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We consider the embedding of Higgs inflation with a nonminimal coupling into the Wey] gravity. In this
model, the effective current-current interactions from the heavy Weyl gauge field cancel the noncanonical
Higgs kinetic term in Einstein frame, so the unitarity problem of the original Higgs inflation becomes less
severe. For a simple case where the couplings of the heavy Weyl gauge field appears from the nonminimal
couplings to the Ricci curvature scalar in Weyl gravity, we find that the resultant model for Higgs inflation
is the same as in the Palatini formulation for Higgs inflation. The crucial difference of our model from the
Palatini formulation for Higgs inflation is that there is a light Weyl gauge field coupled to the Higgs fields.
We also generalize the unitarization of Higgs inflation with general covariant kinetic terms for the dilaton
and the Higgs fields and realize a successful Higgs inflation, interpolating between the Palatini formulation
for Higgs inflation and a Higgs-like inflation. We also discuss the Higgs mechanism for the light Weyl
gauge field with an extra singlet scalar and show some interesting signatures for Higgs physics, such as the
overall suppression of Higgs couplings and the direct couplings of the light Weyl gauge field to the Higgs

boson.
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I. INTRODUCTION

Effective field theories have been important tools for
particle physics and cosmology due to the fact that it is
enough to keep a finite number of parameters consistent
with symmetries at low energies for accurate calculations of
observable quantities. The Standard Model (SM) has been
shown to be a consistent effective field theory, which is an
efficient and accurate way of describing interactions of
fundamental particles, probably up to very high energies,
due to the null results for new physics at the Large Hadron
Collider (LHC). Nonetheless, there are hints for new
physics solving the empirical problems such as neutrino
masses, baryon number asymmetry, dark matter, and the
theoretical problems such as the hierarchy problem, the
cosmological constant problem, the flavor hierarchy prob-
lem, etc.

Cosmic inflation requires a slowly rolling extra scalar
field, the so-called inflaton, in the early era of cosmology,
solving the problems for homogeneity, isotropy, relics, etc.
Quantum fluctuations of the inflaton set the initial con-
ditions for the standard big bang cosmology by generating
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the seeds for inhomogeneities of the cosmic microwave
background (CMB) and the large-scale structures. In usual
cases, we need to go beyond the SM with a singlet inflaton
and introduce extra couplings of the inflaton appropriately
for reheating process. Although it is a challenging task to
find a consistent framework for inflation models, the power
spectrum of the observed CMB anisotropies such as Planck
data [1] have put meaningful constraints on the inflation
models through the spectral index, the tensor-to-scalar
ratio, etc.

The Higgs boson is the only fundamental scalar field in
the SM, so it is a good candidate for the inflaton. Then, it is
an interesting possibility to regard the Higgs boson as the
inflaton, instead of introducing an extrascalar field beyond
the SM. Higgs inflation [2] is the minimal extension of the
SM with a nonminimal coupling {5 of the Higgs fields to
gravity, resulting in the consistent predictions for inflation.
However, a large nonminimal coupling gives rise to a
premature violation of unitarity from the noncanonical
Higgs kinetic terms in Einstein frame, so the Higgs
inflation is still an effective field theory (the validity of
which is limited below the unitarity scale, Mp/&y [3]).
Thus, there are several proposals to unitarize the Higgs
inflation in linear sigma models with an extra singlet scalar
field [4—-6] or with R? or higher curvature terms [7—13].

