6A,B) showed that the frequency of JC-1 monomer was significantly increased
whereas the frequency of JC-1 aggregates was decreased in H2O2-treated cells, indicat-
ing that H2O2 induced the collapse of MMP. However, these changes were significantly
attenuated by phloroglucinol pretreatment. Moreover, when phloroglucinol and Mito-
TEMPO were used for pretreatment together, the loss of MMP induced by H2O2 was almost
entirely reduced to the control level. In addition, after H2O2 treatment, the expression
level of cytochrome c was increased in the cytoplasm but decreased in the mitochondria.
Phloroglucinol pretreatment was able to restore these changes (Figure 6C,D). These results
illustrate that blockade of H2O2-induced mtROS generation by phloroglucinol can preserve
mitochondrial function.

3.7. Phloroglucinol Abrogates H2O2-Induced Autophagy

Finally, we evaluated the effect of phloroglucinol on H2O2-induced autophagy in
ARPE-19 cells. As shown in Figure 7A,B, flow cytometry analysis using a Cyto-ID tracer
dye capable of monitoring autophagic vacuoles showed that H2O2 dramatically induced
autophagy. However, pretreated with phloroglucinol or 3-MA, a selective autophagic
inhibitor, dramatically reduced H2O2-induced autophagy in cells. Consistent with these
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results, the formation of Cyto-ID puncta was enhanced in response to H2O2, whereas it
was reduced almost completely after phloroglucinol pretreatment (Figure 7C), indicating
that H2O2-induced autophagy could be reversed by phloroglucinol. We next verified H2O2-
induced autophagy by detecting autophagy biomarkers such as microtubule-associated
protein-1 light chain-3 (LC3), Beclin-1, and p62 by immunoblotting. As indicated in
Figure 7D,E, H2O2 enhanced the conversion of LC3-I to LC3-II and induced Beclin-1
expression, but downregulated the expression of p62. However, these changes caused
by H2O2 were all abrogated by phloroglucinol, supporting flow cytometry results that
H2O2-mediated autophagy could be protected by phloroglucinol.

Figure 6. Phloroglucinol protects H2O2-induced mitochondrial impairment and cytosolic release
of cytochrome c in ARPE-19 cells. Cells were preincubated with or without phloroglucinol and/or
Mito-TEMPO for 1 h, followed by treatment with H2O2 for another 24 h. (A,B) After with 5,5′,6,6′-
tetrachloro-1,1′3,3′-tetraethyl-imidacarbocyanune iodide (JC-1) staining, representative histograms
(A) and average values of JC-1 monomer ratios (B) are presented. (C) After isolation of mitochondrial
and cytoplasmic fractions, the expression of cytochrome c in each fraction was investigated by
immunoblotting. (D) Bar diagram showing the relative protein density after normalization with actin
based on Western blot analysis. *** p < 0.001 vs. unstimulated control; ## p < 0.01 and ### p < 0.001 vs.
H2O2 alone treatment; & p < 0.05 vs. phloroglucinol + Mito-TEMPO group.

Figure 7. Phloroglucinol attenuates ARPE-19 cells against H2O2-induced autophagy. (A,B) Cells
were incubated with phloroglucinol or 3-MA for 1 h and then treated with H2O2 for 24 h, stained
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with Cyto-ID, and subjected to flow cytometry. Representative histograms (A) and mean values
of Cyto-ID-positive cells (B) are presented. (C) H2O2-teated Cells in the presence or absence of
phloroglucinol were stained with Cyto-ID. Representative images are shown. (D) Isolated total
proteins were immunoblotted with indicated antibodies corresponding to autophagy-marker proteins.
(E) Bar diagram showing the relative protein density after normalization with actin based on Western
blot analysis. ** p < 0.01 and *** p < 0.001 vs. unstimulated control; ## p < 0.01 and ### p < 0.001 vs.
H2O2 alone treatment.

4. Discussion

In the current study, we induced oxidative stress using H2O2 to examine whether
phloroglucinol could protect human RPE ARPE-19 cells from oxidative injury. We found
that H2O2 induced apoptosis, accompanied by mitochondrial dysfunction, DNA damage,
and autophagy through an increase in ROS generation. However, phloroglucinol was able
to block H2O2-induced cellular damage and scavenge ROS.

