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1. Introduction and Preliminaries

In 1915, Alexander [1] introduced the first integral operator, this discovery played a
crucial role in the examination of analytical functions. Since then, the main goal of current
discovery in complex analysis (Geometric Function Theory) has revolved around this area,
encompassing fractional derivative operators and derivatives that are often combined
in various ways [2,3]. Recently published research, exemplified by [4], highlights the
significance of integral fractional and differential operators in research.

Exciting advancements in the field of analytical functions and fractional calculus have
emerged from different perspectives, including quantum calculus, which have proved
useful in diverse areas of physics and mathematics. In a comprehensive review and survey
study, Srivastava [5] highlights the intriguing real-world ramifications of utilizing these
operator applications. Their uses in the axially symmetric potential theory, automated
control, scattering theory, signal analysis, quantum mechanics, and absorption of radio
waves in the ionospheric space environment and aeronomy [6,7] are also well known.

The versatility of q-calculus is evidenced by its numerous applications across dis-
ciplines such as quantum group theory, analytic number theory, special polynomials,
fractional calculus, and numerical analysis. As a result, the expansive domain of fractional
calculus has captured the attention of both mathematicians and physicists. The combination
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of analytical function theory with fractional calculus has led to the formulation of various
mathematical models that employ fractional differential equations. These equations often
compete with nonlinear differential equations as viable models in many contexts [8–11].

Consider an analytic function denoted by f (ϑ), which is defined within the open unit
disk {E := ϑ ∈ C : |ϑ| < 1}. Such functions belong to a class denoted as A. Any function f
belonging to A can be represented by the following series form:

f (ϑ) = ϑ +
∞

∑
k=2

akϑk. (1)

The symbol S denotes the collection of univalent functions that adhere to the
normalization conditions

f (0) = 0 and f ′(0) = 1. (2)

An analytic function w that satisfies the conditions |w(ϑ)| < 1 and w(0) = 0 in E is
referred to as the Schwarz function. Letting f , g ∈ A, we say f is subordinate to g, written
as f (ϑ) ≺ g(ϑ), if and only if there exists a Schwarz function w such that f (ϑ) = g(w(ϑ))
for all z ∈ E.

The class P refers to the Carathéodory functions described by Miller [12], which meet
the conditions: p(0) = 1, and Re p(ϑ) > 0 for all ϑ ∈ E. These functions are known as the
Carathéodory function.

Every polynomial function p(ϑ) belonging to the set P can be accurately represented
using a Taylor series expansion in the specific format of

p(ϑ) = 1 + c1ϑ + c2ϑ2 + c3ϑ3 + · · · . (3)

In other words, we say p ∈ P , if and only if

p(ϑ) ≺ 1 + ϑ

1− ϑ
, ϑ ∈ E.

In the realm of geometric function theory (GFT), significant novel subclasses of ana-
lytic functions have been constructed and explored, with a strong reliance on the principles
of q-calculus. Credited with inaugurating q-calculus in 1909, Jackson [13,14] introduced the
initial definitions of q-integrals and q-derivatives, marking a pivotal moment for this math-
ematical discipline. Jackson’s contributions extend beyond these foundational concepts. In
addition to suggesting the q-calculus operator and the q-difference operator (Dq), many
q-special functions have been put forward. The q-calculus finds applications in diverse
mathematical and scientific domains, including number theory, fundamental hypergeomet-
ric functions, physics, relativity, cybernetics, data analysis, and combinatorial mathematics.

Definition 1 ([13,14]). The q-fractional derivative (denoted by Dq f (ϑ)) of the function f ∈ A is
defined as

Dq f (ϑ) =

{ f (ϑ)− f (qϑ)
(1−q)ϑ for ϑ 6= 0

f ′(0) for ϑ = 0.
(4)

The q-fractional derivative operator is applicable as the value of q approaches 1.
Remarkably, as q approaches 1, the Dq reduces to the classical derivative. For more details
and recent applications of the q-fractional derivative, we refer the readers to [15–21] and
the references therein.

Even though function theory was first introduced in 1851, Bieberbach’s [22] conjecture
in 1916 unveiled this topic and provided a fresh line of inquiry. De-Branges [23] validated
the Bieberbach conjecture in 1985. A number of renowned scholars have made significant
findings in this realm of mathematics, uncovering several novel subsets within the class S of
normalized univalent functions that are linked with diverse geometrical characterizations.
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In 1992, Ma and Minda [24] authored a notable and influential paper, which presented
a remarkable contribution to the field, introducing a comprehensive definition for the
subclasses of univalent functions as follows:

S∗(ζ) =
{

f (ϑ) ∈ A :
z f ′(ϑ)

f (ϑ)
≺ ζ(ϑ)

}
, (5)

where ζ is an analytic function with the requirements ζ(0) > 0, <(ζ(ϑ)) > 0 in E and
ζ(E) is symmetric with respect to the real axis and starlike with respect to ζ(0). Supposing
we take ζ(ϑ) = 1+ϑ

1−ϑ in (5), we then have the family of starlike functions, which is given
as follows:

S∗ =
{

f (ϑ) ∈ A :
z f ′(ϑ)

f (ϑ)
≺ 1 + ϑ

1− ϑ
, ϑ ∈ E

}
.

Recently, a class of starlike functions,

Ss(n, q) =

{
f (ϑ) ∈ S :

Dn
q f (ϑ)
f (ϑ)

≺ 1 + tanh(qϑ), ϑ ∈ E

}
, (6)

was introduced and studied by Swarup in [25].
Each function f belonging to the set S and defined by Equation (1) possesses a corre-

sponding inverse function denoted as f−1. This inverse function is determined through the
utilization of the q-differential operator and q-version of the hyperbolic tangent function.

f−1( f (ϑ)) = ϑ, ϑ ∈ E, f−1( f (w)) = w, w ∈ Et0 = {w ∈ C : |w| < t0( f )}, 1/4 ≤ t0( f )

and
f−1(w) = l(w) = w + M2w2 + M3w3 + M4w4 + · · · , , w ∈ Et0 , (7)

where
M2 = −a2, M3 = 2a2

2 − a3, M4 = −5a3
2 + 5a2a3 − a4.

A widely accepted truth is that a function f (ϑ) ∈ A is classified as a bi-univalent
function in E if both f (ϑ) and its inverse function f−1(w) are separately univalent in E and
Et0 , respectively. The collection of all these bi-univalent functions in E is denoted as Σ and
has undergone thorough examination, accompanied by historical context and examples
given in [26,27].