In this article, we make an attempt to embed the Higgs
inflation in the context of Weyl gravity where the con-
formal symmetry is gauged by a Weyl gauge field [14]. In
this framework, the conformal symmetry is spontaneously
broken by the vacuum expectation value (VEV) of the
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dilaton scalar. As a result, the Planck scale and the Higgs
mass parameter are generated dynamically, and the Weyl
gauge field coupled to the dilaton becomes heavy [15]. We
study the conditions that the effective current-current
interactions coming from the Weyl gauge field cancel
the noncanonical Higgs kinetic terms in Higgs inflation
such that the unitarity scale gets higher than in Higgs
inflation. In the cases with one or two Weyl gauge fields,
we show how a solution to unitarity problem in Higgs
inflation and a successful inflation are achieved at the same
time. The couplings of one Weyl gauge field is always
absorbed into the nonminimal couplings to the Ricci
curvature scalar in Weyl gravity, but those of the other
Weyl gauge field is not. We show the interplay of infla-
tionary predictions with the unitarity scale in the case with
two Weyl gauge fields.

The paper is organized as follows. We first review the
unitarity problem in Higgs inflation and identify the
noncanonical Higgs kinetic terms in Einstein frame as
the current-current interactions for the heavy Weyl gauge
field. Then, we propose the Weyl invariant Lagrangian with
nonminimal couplings for the dilaton and the Higgs fields,
and discuss the roles of the second Weyl gauge field for
unitarization and inflation, in comparison to the case with a
single Weyl gauge field. Next we generalize the Weyl
invariant Lagrangian with extra kinetic terms for the dilaton
and the Higgs fields, which are not absorbed into the
nonminimal couplings to the Ricci curvature scalar in Weyl
gravity. We continue to discuss the implications of the light
Weyl gauge field for Higgs physics and collider experi-
ments. Finally, conclusions are drawn. There are two
appendices for the comparison to the unitarization of
Higgs inflation with a singlet scalar and the details on
the generalized Weyl-invariant Lagrangian.

II. HIGGS INFLATION AND UNITARIZATION

We consider the Higgs inflation with a nonminimal
coupling in relation to the unitarity problem and sketch a
new way of unitarizing the Higgs inflation in the presence
of the heavy Weyl gauge coupled to the Higgs fields.

A. Unitarity problem in Higgs inflation
The Lagrangian for Higgs inflation [2] is given by

E:\/—_g<—%(M%+2§H|H|2)R+|DﬂH|2—V(H)>, (1)
where V(H) is the Higgs potential,

V(H) = my|H|* + iy |H|*. (2)
Making a Weyl transformation by gg,, = g, with

Q=1+2&,|H?/M%, we get the
Lagrangian as

Einstein frame

M3 o1 38, (0,HI?)* V(H)
Lp=+/—=9¢| —LR+—=|D,H|> +=H"* - .
E gE( 3 +Q.| u |+M% 02 o2

(3)

Then, for 2&y|H|? > M3, a slow-roll inflation takes
place, because the Einstein frame is given by

VEij”zM;‘,(l+M%/(2§H|H|2))‘2, and the canonical

Higgs field identified during inflation is given by
7/ Mp= \/gln(2§H|H|2/M%), leading to V ~ %}M‘}(l +
e~ V/Me )"2. Thus, the inflationary predictions are
consistent with Planck data under the condition that
Ey ~10*/2y is fixed by the CMB normalization.
Therefore, we need a large nonminimal coupling &y > 1
for a sizable Ay during inflation.

The noncanonical Higgs kinetic term with &5 > 1 in
Eq. (3) contains a dimension-six operator, (d,|H|?)?, with
the cutoff scale given by A~ Mp/Ey, so it leads to a
premature violation of unitarity at A = Mp/Ey, which is
much below the inflation scale, V; ~ Mp/+/Ey [3]. Such a
low cutoff scale in the vacuum and during reheating casts
doubt on the validity of the semiclassical description of
Higgs inflation at large Higgs field values. For unitarizing
the Higgs inflation beyond the unitarity scale, as reviewed
in Appendix A, several extensions of the Higgs inflation,
such as linear sigma models [4,5], singlet scalars [6], R?
term [7-12], and general higher curvature terms [10,13],
have been proposed.