Induction of cytotoxicity including DNA damage and cell death by oxidative stimu-
lation is mostly accompanied by mitochondrial dysfunction associated with ROS genera-
tion [33,34]. In healthy retinal cells, ROS levels remain low as a result of normal cellular
metabolism. However, accumulation of ROS caused by oxidative stress can act as an
initiator in the pathogenesis of degenerative diseases of the retina [4,35]. In this study,
inhibition of cell survival, induction of cytotoxicity, and generation of ROS by H2O2 in
ARPE-19 cells were significantly suppressed by pretreatment with phloroglucinol or NAC,
a free-radical scavenger used as a positive control. These results showed the possibility
that phloroglucinol could block ROS generation caused by oxidative stress. Many previous
studies have shown that DNA damage and apoptosis can be induced in RPE cells exposed
to oxidative stimuli [35,36]. This finding was also confirmed in H2O2-treated ARPE-19
cells. We first performed a comet assay, a widely used method to detect DNA strand
breaks in eukaryotic cells [37], to evaluate whether pretreatment of phloroglucinol could
inhibit H2O2-induced DNA damage. We found that phloroglucinol effectively inhibited
the comet tail moment (DNA migration) observed in cells treated with H2O2. In addi-
tion, the expression of p-γH2AX, a biomarker of DNA double-strand break [38], and the
amount of 8-OHdG, an indicator of oxidative stress-mediated DNA damage [39], were
increased by H2O2 treatment. However, these changes were all canceled by treatment
with phloroglucinol. The blocking effect of phloroglucinol on these three indicators was
similarly observed in cells pretreated with NAC. Our results well support results shown
in H2O2-treated human keratinocytes and UVB-irradiated mouse skin [18,23,24]. These
results suggest that the ROS scavenging ability of phloroglucinol might contribute to the
reduction in H2O2-induced DNA damage in RPE cells.

Apoptosis is usually divided into extrinsic and intrinsic pathways. Overload of ROS
by oxidative stress can depolarize the mitochondrial membrane, which contributes to the
activation of mitochondria-mediated intrinsic apoptosis pathway [40,41], resulting in the
collapse of MMP indicative of dysfunctional mitochondria and leading to cytosolic release
of cytochrome c. Released cytochrome c can activate the caspase cascade required for the
intrinsic apoptosis pathway, causing degradation of caspase-dependent proteins such as
PARP, thereby terminating apoptosis [40,42,43]. As reported in previous studies [23,44,45],
the reduction in MMP and cytoplasmic release of cytochrome c are major events during
mitochondria-mediated apoptosis. These events were increased in H2O2-treated ARPE-19
cells in the present study. However, there changes were markedly blocked by phlorogluci-
nol. Furthermore, expression of Bcl-2 family proteins, activation of caspase-3, and cleavage
of PARP by H2O2 were maintained at control levels after phloroglucinol pretreatment, in
good agreement with our previous study using human keratinocytes [23]. Accumulated
prior studies have shown that the intrinsic pathway is critically controlled by Bcl-2 family
members. Among them, anti-apoptotic proteins including Bcl-2 are essential to maintain
stability of the mitochondrial membrane barrier, whereas anti-apoptotic proteins such as
Bax are key executors of mitochondrial poration, thereby enhancing mitochondrial mem-
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brane permeability and releasing mitochondrial cytochrome c [8,40]. These findings well
support our finding that phloroglucinol can prevent apoptosis by suppressing the intrinsic
apoptotic pathway. Taken together, our findings indicate that the antioxidant activity of
phloroglucinol is responsible for H2O2-induced blockade of apoptosis in ARPE-19 cells.