In the year 2016, Srivastava et al. [28] introduced a category of analytic and bi-
univalent functions, defined in the subsequent manner:

f ′(z) +
1 + eiα

2
z f ′′(z) ≺ φ(z)

and

g′(w) +
1 + eiα

2
wg′′(w) ≺ φ(w).

and obtained some interesting results. In 2018, Yousef et al. [29] introduced a subclass
of analytic and bi-univalent functions by means of Chebyshev polynomials, which is
defined below:

(1− λ)
f (z)

z
+ λ f ′(z) + µz f ′′(z) ≺ 1

1− 2tz + z2

and

(1− λ)
f (w)

w
+ λ f ′(w) + µw f ′′(w) ≺ 1

1− 2tw + w2 .
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Mahzoon and Kargar [30] (2020) investigated the class

Λ(δ, γ) =

{
<
(

f ′(z) +
1 + eiδ

2
z f ′′(z)

)
> γ, δ ∈ (−π, π], γ ∈ [0, 1)

}

and some relevant results are presented in the article. In 2022, Lasode and Opoola [31]
presented a category using the q-derivative, which is denoted as Eq(β, δ). This category
comprised analytic and univalent functions and was defined as follows:

Λ(β, δ) =

{
<
(
Dq f (z) +

1 + eiβ

2
zD2

q f (z)
)
> δ, β ∈ (−π, π], δ ∈ [0, 1)

}
.

In 2023, a recent development by Swarup [25] involves the utilization of the q-version
of the hyperbolic tangent function along with a Salagean q-differential operator. This
innovation led to the introduction of a fresh category of q-starlike functions, defined in the
subsequent manner:

S∗s (l, q) =

{
S l

q f (z)
f (z)

≺ 1 + tanh(qz)

}
.

The inspiration for introducing this new category of analytic and bi-univalent functions
originated from the previously mentioned classes. Notably, the relationship between bi-
univalent functions and the q-version of the hyperbolic tangent function remains largely
unexplored in existing research. Previous studies have predominantly concentrated on
analyzing the interplay between analytic functions and the q-version of the hyperbolic
tangent function, as evidenced in the work of Swarup in 2023.

Furthermore, we were motivated to extend the analytic class of functions related
to the q-version of the hyperbolic tangent function to bi-univalent functions since it has
not been in the literature so far, which will also open up more research problems in the
area of bi-univalent and analytic functions by generalizing the following newly defined
class with some q-operators in Geometric Function Theory and also look into some other
interesting properties.

The q-bi-univalent functions are used to study many interesting properties of the
holomorphic functions. The main driving force behind our current research is the discovery
of several distinctive and advantageous applications for q-derivatives in GFT (Geometric
Function Theory). All those areas of applicable mathematics in which we deal with the com-
plex transformations, such as robotics, computer added design (CAD) and computational
geometry, demonstrate the applicability of q-bi-univalent functions. Specifically, we focus
on exploring the bi-univalent function linked with the q-analogue of the tanh function, an
area that has not yet been explored in the existing literature. In particular, the inspiration
behind introducing this innovative class stems from the referenced articles [28–32]. Mustafa
and Semra [32] introduced and studied a subclass of bi-univalent functions on the open unit
disk in the complex plane. They also investigated similar problems as those studied in [31].
They also investigated the upper bound estimate for the second Hankel determinant and
Fekete–Szegö inequality for the function belonging to this class. However, none of them or
any other researcher has ever explored this dimension of the research. Furthermore, in
a bid to push forward the ideas initially presented by Swarup in [25], we present a fresh
subcategory involving analytic and bi-univalent functions. These functions are defined
through q-derivatives and their connection to the q-analogue of the tanh function.

Definition 2. For f ∈ OBθ
τ,Σ(q), suppose the following conditions are met:

(1− τ)

(
f (ϑ)

ϑ

)
+ τDq f (ϑ) +

1 + eiθ

2
ϑD2

q f (ϑ) ≺ tanh(ϑq) + 1
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and

(1− τ)

(
l(w)

w

)
+ τDql(w) +

1 + eiθ

2
wD2

ql(w) ≺ tanh(wq) + 1

where τ ≥ 1, θ ∈ (−π, π], ϑ, w ∈ E and l(w) is given in (7).

We consider a function fn(ϑ) such that

(1− τ)

(
fn(ϑ)

ϑ

)
+ τDq fn(ϑ) +

1 + eiθ

2
ϑD2

q fn(ϑ) = 1 + tanh(qϑn) (8)

and

(1− τ)

(
ln(w)

w

)
+ τDqln(w) +

1 + eiθ

2
ϑD2

qln(w) = 1 + tanh(qwn), (n = 1, 2, 3). (9)

Thus, we have

f1(ϑ) = ϑ +
2q

2 + 2τ([2]q − 1) + (eiθ + 1)[2]q
ϑ2 − 2q3

3[2 + 2τ([4]q − 1) + (eiθ + 1)[3]q[4]q]
ϑ4 + · · · , (10)

f2(ϑ) = ϑ +
2q

2 + 2τ([3]q − 1) + (eiθ + 1)[2]q[3]q
ϑ3 − 2q3

3[2 + 2τ([7]q − 1) + (eiθ + 1)[7]q[6]q]
ϑ7 + · · · , (11)

f3(ϑ) = ϑ +
2q

2 + 2τ([4]q − 1) + (eiθ + 1)[4]q[3]q
ϑ4 − 2q3

3[2 + 2τ([10]q − 1) + (eiθ + 1)[10]q[9]q]
ϑ10 + · · · . (12)

Remark 1. The class OBθ
τ,Σ(q) is not empty. At least, the functions defined by (10)–(12) are

univalent due to being extremal functions of the class of univalent functions. They all exist in the
class OBθ

τ,Σ(q). To show this, we proceed as follows.
We start with f1(ϑ). Putting n = 1 in (8) and (9), we have the following:

(1− τ) f1(ϑ)

ϑ
= (1− τ) + (1− τ)

2q
Θ1

ϑ− (1− τ)
2q3

3Θ3
ϑ3 + · · · , (13)

τDq f1(ϑ) = τ + τ
2q[2]q

Θ1
ϑ− τ

2q3[3]q
3Θ3

ϑ3 + · · · , (14)

1 + eiθ

2
ϑD2

q f1(ϑ) =
q[2]q(1 + eiθ)

Θ1
ϑ−

q3[3]q[2]q(1 + eiθ)

3Θ3
ϑ3 + · · · . (15)

where Θ1 = 2 + 2τ([2]q − 1) + (eiθ + 1)[2]q and Θ3 = 2 + 2τ([4]q − 1) + (eiθ + 1)[4]q[3]q.
Combining (13)–(15), we have

(1− τ)

(
f1(ϑ)

ϑ

)
+ τDq f1(ϑ) +

1 + eiθ

2
ϑD2

q f1(ϑ) = 1 + qϑ− q3

3
ϑ3 + · · · , (16)

which gives us the series for the L.H.S of (8) when n = 1.