B. Weyl current interactions for unitarization

For the nonminimal coupling for the Higgs in the
Jordan frame, we take the Noether current for the
conformal transformation, given by K, =d,Ky with
Ky = 12E4|H>. Then, we can rewrite the non-
canonical Higgs kinetic term by the current-current inter-
action,

V=g M:Z Q@ 48M2 Q2

The purpose of the following discussion is to propose the
necessary Weyl couplings to cancel the above dangerous
interactions in Weyl gravity.

Now we consider a Weyl gauge field with mass
m?, = 6g2,M%, with the following Jordan frame Lagrangian,

1 1 1
—— =W, Wt _myw, —ngwﬂK” —|—§gfvwﬂw”KH.
(5)

The above form of the Lagrangian can be obtained from a
nonminimal coupling of the Higgs to Weyl gravity, as will be
discussed in Sec. III A and later sections. Then, after
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integrating out the Weyl gauge field with its equation of
motion,

Gy K,
I — 6
=2+ 2Ky (6)

we get the effective interactions for the Higgs as

Lyt __gu KK
V=9 8 my, + guKp'
I KK
=- - (7)
48M% Q

As aresult, the corresponding Einstein frame Lagrangian is

£E.eff:_ 1 KMK”‘ 8)
V=08 48M% Q@

Therefore, the effective interaction coming from the Weyl
gauge field in Eq. (8) cancels exactly the noncanonical
Higgs kinetic term in Eq. (4), so the unitarity problem in
Higgs inflation disappears. In the following, we consider a
concrete realization of the effective interactions in Weyl
gravity. We note that the dimension-six operator of the form
(0,|H|*)* as in Eq. (8) was introduced in Jordan frame for
unitarity [16], but the origin of such a higher-dimensional
operator was not discussed. In contrast, in our work, we will
show for the first time that the counter term in Ref. [16] is the
part of the Weyl invariant Lagrangian by construction.

III. MINIMAL WEYL GRAVITY FOR HIGGS
INFLATION

In this section, we introduce the minimal Weyl invariant
Lagrangian with a single Weyl gauge field w, and discuss
the Higgs inflation and the unitarity problem in this case.

A. Weyl invariant Lagrangian
In Weyl gravity, the Weyl gauge field can be introduced
as a part of the redefined Christoffel symbols with a Weyl
gauge coupling g,, [15,17] by
0, =T +g, (5Zw,, + &w, — gﬂyw/’>, 9)
which is Weyl invariant. Thus, the resulting Ricci scalar in
Weyl gravity [15,17] is given in terms of the one in Einstein
gravity and the Weyl gauge field contribution from w,, as
follows:

R(@) =R(T) - 64, D, W — 6gawiw,, (10)
with D,wt = 9w + 1w ¢ d,g,5. Consequently, we can
construct the minimal Lagrangian with one Weyl gauge
field w, and the Higgs, as follows:

‘Cmin

1 . 1
= 2 G + 2l HEIRE) = g = V(H. )

(11)

which is Weyl invariant under the following transforma-
tions:
g/w N eZagﬂw ¢ N €_a¢, H — ¢™®H,
1
w, = w, ——d,a.
Gw

(12)

Here, the scalar potential is given by

1

1
V(H.¢) = 5/1¢H¢2|H|2 + Z/L/)(/J“ +aulH|* (13)

The Lagrangian in Eq. (11) is expanded as follows:

1
__ HY
1 Wy W

‘Cmin 1
Lo 0,07 -0,7)

= & (IHPR + 610,HI> = 61D, HI) = V(H. ).
(14)

Here, we rewrote the Weyl current interactions to the
dilaton and Higgs fields through the nonminimal couplings
by integration by parts and absorbed them in the Weyl
covariant derivative terms, (D,¢)* and |D,H|*. However,
in this case, there is no net kinetic term for Higgs or dilaton
in the Jordan frame. As a result, $*R+ 6(d,¢)* and
|HI’R + 6|0,H|* are Weyl invariant, respectively, so the
Weyl invariance is manifest in Einstein gravity.