Although the primary targets of intracellular ROS are mitochondria, mitochondria
are also major sources of ROS. Increased ROS in turn can inhibit mitochondrial efficiency,
which can lead to more ROS production in mitochondria by a self-destructive vicious
cycle [46,47]. Therefore, we evaluated whether ROS generated by H2O2 was derived from
mitochondria by applying MitoSOX-red, a mitochondrial superoxide indicator, and Mito-
TEMPO, a specific antioxidant for mtROS based on previous studies showing that the
generation of ROS induced by H2O2 in ARPE-19 cells occurs in mitochondria [48,49]. MMP
lost by H2O2 was also significantly abolished by treatment with phloroglucinol or Mito-
TEMPO alone. However, in cells pretreated with both phloroglucinol and Mito-TEMPO,
MMP was almost completely restored to untreated control levels. Moreover, H2O2-induced
cytosolic release of cytochrome c and expression of mitophagy markers such as PINK1 and
PARKIN were not observed in cells pretreated with phloroglucinol, which might be due to
blockade of mtROS production by phloroglucinol. During mitophagy, a type of autophagy
unique to mitochondria, PINK1 recruits PARKIN for autophagosome formation, which
in turn initiates the removal of damaged mitochondria via autophagy and proteasome
mechanisms [50,51]. In AMD-like pathology associated with RPE injury, accumulation of
mitochondrial damage and reduction in biogenesis are closely related to the induction of
mitophagy, a phenomenon that appears prominently as aging progresses [4,10]. In particu-
lar, an aged retina is characterized by increased ROS accumulation, impaired autophagy,
and mitochondrial damage associated with the pathogenesis of AMD. Rohrer et al. [52]
have demonstrated that RPE cells isolated from eyes of elderly donors are more sensitive
to oxidative stress and that a further decrease in mitochondrial metabolism might be as-
sociated with increased mitophagy. In addition, Kim et al. [9] have recently shown that
mitochondrial dysfunction in H2O2-injured rat retina and RPE cells is responsible for the
induction of mitophagy. As in other cells, oxidative stress-induced mitophagy in RPE
cells occurs through the PINK1-PARKIN signaling pathway, a process that clears damaged
mitochondria through autophagy [53,54]. Therefore, our results suggest that suppression
of mtROS production and preservation of mitochondrial function by phloroglucinol in
ARPE-19 cells exposed to H2O2 are mediated by blockade of mtROS production.

Recently, the importance of autophagy in AMD pathology has been steadily rising. It
has been shown that mtROS-mediated autophagy induced by oxidative stress may con-
tribute to retinal damage [55,56]. Autophagy is a critical catabolic process for adapting
to metabolic stress and maintaining homeostasis by removing damaged intracellular or-
ganelles (including mitochondria) and proteins through formation of autophagosomes.
This process is involved in the promotion and inhibition of apoptosis depending on stim-
ulators that induce autophagy, the type of cell, and the environment surrounding the
cell [50,51]. One of the features of retinal aging is the accumulation of autophagy proteins
associated with mitochondrial damage [57,58]. In this respect, pharmacological manipula-
tion of autophagic activity could be a therapeutic target for retinal damage-related disorders.
Although autophagy in RPE cells exposed to oxidative stress, particularly H2O2, is known
to contribute to apoptosis induction [49], RPE cells might also be protected from oxidative
stress and apoptosis through promotion of autophagy [59]. In this study, H2O2-induced
autophagy in ARPE-19 cells was blocked by 3-MA, an autophagosome blocker, suggesting
that H2O2-mediated autophagy might contribute to apoptosis induction. Phloroglucinol
also conferred a protection against H2O2-induced autophagy, similar to 3-MA. In addition,
as is commonly observed during autophagy, in H2O2-treated cells, the conversion of LC3-I
to LC3-II was increased and p62 was down-regulated while Beclin-1 was up-regulated.
However, H2O2 stimulation in the presence of phloroglucinol failed to induce an increase
in LC3-II/LC3-I value or Beclin-1 expression, which could serve as markers of autophagy
because they were involved in the formation of autophagosomes [7,60]. On the other hand,
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p62, an indicator of autophagic flux due to degradation in autolysosomes [61,62], was
maintained at the control level. Therefore, phloroglucinol might protect ARPE-19 cells from
H2O2-induced cellular damage, a pro-apoptotic mechanism, by counteracting the process
of autophagy.

5. Conclusions

Taken together, our results suggest that phloroglucinol can protect RPE cells from
H2O2-induced oxidative damage, thereby lessening DNA and mitochondrial damage, re-
ducing apoptosis, and improving cell survival. This protective effect of phloroglucinol can
at least be achieved by regulating mitochondrial-mediated autophagy through blockade
of mtROS production (Figure 8). Although our results support the beneficial potential of
phloroglucinol for the prevention and treatment of oxidative damage-mediated retinal
diseases, many limitations need to be addressed. First, further studies on the role of other
signaling pathways including intracellular antioxidant signaling and PI3K/AKT/mTOR
signaling are needed to clearly understand the blocking mechanism of mtROS by phloroglu-
cinol. Additionally, since only in vitro experiments challenged with H2O2 were employed,
animal experiments should be performed in the future to verify our findings in vivo along
with additional studies with other oxidative stress inducers.
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