Now, for the R.H.S of (8) when n = 1, we have

1 + tanh(qϑ) = 1 + qϑ− q3

3
ϑ3 + · · · . (17)

Comparing (16) and (17), we can clearly see that they are equal; therefore, we can say that
f1(ϑ) satisfies the first part of Definition 2.
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Now, we check if f1(ϑ) satisfies the second part of the definition. Hence, we are going to find
the inverse of (16) to get the L.H.S of the second part of Definition 2, which is l(w). Let

w = (1− τ)

(
f1(ϑ)

ϑ

)
+ τDq f1(ϑ) +

1 + eiθ

2
ϑD2

q f1(ϑ), (18)

which implies

ϑ = (1− τ)

(
l1(w)

w

)
+ τDql1(w) +

1 + eiθ

2
wD2

ql1(w) = w + A2w2 + A3w3 + A4w4 + · · · (19)

Now, substitute (19) into (18), which gives

w = 1 + q[w + A2w2 + A3w3 + A4w4 + · · · ]− q3

3
[w + A2w2 + A3w3 + A4w4 + · · · ]3 + · · · (20)

Substituting A2 and A3 into (19), we have

ϑ = (1− τ)

(
l1(w)

w

)
+ τDql1(w) +

1 + eiθ

2
wD2

ql1(w) = w +
q2

3
w3 + · · · (21)

for the R.H.S of (9) when n = 1. The inverse of 1 + tanh(qϑ) follows the same solving process as
the L.H.S of (9), since (16) and (17) are equal. That is

ϑ = [1 + tanh(qϑ)]−1 = w +
q2

3
w3 + · · · . (22)

Comparing (21) and (22), we deduce that both sides are equal. Therefore, by applying the
same process to f2(ϑ) and f3(ϑ), which gives more degrees, we conclude that they also satisfy both
equations in Definition 2.

Now, we can conclude that the extremal functions given in (10)–(12) show that our defined
class of analytic and bi-univalent function is not empty and also satisfies both the first and the
second part of our Definition 2 related to f (ϑ) and l(w).

Remark 2. The class OBθ
Σ(q), which satisfies the following criterion, is obtained by setting τ = 1

in the preceding definition.

f ∈ OBθ
Σ(q)⇔ Dq f (ϑ) +

1 + eiθ

2
ϑD2

q f (ϑ) ≺ tanh(ϑq) + 1

and

Dql(w) +
1 + eiθ

2
wD2

ql(w) ≺ tanh(wq) + 1

where ϑ, w ∈ E and l(w) is given in (7).

Remark 3. The class OBΣ(q), which satisfies the following criterion, is obtained by setting τ = 1
and θ = π in the preceding definition.

f ∈ OBΣ(q)⇔ Dq f (ϑ) ≺ tanh(ϑq) + 1

and
Dql(w) ≺ tanh(wq) + 1

where ϑ, w ∈ E and l(w) is given in (7).

Remark 4. The class OBΣ, which satisfies the following criterion, is obtained by setting τ = 1,
θ = π and q −→ 1 in the preceding definition.
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f ∈ OBΣ ⇔ f ′(ϑ) ≺ tanh(ϑ) + 1

and
l′(w) ≺ tanh(w) + 1

where ϑ, w ∈ E and l(w) is given in (7).

This lemma plays a crucial role in establishing the validity of our main results.

Lemma 1 ([33,34]). Let P represent the collection of all analytic functions s(ϑ) given in (3)
such that s(ϑ) is analytic in the region E and has a real part greater than zero for all ϑ in that
region. Additionally, the function satisfies the condition s(0) = 1. We then have the following
mathematical statement:

“For any natural number k, the absolute value of the coefficient sk in the above representation
of s(ϑ) is always less than or equal to 2. Furthermore, this inequality is the best possible choice for
any value of k”.

Lemma 2 ([33,34]). Let P represent the collection of all analytic functions s given in (3) subject to
the conditions: <(s(ϑ)) > 0, z ∈ E , and s(0) = 1.

Then, we have the following two equations:

2s2 = s2
1 + (4− s2

1)e

4s3 = s3
1 + 2(4− s2

1)s1e− (4− s2
1)s1e2 + 2(4− s2

1)(1− |e|2)ϑ,

Here, e and ϑ are complex numbers satisfying |e| ≤ 1 and |ϑ| ≤ 1.

Lemma 3 ([34,35]). The Toeplitz determinants are satisfied if and only if

Hk =

∣∣∣∣∣∣∣∣∣
2 s1 s2 . . . sk

s−1 2 s1 . . . sk−1
...

...
... . . .

...
s−k s−k+1 s−k+2 . . . 2

∣∣∣∣∣∣∣∣∣, k ∈ N. (23)

Given that s−k = k̄, each of the power series composed of non-negative terms mentioned in
Equation (3) converges within the region E to a function denoted as s, which belongs to the class P .
With the exception of the specific case given by

s(z) =
k

∑
k=1

ρks0(sixkz), ρk > 0, xk real.

If all pairs of variables, represented by xk and xj, are distinct (meaning xk is not equal to xj for
any k and j combination), then all other situations will have positive values. Furthermore, in this
specific situation, Hk will be greater than zero when k is less than n− 1, and Hk will be equal to
zero when k is greater than or equal to n.

Notation 1. Given that s belongs to the set P , we can affirm thatHk is non-negative, and it holds

true that s−1 = s̄1 ≥ 0, as mentioned in Lemma 3. This results in H1 =

∣∣∣∣ 2 s1
s1 2

∣∣∣∣ ≥ 0 and

let s1 be a non-negative value such that s1 = s̄1 = s−1 ≥ 0. Consequently, we can deduce that
4− s2

1 ≥ 0, and s1 falls within the range of [0, 2]. Based on these observations, we will proceed with
the assumption that |4− s2

1| = |4− |s1|2| = 4− |s1|2 for s1, which is the first coefficient in (3).
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2. Coefficients Bound Estimates

Theorem 1. Let f ∈ OBθ
τ,Σ(q). Then,

|a2| ≤
2q

Θ1(τ, θ, q)
, |a3| ≤

2q
Θ2(τ, θ, q)

, |a4| ≤
2q

Θ3(τ, θ, q)

where

Θ1(τ, θ, q) = 2τ([2]q − 1) + (eiθ + 1)[2]q + 2,

Θ2(τ, θ, q) = 2τ([3]q − 1) + (eiθ + 1)[2]q[3]q + 2,

Θ3(τ, θ, q) = 2τ([4]q − 1) + (eiθ + 1)[3]q[4]q + 2.

The result obtained here are sharp.

Proof. Suppose f belongs to the class OBθ
τ,Σ(q). In this case, there exist analytic functions

m and v defined on E such that m(0) = 0 = v(0), |m(ϑ)| ≤ 1, and |v(w)| ≤ 1, meets the
aforementioned requirements:

(1− τ)

(
f (ϑ)

ϑ

)
+ τDq f (ϑ) +

1 + eiθ

2
ϑD2

q f (ϑ) = tanh(m(ϑ) · q) + 1 (24)

and

(1− τ)

(
l(w)

w

)
+ τDql(w) +

1 + eiθ

2
wD2

ql(w) = tanh(v(w) · q) + 1. (25)

The functions s, r ∈ P are defined as follows:

s(ϑ) =
1 + m(ϑ)

1−m(ϑ)
= 1 +

∞

∑
k=1

skϑk, ϑ ∈ E.

and

r(w) =
1 + v(w)

1− v(w)
= 1 +

∞

∑
k=1

rkwk, w ∈ E.