Therefore, we need to extend the minimal case in
Eq. (14) by introducing the Higgs kinetic term in the
Jordan frame in the following way. Using Eq. (B1) with a
single Weyl gauge field w, in Appendix B, we can
generalize the above Lagrangian in Eq. (14) to the general
Weyl invariant Lagrangian [15],

L 1 1
Nk (#°R +6(0,0)* = 6ry(D,)?) = W

_ §H(|H|2R +6l0,HP? - 6rH|DﬂH|2) —V(H, ).
(15)

Here, we note that r, and ry parametrize the relative
strength of the gravitational couplings for two Weyl
invariants, ¢?R + 6(d,¢;)* and (D,¢;)?, so they cannot
be eliminated by the field redefinitions. But we need to take
ry =1+ % for the canonical kinetic term for the Higgs

fields in Jordan frame in the following discussion.
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We remark that Weyl symmetry appears anomalous at
the quantum level in usual dimensional regularization or
cutoff regularization where an explicit mass scale is
introduced. However, Weyl symmetry can be respected
at the quantum level in the presence of quantum scale
invariance [15,18]. In this case, the renormalization scale u
is replaced by the dilaton scalar ¢ at the expense
of nonrenormalizable dilaton interactions and the loop
corrections can be included systematically while preserving
the Weyl symmetry.

Fixing the gauge by (¢?) = M3/&,, from Eq. (15), we
obtain the gauge-fixed Lagrangian as follows:

L, 1
\/__9: —E(M% +2&y|H*)R +|0,H* = V(H)

1 1 1
~2 Ww””—l-zm w,wh ~ 59 Wu K* —I—zgww WK i
(16)

with
|

oMb ApuM3

V(H) =
48 "2,

H? + AglH]?. (17)

The second line in the above Lagrangian takes the same
form as in Eq. (5), except that mj, = 6r,g7,M7 and K are
now modified to Ky = 12ryéy|H|? = 2(1 + 6&4)
instead of Ky = 12&,|H|*. Here, we can choose a very
small 4 for the observed cosmological constant, and the

effective Higgs mass is determined by m? _;?; M.
For electroweak symmetry breaking, we need to choose

Aq}H < 0 and |’1¢H/(2§¢)| < 1.

B. Einstein frame Lagrangian

Taking the same procedure as in Appendix B (namely,
the conformal transformation to Finstein frame and the
field redefinition of the Weyl gauge field), we obtain
the Einstein frame Lagrangian after a gauge fixing,
(¢*) = M3/, as follows:

L M> 0,HI*> 38 (0,|H** V(H
£ ——PR+6§H(rH—1)|” | i’f(”‘ 2‘) - (2)
T 2 Q M:  Q Q
N 5 L ga,r%, K, K"
= 3 VW 5 (s, & gy Ky ) QW = =00 mi + FryKy’ (18)

where W, is similarly redefined as in Eq. (B3) but with the modified K. This result gives rise to the Lagrangian relevant for

"
inflation as follows:

Lgin M 382, ry—ry 4+ 2rg(1 — ry)éy|H|? /M2 V(H
et D Rt (6~ D)I0,HP + et =T 2= T M oy - 0D
M3 5 1 3’”¢§%1—3(5H+l 2 —Ey(Ey +é)|H‘2/M%’ o V(H)
=——LR+— |a H|* + 53 : Y (a,,|H\) -5, (19)
2 MPQ ry +2(En + ) [H[?/Mp Q

where we chose ry =1 +¢

ﬁ for the Higgs fields in Jordan frame to take a canonical form. Thus, expanding the above

Lagrangian for the Higgs about zero, we obtain the leading higher dimensional terms,