Upon replacing the expressions for the functions m(ϑ) and v(w) in
Equations (24) and (25), we obtain

(1− τ)

(
f (ϑ)

ϑ

)
+ τDq f (ϑ)+

1 + eiθ

2
ϑD2

q f (ϑ) = 1 +
qs1

2
ϑ +

(
qs2

2
−

qs2
1

4

)
ϑ2

+

(
q
2

s3 −
q
2

s1s2 −
(2q2 − 3)

24
s3

1

)
ϑ3 + · · · (26)

and

(1− τ)

(
l(w)

w

)
+ τDql(w) +

1 + eiθ

2
wD2

ql(w) = 1 +
qr1

2
w +

(
qr2

2
−

qr2
1

4

)
w2

+

(
q
2

r3 −
q
2

r1r2 −
(2q2 − 3)

24
r3

1

)
w3 + · · · . (27)

The Equations (28) and (29) produce expressions for variables of the same degree,
namely a2, a3, and a4, after performing specified operations and simplifications on their
left-hand sides.
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Θ1(τ, θ, q)
2

a2 =
q
2

s1, (28)

Θ2(τ, θ, q)
2

a3 =
q
2

s2 −
q
4

s2
1, (29)

Θ3(τ, θ, q)
2

a3 =
q
2

s3 −
q
2

s1s2 −
q(2q2 − 3)

24
s3

1, (30)

and

−Θ1(τ, θ, q)
2

a2 =
q
2

r1, (31)

Θ2(τ, θ, q)a2
2 −

Θ2(τ, θ, q)
2

a3 =
q
2

r2 −
q
4

r2
1, (32)

−5Θ3(τ, θ, q)
2

a3
2 +

5Θ3(τ, θ, q)
2

a2a3 −
Θ3(τ, θ, q)

2
a4 =

q
2

r3 −
q
2

r1r2 −
q(2q2 − 3)

24
r3

1. (33)

Using Equations (28) and (31), we write

s1

Θ1(τ, θ, q)
= a2 = − r1

Θ1(τ, θ, q)
and s1 = −r1. (34)

The first outcome of the theorem is obvious from this and Lemma 1.
Considering the equivalence s1 = −r1 and subtracting (32) from (29), we obtain

a3 = a2
2 +

q[s2 − r2]

2Θ2(τ, θ, q)
.

Furthermore,

a3 =
q2s2

1
Θ2

1(τ, θ, q)
+

q[s2 − r2]

2Θ2(τ, θ, q)
. (35)

Moreover, after deducting the Equation labeled as (33) from Equation (30), and taking
into account the equalities denoted as (34) and (35), we arrive at the subsequent outcome:

a4 =
q(3− 2q2)

12Θ3(τ, θ, q)
s3

1 +
5q2s1(s2 − r2)

4Θ1(τ, θ, q)Θ2(τ, θ, q)
− qs1(s2 + r2)

2Θ3(τ, θ, q)
+

q(s3 − r3)

2Θ3(τ, θ, q)
. (36)

Now, Lemma 2 says that because s1 = −r1, we can write

s2 − r2 =
4− s2

1
2

(e− µ), s2 + r2 = s2
1 +

4− s2
1

2
(e + µ) (37)

and

s3 − r3 =
s3

1
2
+

(4− s2
1)(e + µ)

2
s1 −

(4− s2
1)(e

2 + µ2)

4
s1 (38)

+
4− s2

1
2

[(
1− |e|2

)
ϑ−

(
1− |µ|2

)
w

]
.

There exist values for e, w, ϑ, and µ such that their absolute values are less than or
equal to 1. Specifically, |e| ≤ 1, |w| ≤ 1, |ϑ| ≤ 1, and |µ| ≤ 1.

To derive the coefficient a3, we can achieve this by inserting the initial Equation (37)
into (35).

a3 =
q2s2

1
Θ2

1(τ, θ, q)
+

q(4− s2
1)

4Θ2(τ, θ, q)
(e− µ).
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Keep in mind that we can write |4− s2
1| = |4− |s1|2| = 4− |s1|2 = |4− c2| for s1 if we

accept |s1| = c. In other words, we can just suppose that c ∈ [0, 2]. In such a situation, we
can express the inequality for |a3| as

a3 ≤
q2c2

Θ2
1(τ, θ, q)

+
q(4− c2)

4Θ2(τ, θ, q)
(λ + σ), (λ, σ) ∈ [0, 1]2,

by using a triangle inequality and the settings |e| = λ and |µ| = σ.
The function Ω : R2 −→ R is hereby defined in the following manner:

Ω(λ, σ) =
q2c2

Θ2
1(τ, θ, q)

+
q(4− c2)

4Θ2(τ, θ, q)
(λ + σ), (λ, σ) ∈ [0, 1]2.

Maximizing the function Ω within the closed square X = [(λ, σ) : (λ, σ) ∈ [0, 1]2]
is essential.

The function Ω reaches its highest value at the edges of the square X that encloses it.
By employing the parameter λ to derive the function Ω(λ, σ), we obtain the following.

Ωλ(λ, σ) =
q(4− c2)

4Θ2(τ, θ, q)
.

Since Ωλ(λ, σ) is non-negative, the function Ω(λ, σ) increases as λ increases and
attains its highest value when λ is equal to 1.

max{Ω(λ, σ) : λ ∈ [0, 1]} = Ω(1, σ) =
q2c2

Θ2
1(τ, θ, q)

+
q(4− c2)(1 + σ)

4Θ2(τ, θ, q)

for every σ belonging to the interval from 0 to 1, and for every c belonging to the interval
from 0 to 2.

Upon taking the derivative of the function Ω(1, σ), we obtain the following result.

Ω′(1, σ) =
q(4− c2)

4Θ2(τ, θ, q)
.

Because of the non-negativity of Ω′(1, σ), the function Ω(1, σ) becomes increasingly
larger as σ increases and achieves its highest value when σ = 1. Consequently,

max{Ω(1, 1) : λ ∈ [0, 1]} = Ω(1, 1) =
q2c2

Θ2
1(τ, θ, q)

+
q(4− c2)

2Θ2(τ, θ, q)
,

where c ∈ [0, 2].
Then, we get

Ω(λ, σ) ≤ max{Ω(λ, σ) : (λ, σ) ∈ X} = Ω(1, 1) =
q2c2

Θ2
1(τ, θ, q)

+
q(4− c2)

2Θ2(τ, θ, q)
.

Since |a3| ≤ Ω(λ, σ), we have

|a3| ≤ Ψ(q, τ, θ)× c2 +
2q

Θ2(τ, θ, q)
, c ∈ [0, 2],

where

Ψ(q, τ, θ) =
q2

Θ2
1(τ, θ, q)

− q
2Θ2(τ, θ, q)

.

Let us now determine the function H : R −→ R maximum value, which is defined
as follows:

H(c) = Ψ(q, τ, θ)× c2 +
2q

Θ2(τ, θ, q)
,
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in the interval of 0 ≤ c ≤ 2.
Moreover, upon taking the derivative of the function H(c) with respect to c, we obtain

H′(c) = 2Ψ(q, θ, q) · c, where c belongs to the interval [0, 2]. It is known that H′(c) ≤ 0
when Ψ(q, θ, q) ≤ 0. This indicates that the function H(c) is decreasing, and its maximum
value is achieved when c = 0. Thus, we have

max{H(c) : c ∈ [0, 2]} = H(0) =
2q

Θ2(τ, θ, q)
.