Lo _ 2 3 ! 1y’
ﬁg; > — M’g (HP{OHP + <5?{ -— <€H + g) >(0u|H|2)2
1 ¢
=i <§2 <§H +—) + 3H> (0u[H[?)? + - (20)

where integration by parts are made, and the equation of
motion for the Higgs fields, namely, [JH ~ —%,
with V= V(H)/Q?, is used in the second line. Here,
we note that there also appear extra higher-dimensional
terms from the potential, but they are suppressed by
powers of Mp/\/Ey. Therefore, from Eq. (20), the
unitarity scale is identified from the leading dimension-

six operator by

My

$n(3éy + 1)(1 _L) _#’4'

Ty

Ay = 1)

1/2°

which becomes the order of the Planck scale for
ry = 1, independent of &y. Indeed, for ry = 1, the Ricci
curvature scalar for the Higgs field metric becomes
constant, R(H) = —2/M?3, so the Higgs fields live in a
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four-dimensional hyperbolic space with the curvature
along the order of the Planck scale. However, the
higher-dimensional terms from the scalar potential lead
to the cutoff scale, A = Mp/+/Ey, which is still much
larger than the one in Higgs inflation.

C. Inflation

We consider the case with ry=ry =1 —|—¢ for

simplicity. Then, the Weyl gauge field is decoupled from
the Higgs fields, and the Lagrangian in Eq. (19) gets
simplified to

T2 Tl T p g\ %
(22)

We note that the unitarity scale is given by A = Mp/+/Ey
for £ 2 1. In unitary gauge for the Higgs fields, Eq. (22)
becomes

‘CE,inf _ M%’ (aﬂh)2

—9E

V(h)
(1+&uh*/M3)*
(23)

2 21+ &uh?/ME)?

Taking h > Mp/+/&,; during inflation, we find that
the coefficient of the Higgs kinetic term is dominated by
1/h*, so the canonical field y is approximated to
x=~—M2%/(Eyh). Thus, the inflaton potential in Einstein
frame becomes

AyM3
V=1 P(l

M3\ IgM} 2\ 2
H

Eyh?) 48, M3

In this case, we need to choose a very small &y for a
successful inflation [15], so it belongs to a different class of
inflation models where there is no unitarity problem below
the Planck scale from the beginning. Similarly, for r; # ry,
the Weyl gauge field is not decoupled from the Higgs.
However, as far as the Weyl gauge field is sufficiently
heavier than the Hubble scale during inflation, a slow-roll
inflation can be still realized for a very small &5 even for
ry # ry as in Ref. [15].

We conclude this section by saying that the minimal
Weyl gravity with a very small £y is an interesting
possibility without a unitarity problem below the
Planck scale. However, we would need a very small 1y
to get the correct CMB normalization, which requires a
severe fine-tuning of the low-energy parameters for a
small running Higgs quartic coupling at the inflation
scale. Moreover, in our work, we are interested in the

dynamical mechanism for unitarizing the original Higgs
inflation with a large nonminimal coupling. So, we
consider a possibility of extending the Weyl symmetry
in the next sections.

IV. HIGGS INFLATION WITH EXTENDED WEYL
SYMMETRY

We consider the Weyl invariant Lagrangian with the
dilaton and the Higgs fields, in the presence of non-
minimal couplings for them. We introduce the nonmini-
mal couplings to the modified Ricci curvature scalar
in Weyl gravity that contains the couplings of the Weyl
gauge fields and add an extra kinetic term for the
Higgs fields with an extra Weyl gauge field. In this case,
we discuss the unitarity scale and the inflationary
predictions.

A. Lagrangian with two Weyl gauge fields

For a concrete realization of unitarization and successful
Higgs inflation with a large nonminimal coupling, we
consider the Lagrangian including the dilaton ¢ and two
Weyl gauge fields, w, and X, in the Jordan frame. Another
Weyl gauge field X, does not appear in the Ricci scalar but
it gives rise to an extra Weyl-invariant kinetic term for the
Higgs field.