Furthermore, if Ψ(q, θ, q) ≥ 0, then H′(c) ≥ 0. The function H(c) is increasing, and its
maximum value is achieved at c = 2. On the other hand, if we set c = 0, the function H(c)
becomes a decreasing function, and its maximum value still occurs at c = 0. Hence, we can
conclude that

max{H(c) : c ∈ [0, 2]} = H(2) =
4q2

Θ2
1(τ, θ, q)

.

As a result, we have derived the maximum possible value for |a3|, as indicated in
the following:

|a3| ≤
2q

Θ2(τ, θ, q)
.

We derive the following inequality for |a4| from (36), using (37), (38), and triangle
inequality.

|a4| ≤ y1(c) + y2(c)(λ + σ) + y3(c)(λ2 + σ2) := L(λ, σ)

where

y1(c) =
q3

6Θ3(τ, θ, q)
c3 +

q(4− c2)

2Θ3(τ, θ, q)
,

y2(c) =
5q2(4− c2)

8Θ1(τ, θ, q)Θ2(τ, θ, q)
,

y3(c) =
q(4− c2)(c− 2)

8Θ3(τ, θ, q)
.

For each c ∈ [0, 2], we must now maximize the function L(λ, σ) on X.
As the coefficients y1(c), y2(c), and y3(c) of the function H(λ, σ) rely on the parameter

c, examining the highest value of the function H(λ, σ) is essential across various values of
c. Let c = 0, since y2(0) = 0,

y1(0) =
2q

Θ3(τ, θ, q)
and

y3(0) = −
q

Θ3(τ, θ, q)
.

Furthermore, we get

L(λ, σ) =
2q

Θ3(τ, θ, q)
− q

Θ3(τ, θ, q)
(λ2 + σ2), (λ, σ) ∈ [0, 1]2.

So, we have

L(λ, σ) ≤ max{L(λ, σ) : (λ, σ) ∈ X} = L(0, 0) =
2q

Θ3(τ, θ, q)
.
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Let c = 2. Then, since y2(2) = y3(2) = 0 and

y1(2) =
4q3

3Θ(τ, θ, q)
.

The following function L(λ, σ) is a constant.

L(λ, σ) = y1(2) =
4q3

3Θ(τ, θ, q)
.

It is simple to demonstrate that the function L(λ, σ) cannot reach its maximum value
on the given set X when c belongs to the interval (0, 2). As a result, we obtain the following.

|a4| ≤
2q

Θ3(τ, θ, q)
.

From Theorem 1, we get the following findings for specific parameter values.

Corollary 1. If f (z) belongs to the class of functions denoted as OBθ
Σ(q), then

|a2| ≤
2q

[2]q(eiθ + 3)
, |a3| ≤

2q
[3]q(2 + (eiθ + 1)[2]q)

and |a4| ≤
2q

[4]q(2 + (1 + eiθ)[3]q)
.

The outcomes achieved here are precise.

3. The Fekete–Szegö Inequality and the Second Hankel Determinant

Theorem 2. Let f ∈ OBθ
τ,Σ(q). Then,

|a2a4 − a2
3| ≤

4q2

Θ2
2(τ, θ, q)

,

where
Θ2(τ, θ, q) = 2 + 2τ([3]q − 1) + (1 + eiθ)[2]q[3]q.

The results obtained here are sharp.

Proof. Let f ∈ OBθ
τ,Σ(q). Then, the equality a2a4− a2

3 can be written in this following form
using (34)–(36):

a2a4 − a2
3 =

q2(3− 2q2)Θ3
1(τ, θ, q)− 12q3Θ3(τ, θ, q)

12Θ4
1(τ, θ, q)Θ3(τ, θ, q)

s4
1 +

q3(s2 − r2)

4Θ2
1(τ, θ, q)Θ2(τ, θ, q)

s2
1

− q2(s2 + r2)

2Θ1(τ, θ, q)Θ3(τ, θ, q)
s2

1 +
q2(s3 − r3)

2Θ1(τ, θ, q)Θ3(τ, θ, q)
− q2(s2 − r2)

2

4Θ2
2(τ, θ, q)

.

With the aid of equalities (37) and (38), the triangle inequality, and considering the
assumptions where the absolute value of s1 is denoted as c, the absolute value of e is denoted
as λ, and the absolute value of µ is denoted as σ, we can make an approximation for

|a2a4 − a2
3| ≤ Y1(c) + Y2(c)(λ + σ) + Y3(c)(λ2 + σ2) + Y4(c)(λ + σ)2, (39)
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where

Y1(c) =
q3[qΘ3

1(τ, θ, q) + 6Θ3(τ, θ, q)]
6Θ4

1(τ, θ, q)Θ3(τ, θ, q)
c4 +

q2(4− c2)

2Θ1(τ, θ, q)Θ3(τ, θ, q)
c ≥ 0,

Y2(c) =
q3(4− c2)

8Θ2
1(τ, θ, q)Θ3(τ, θ, q)

c2 ≥ 0,

Y3(c) =
q2(4− c2)(c− 2)c

8Θ1(τ, θ, q)Θ2(τ, θ, q)
≤ 0,

Y4(c) =
q2(4− c2)2

16Θ2
2(τ, θ, q)

≥ 0.

We now define the function D : R2 −→ R as follows:

D(λ, σ) = Y1(c) + Y2(c)(λ + σ) + Y3(c)(λ2 + σ2) + Y4(c)(λ + σ)2,

for every pair of values (λ, σ) that belong to the interval [0, 1] and every value of c within
the range of (0, 2), it is possible to find the maximum of the function D(λ, σ) over the
domain X.

It is necessary to examine the highest value for different parameter values of c be-
cause the coefficients Y1(c), Y2(c), Y3(c) and Y4(c) of the function D(λ, σ) depend on the
parameter c.

1. Let c = 0. Since Y1(0) = Y2(0) = Y3(0) = 0 and

Y4(0) =
q2

Θ2
2(τ, θ, q)

the function D(λ, σ) written as follows

D(λ, σ) =
q2

Θ2
2(τ, θ, q)

(λ + σ)2, (λ, σ) ∈ X.

The maximum value of the function D(λ, σ) is achieved at the edges of the enclosed
square X, which is clearly observable.
Now, by using some techniques of differentiation on the function D(λ, σ) with respect
to λ, we get

Dλ(λ, σ) =
2q2

Θ2
2(τ, θ, q)

(λ + σ), σ ∈ [0, 1].

The function D(λ, σ) is a monotonically increasing function concerning λ and reaches
its peak value when λ equals 1, as indicated by Dλ(λ, σ) ≥ 0. Therefore, the following
relationship holds:

max{D(λ, σ) : σ ∈ [0, 1]} = D(1, σ) =
q2

Θ2
2(τ, θ, q)

(1 + σ)2, σ ∈ [0, 1].

After employing the methods of differentiation to the function D(1, σ), the result is
as follows:

D′(1, σ) =
2q2

Θ2
2(τ, θ, q)

(1 + σ), σ ∈ [0, 1].



Fractal Fract. 2023, 7, 675 14 of 20

Because the derivative of D with respect to σ at σ = 1 is positive (D′(1, σ) > 0), the
function D(1, σ) is monotonically increasing, and its maximum value is attained when
σ = 1. Consequently,

max{D(1, σ) : σ ∈ [0, 1]} = D(1, 1) =
4q2

Θ2
2(τ, θ, q)

.

Thus, for c = 0, we have

D(λ, σ) ≤ max{D(λ, σ) : (λ, σ) ∈ [0, 1]2} = D(1, 1) =
4q2

Θ2
2(τ, θ, q)

.

Since |a2a4 − a2
3| ≤ D(λ, σ), we have

|a2a4 − a2
3| ≤

4q2

Θ2
2(τ, θ, q)

.

2. Now, setting c = 2, for Y2(2) = Y3(2) = Y4(2) = 0 and

Y1(2) =
8q3[qΘ3

1(τ, θ, q) + 6Θ3(τ, θ, q)]
3Θ4

1(τ, θ, q)Θ3(τ, θ, q)

the function D(λ, σ) is a constant, as follows

D(λ, σ) = Y1(2) =
8q3[qΘ3

1(τ, θ, q) + 6Θ3(τ, θ, q)]
3Θ4

1(τ, θ, q)Θ3(τ, θ, q)
.

Hence, we have

|a2a4 − a2
3| ≤

8q3[qΘ3
1(τ, θ, q) + 6Θ3(τ, θ, q)]

3Θ4
1(τ, θ, q)Θ3(τ, θ, q)

in the case of c = 2.
3. Given that c lies in the open interval between 0 and 2, our objective is to analyze

the maximum value of the function D(λ, σ). This analysis will consider the sign of
some variables.

χ(D(λ, σ)) = Dλλ(λ, µ)Dσσ(λ, σ)− (Dλσ(λ, σ))2.

The equation
χ(D(λ, σ)) = 4Y3(c)[Y3(c) + 2Y4(c)]

is visible to us. We now consider two examples of the sign χ(D(λ, σ)).

(a) Let Y3(c) + 2Y4(c) ≤ 0 for the interval c ∈ (0, 2). For this instance, since
Dλσ(λ, σ) = Dσλ(λ, σ) = 2Y4(c) ≥ 0 and χ(D(λ, σ)) ≥ 0, basic calculus dic-
tates that the function D(λ, σ) cannot achieve a maximum within the bound-
aries of the square X.

(b) Additionally, suppose there exists a value c in the interval (0, 2) such that
Y3(c) + 2Y4(c) ≥ 0. Under this condition, where χ(D) ≤ 0, the function
D(λ, σ) cannot attain a maximum within the square region X = [(λ, σ) :
(λ, σ) ∈ [0, 1]2].

As a result of these three instances, we write

|a2a4 − a2
3| ≤

4q2

Θ2
2(τ, θ, q)

.
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Therefore, the proof of Theorem 2 is now finished.

Based on the specific parameter values, the following discoveries are obtained from
Theorem 2.

Corollary 2. Let f ∈ OBθ
Σ(q). Then,

|a2a4 − a2
3| ≤

4q2

[3]q(2 + (1 + eiθ)[2]q)
.

The results are sharp.

Corollary 3. Let f ∈ OBΣ(q). Then,

|a2a4 − a2
3| ≤

2q2

[3]q
.

The results are sharp.

Now, we will present the theorem related to the Fekete–Szegö inequality.

Theorem 3. Let f ∈ OBθ
τ,Σ(q), ξ ∈ C. Then,

∣∣∣a3 − ξa2
2

∣∣∣ ≤


4G(q)
Θ2

1(τ,θ,q)
|1− ξ| ≤ G(q)

4|1−ξ|
Θ2

1(τ,θ,q)
|1− ξ| ≥ G(q).

where

G(q) =
q ·Θ2

1(τ, θ, q)
2Θ2(τ, θ, q)

.

The results obtained here are sharp.

Proof. Let f ∈ OBθ
τ,Σ(q) and ξ ∈ C. Then, from (34)–(38), we solve for the expression

a3 − ξa2
2 to be:

a3 − ξa2
2 =

q2s2
1

Θ2
1(τ, θ, q)

(1− ξ) +
q(4− s2

1)

4Θ2(τ, θ, q)
(e− µ) (40)

for some e, µ with |e| ≤ 1 and |µ| ≤ 1.
If |e| = λ, |µ| = σ, |s1| = c and applying triangle inequality to (40), we can then solve

for the upper bound of |a3 − ξa2
2|, as follows:

|a3 − ξa2
2| ≤

|1− ξ|q2

Θ2
1(τ, θ, q)

c2 +
q(4− c2)(λ + σ)

4Θ2(τ, θ, q)
, (λ, σ) ∈ X, (41)

for every value of c belonging to the interval [0, 2].
The function v can be defined now as v : R2 −→ R.

v(λ, σ) =
|1− ξ|q2

Θ2
1(τ, θ, q)

c2 +
q(4− c2)(λ + σ)

4Θ2(τ, θ, q)
, (λ, σ) ∈ X,

for each c ∈ (0, 2). We have to check now that the function v(λ, σ) on X for each c ∈ [0, 2]
is maximized.

The highest value of the function v(λ, σ) is clearly achieved at the boundaries of the
enclosed square X.
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Therefore, through straightforward differentiation of the function v(λ, σ) with respect
to λ, we obtain

vλ(λ, σ) =
q(4− c2)

4Θ2(τ, θ, q)
, c ∈ [0, 2]. (42)

As vλ(λ, σ) is greater than zero, the function v(λ, σ) shows a positive correlation with
λ, leading to an increase as λ increases. The maximum value of this function is attained
when σ = 1,

max{v(λ, σ) : σ ∈ [0, 1]} = v(1, σ) =
|1− ξ|q2

Θ2
1(τ, θ, q)

c2 +
q(4− c2)

4Θ2(τ, θ, q)
(1 + σ)

for each σ ∈ [0, 1] and a ∈ [0, 2].
Furthermore, by applying differentiation on v(1, σ), we have

v′(1, σ) =
q(4− c2)

4Θ2(τ, θ, q)

for each c ∈ [0, 2].
If the condition v′(1, σ) > 0 is met, the function v(1, σ) will exhibit a rising trend,

and its maximum value will be attained at σ = 1. Therefore,

max{v(1, σ) : σ ∈ [0, 1]} = v(1, 1) =
|1− ξ|q2

Θ2
1(τ, θ, q)

c2 +
q(4− c2)

2Θ2(τ, θ, q)
.

Thus, we get

v(λ, µ) ≤ max{v(λ, σ) : (λ, σ) ∈ [0, 1]} = v(1, 1) =
|1− ξ|q2

Θ2
1(τ, θ, q)

c2 +
q(4− c2)

2Θ2(τ, θ, q)
.

Since |a3 − ξa2
2| ≤ v(λ, σ), we get

|a3 − ξa2
2| ≤

|1− ξ| − G(q)
Θ2

1(τ, θ, q)
c2 +

4G(q)
Θ2

1(τ, θ, q)

where

G(q) =
q ·Θ2

1(τ, θ, q)
2Θ2(τ, θ, q)

.

Now, it is the right time to determine the maximum value of the function Ξ over the
interval [0, 2] in the real number set.

Ξ(c) =
|1− ξ| − G(q)

Θ2
1(τ, θ, q)

c2 +
4G(q)

Θ2
1(τ, θ, q)

.

By applying the principle of differentiation on the function Ξ(c) , we get

Ξ′(c) =
2(|1− ξ| − G(q))

Θ2
1(τ, θ, q)

c, c ∈ [0, 2].

Supposing |1− ξ| ≤ G(q) and the maximum occurs at c = 0, then the function Ξ(c) is
a decreasing function since Ξ′(c) ≤ 0

max{Ξ(c) : c ∈ [0, 2]} = Ξ(0) =
4G(q)

Θ2
1(τ, θ, q)

.
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Given that Ξ′(c) ≥ 0, the function Ξ(c) is monotonically increasing. When
|1− ξ| ≥ G(q) and the maximum of the function is at c = 2, then

max{Ξ(c) : c ∈ [0, 2]} = Ξ(2) =
4|1− ξ|

Θ2
1(τ, θ, q)

.

We consequently arrive at

∣∣∣a3 − ξa2
2

∣∣∣ ≤


4G(q)
Θ2

1(τ,θ,q)
|1− ξ| ≤ G(q)

4|1−ξ|
Θ2

1(τ,θ,q)
|1− ξ| ≥ G(q).

The outcome obtained in this case is sharp for |1− ξ| ≥ G(q).

From Theorem 3, we get the following findings for specific parameter values.

Corollary 4. Let f ∈ OBθ
Σ(q), ξ ∈ C. Then,

∣∣∣a3 − ξa2
2

∣∣∣ ≤


4G(q)
[2]2q(3+eiθ)2 |1− ξ| ≤ G(q)

4|1−ξ|
[2]2q(3+eiθ)2 |1− ξ| ≥ G(q).

where

G(q) =
q[2]2q(3 + eiθ)2

2[3]q[2 + (1 + eiθ)[2q]]
.

The results obtained here are sharp.

Corollary 5. Let f ∈ OBΣ(q), ξ ∈ C. Then,

∣∣∣a3 − ξa2
2

∣∣∣ ≤


4G(q)
[2]2q

|1− ξ| ≤ q[2]2q
4[3]q

4|1−ξ|
[2]2q

|1− ξ| ≥ q[2]2q
4[3]q

.

The results obtained here are sharp.

Theorem 3 is stated as follows for the condition ξ ∈ R.

Theorem 4. Let f ∈ OBθ
τ,Σ(q), ξ ∈ R. Then,

|a3 − ξa2
2| ≤



4(1−ξ)

Θ2
1(τ,θ,q)

if ξ ≤ 1− G(q)

4G(q)
Θ2

1(τ,θ,q)
if 1− G(q) ≤ ξ ≤ 1 + G(q)

4(ξ−1)
Θ2

1(τ,θ,q)
if 1 + G(q) ≤ ξ,

(43)

where

G(q) =
q ·Θ2

1(τ, θ, q)
2Θ2(τ, θ, q)

.
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Proof. Let f belong to the class of functions denoted by OBθ
τ,Σ(q), and let ξ be a real

number. When ξ is a real number, the inequalities |1− ξ| ≥ G(q) and |1− ξ| ≤ G(q) are
equivalent to the following conditions:

ξ ≤ 1− G(q) or ξ ≥ 1 + G(q),

1− G(q) ≤ ξ ≤ 1 + G(q).

The theorem’s conclusion is obtained from Theorem 3.

Using the parameter ξ = 1, we have the following corollary:

Corollary 6. Let f ∈ OBθ
τ,Σ(q). Then,

|a3 − a2
2| ≤

2q
2 + 2τ([3]q − 1) + (1 + eiθ)[2]q[3]q

.

When ξ is set to zero, the subsequent corollary can be stated as follows:

Corollary 7. Let f ∈ OBθ
τ,Σ(q). Then,

|s3| ≤


4(1−ξ)

Θ2
1(τ,θ,q)

if G(q) ≤ 1,

4G(q)
Θ2

1(τ,θ,q)
if G(q) ≥ 1

(44)

where

G(q) =
q ·Θ2

1(τ, θ, q)
2Θ2(τ, θ, q)

.

From Theorem 4, we get the following findings for specific parameter values.

Corollary 8. Let f ∈ OBΣ(q), ξ ∈ R. Then,

|a3 − ξa2
2| ≤



1−ξ

[2]2q
if ξ ≤ 1− G(q)

q
[3]q

if 1− G(q) ≤ ξ ≤ 1 + G(q)

ξ−1
[2]2q

if 1 + G(q) ≤ ξ,

(45)

where

G(q) =
q[2]2q
4[3]q

.

4. Conclusions

To summarize, this study presents a fresh type of analytic functions called the q-
calculus operator, defined through the utilization of the q-derivative operator and the
q-version of the hyperbolic tangent function. The primary goals of this research involve
computing coefficients, second Hankel determinants, and Fekete–Szegö estimates for this
newly defined group of functions. Furthermore, the study seeks to investigate the upper
bounds that determine the inclusion of functions f (ϑ) in this newly established category.
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4. Khan, S.S.; Altinkaya, Ş.; Xin, Q.; Tchier, F.; Malik, S.N.; Khan, N. Faber Polynomial coefficient estimates for Janowski type

bi-close-to-convex and bi-quasi-convex functions. Symmetry 2023, 15, 604. [CrossRef]
5. Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-Calculus and their applications. Iran. J. Sci. Technol. Trans. A

Sci. 2020, 44, 327–344. [CrossRef]
6. Adebesin, B.O.; Adeniyi, J.O.; Adimula, I.A.; Adebiyi, S.J.; Ikubanni, S.O.; Oladipo, O.A.; Olawepo, A.O. Pattern of ionization

gradient, solar quiet magnetic element, and F2-layer bottomside thickness parameter at African equatorial location. Radio Sci.
2019, 54, 415–425. [CrossRef]

7. Adebesin, B.O.; Pulkkinen, A.; Ngwira, C.M. The interplanetary and magnetospheric causes of extreme dB/dt at equatorial
locations. Geophys. Res. Lett. 2016, 43, 11501–11509. [CrossRef]

8. Ahmad, B.; Ntouyas, S.K.; Alsaedi, A. New existence results for nonlinear fractional differential equations with three-point
integral boundary conditions. Adv. Differ. Equ. 2011, 2011, 107384. [CrossRef]

9. Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific Publishing Company: Singapore, 2000.
10. Ibrahim, R.W. On holomorphic solutions for nonlinear singular fractional differential equations. Comput. Math. Appl. 2011, 62,

1084–1090. [CrossRef]
11. Ibrahim, R.W. On solutions for fractional diffusion problems. Electron. J. Differ. Equ. 2010, 147, 1–11.
12. Miller, S.S. Differential inequalities and Caratheodory functions. Bull. Am. Math. Soc. 1975, 81, 79–81. [CrossRef]
13. Jackson, F.H. On q-functions and a certain difference operator. Earth Environ. Sci. Trans. R. Soc. Edinb. 1909, 46, 253–281. [CrossRef]
14. Jackson, F.H. On q-definite integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203.
15. Srivastava, H.M. Univalent Functions, Fractional Calculus, and Associated Generalized Hypergeometric Functions. In Univalent

Functions, Fractional Calculus, and Their Applications; Srivastava, H.M., Owa, S., Eds.; Halsted Press (Ellis Horwood Limited):
Chichester, UK; John Wiley and Sons: New York, NY, USA, 1989; pp. 329–354.

16. Saliu, A.; Jabeen, K.; Al-Shbeil, I.; Aloraini, N.; Malik, S.N. On q-Limaçon Functions. Symmetry 2022, 14, 2422. [CrossRef]
17. Saliu, A.; Al-Shbeil, I.; Gong, J.; Malik, S.N.; Aloraini, N. Properties of q-Symmetric Starlike Functions of Janowki Type. Symmetry

2022, 14, 1907. [CrossRef]
18. Saliu, A.; Noor, K.I.; Hussain, S.; Darus, M. On Quantum Differential Subordination Related with Certain Family of Analytic

Functions. J. Math. 2020, 2020, 6675732 [CrossRef]
19. Saliu, A.; Oladejo, S.O. On Lemniscate of Bernoulli of q-Janowski type. J. Niger. Soc. Phys. Sci. 2022, 4, 961. [CrossRef]
20. Zainab, S.; Raza, M.; Xin, Q.; Jabeen, M.; Malik, S.N.; Riaz, S. On q-Starlike Functions Defined by q-Ruscheweyh Differential

Operator in Symmetric Conic Domain. Symmetry 2021, 13, 1947. [CrossRef]
21. Riaz, S.; Nisar, U.A.; Xin, Q.; Malik, S.N.; Raheem, A. On Starlike Functions of Negative Order Defined by q-Fractional Derivative.

Fractal Fract. 2022, 6, 30. fractalfract6010030. [CrossRef]
22. Bieberbach, L. Uber die koeffizienten derjenigen potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln.

Sitz. Ber. Preuss. Akad. Wiss. 1916, 138, 940–955.
23. De Branges, L. A proof of the Bieberbach conjecture. Acta Math. 1985, 154, 137–152. [CrossRef]

http://doi.org/10.2307/2007212
http://dx.doi.org/10.3390/sym13020327
http://dx.doi.org/10.1186/s13662-021-03497-4
http://dx.doi.org/10.3390/sym15030604
http://dx.doi.org/10.1007/s40995-019-00815-0
http://dx.doi.org/10.1029/2018RS006742
http://dx.doi.org/10.1002/2016GL071526
http://dx.doi.org/10.1155/2011/107384
http://dx.doi.org/10.1016/j.camwa.2011.04.037
http://dx.doi.org/10.1090/S0002-9904-1975-13643-3
http://dx.doi.org/10.1017/S0080456800002751
http://dx.doi.org/10.3390/sym14112422
http://dx.doi.org/10.3390/sym14091907
http://dx.doi.org/10.1155/2020/6675732
http://dx.doi.org/10.46481/jnsps.2022.961
http://dx.doi.org/10.3390/sym13101947
http://dx.doi.org/10.3390/fractalfract6010030
http://dx.doi.org/10.1007/BF02392821


Fractal Fract. 2023, 7, 675 20 of 20

24. Ma, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on
Complex Analysis, Tianjin, China, 19–22 June 1992; Li, Z., Ren, F., Yang, L., Zhang, S., Eds.; Conference Proceedings and Lecture
Notes in Analysis; International Press: Cambridge, UK, 1994; Volume I, pp. 157–169.

25. Swarup, C. Sharp coefficient bounds for a new subclass of q-starlike functions associated with q-analogue of the hyperbolic
tangent function. Symmetry 2023, 15, 763. [CrossRef]

26. Zhang, C.; Khan, B.; Shaba, T.G.; Ro, J.-S.; Araci, S.; Khan, M.G. Applications of q-Hermite polynomials to Subclasses of analytic
and bi-Univalent Functions. Fractal Fract. 2022, 6, 420. [CrossRef]

27. Hu, Q.; Shaba, T.G.; Younis, J.; Khan, B.; Mashwani, W.K.; Caglar, M. Applications of q-derivative operator to Subclasses of
bi-Univalent Functions involving Gegenbauer polynomial. Appl. Math. Sci. Eng. 2022, 30, 501–520. [CrossRef]

28. Srivastava, H.M.; Raducanu, F.M.; Zaprawa, D. Certain subclass of analytic functions defined by means of differential subordina-
tion. Filomat 2016, 30, 3743–3757. [CrossRef]

29. Yousef, F.; Frasin, B.A.; Al-Hawary, T. Fekete-Szegö inequality for analytic and bi-univalent functions subordinate to Chebyshev
polynomials. arXiv 2018, arXiv:1801.09531.

30. Mahzoon, H.; Kargar, R. Further results for two certain subclasses of close-to-convex functions. Asian-Eur. J. Math. 2020, 14, 12.
[CrossRef]

31. Lasode, A.O.; Opoola, T.O. Some investigations on a class of analytic and univalent functions involving q-differentiation. Eur. J.
Math. Anal. 2022, 2, 1–9. [CrossRef]

32. Mustafa, N.; Korkmaz, S. On a subclass of the analytic and bi-univalent functions satisfying subordinate condition defined by
q-derivative. Turk. J. Math. 2022, 46, 3095–3120. [CrossRef]

33. Duren, P.L. Univalent Functions. In Grundlehren der Mathematischen Wissenschaften; Band 259; Springer: New York, NY, USA;
Berlin/Heidelberg, Germany; Tokyo, Japan, 1983.

34. Grenander, U.; Szego G. Toeplitz form and their applications. In California Monographs in Mathematical Sciences; University
California Press: Berkeley, CA, USA, 1958.

35. Shaba, T.G.; Araci, S.; Adebesin, B.O.; Tchier, F.; Zainab, S.; Khan, B. Sharp Bounds of the Fekete–Szegö Problem and Second
Hankel Determinant for Certain Bi-Univalent Functions Defined by a Novel q-Differential Operator Associated with q-Limaçon
Domain. Fractal Fract. 2023, 7, 506. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/sym15030763
http://dx.doi.org/10.3390/fractalfract6080420
http://dx.doi.org/10.1080/27690911.2022.2088743
http://dx.doi.org/10.2298/FIL1614743S
http://dx.doi.org/10.1142/S1793557121500455
http://dx.doi.org/10.28924/ada/ma.2.12
http://dx.doi.org/10.55730/1300-0098.3322
http://dx.doi.org/10.3390/fractalfract7070506

	Introduction and Preliminaries
	Coefficients Bound Estimates
	The Fekete–Szegö Inequality and the Second Hankel Determinant
	Conclusions
	References