We first discuss the origin of two Weyl gauge fields.
Since the Weyl gauge fields are originated from the local
scale symmetries, we need to consider the doubled coor-
dinates, x/ and x4, leading to the extended diffeomorphism
invariance in Weyl gravity, Diff; x Diff,, with two metric
tensors, gy, and g, ,,, and the corresponding Christoffel

symbols, ﬁl),/w and ﬁz}.uw Weyl gauge fields, wy , and w, ,,
as well as the dilaton scalars, ¢p; and ¢,. Then, including a
pair of Higgs fields, H; and H,, with the nonminimal
couplings in the extended Weyl gravity, we can generalize

the action for the conformal sector in Eq. (11) to

1 = = 1 v
S = Z /dvi [—E(fifﬁ% + 24| H,|*)R(T;) _ZWWVW?

i=12

+AS, (25)
where dv; = d4x,-\/—_gi are the infinitesimal spacetime
volumes, &;,¢; (i =1,2) are the nonminimal couplings
for the dilaton and Higgs fields, the Ricci scalar in Weyl
gravity is decomposed into R([;) = R(I';) — 6g,, D,w; —
695 wiw;, with g, (i=1,2) being the Weyl gauge
couplings, and AS are the interaction terms between the
Weyl gauge fields and the general covariant derivative
terms for the Higgs fields given by
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AS = Z /dvi(_3ai§i¢12) <gw,W1.,4 + Kingwz.ﬂ) (gw,Wl,y + K,-gW2w2_l,)g;w

i=12

+ Z /dvi(_6&iCi|Hi|2) (gwlwl,ﬂ + kingwly) (gwlwl,v + kingwlv)g‘iw

i=1.2

+ Z /dvi (a}l - bigwlwl,y - cingwl;t)H}L (av - bigwlwl,u - Cingw2,v) Hi.diw7 (26)

i=12

with a;, &;,k;,&;, by, c;(i = 1,2) being extra couplings.
Then, the action S is Weyl invariant under

gi,uy - ezai(xi)gi,yw ¢i - e_a(xi)qsiv Hi - e‘“i(%‘)Hi’
oy, o)

’ G

1

(27)

Wi,

with a;(i = 1,2) being two independent Weyl transforma-
tion parameters. On the other hand, the extra action AS with
generic parameters breaks the extended diffeomorphism
invariance as well as the Weyl invariance explicitly.
However, after the doubled coordinates are identified by
x{ = x4, AS becomes diffeomorphism invariant, as well as
Weyl invariant, provided that

ay + K0y = 0, a; + I%iGQ = 0, i= 1,2 (28)

and

b,-al + Ciy = Q;, = 1,2 (29)

Suppose that the full diffeomorphism invariance
is broken by Diff; x Diff, — Diff;,, such that two coor-
dinates, two metric tensors and the dilaton scalars are
identified by x{ =x5, 91 = 0w =9, and ¢ =
¢> = ¢/\/2, respectively. Moreover, we also identify
two Higgs fields by H, = H, = H/+/2. Furthermore,
taking & = &, = ¢, and {; = {, = &y, and imposing the
following conditions for the parameters in the extra action
AS in Eq. (26),

1
a +a, = alk% + a21<% = —a;K| — ayKy = > (30)

with &i = a; and ki =K; (l = 1,2), and

— nggX
2, 9w

_ gw| 9x

b1:b2 29 g

€ =6 = ’ (31)

we obtain the effective Weyl gravity Lagrangian in terms of
two redefined Weyl gauge fields, w, and X, as follows:

Lot = \/—_9[—%(§¢¢2 + 2&4|H|*)R(T)

1 1

- ZW"”WW - ZXWX/‘” + |D;H|2] , (32)
where the Ricci scalar in the effective Weyl gravity is given
by R(I") = R(I') — 6g,,D,w* — 6g2w'w, in terms of the
redefined Christoffel symbols:

=0 1 =0 =0
F;W = E (F/l MY + F/Z,/w)’

=T + g, <5ﬁwy + 8w, — g;ww/’). (33)

Here, g, = 31/9%, + g%,, and the redefined Weyl gauge
fields are given by w, = (g, W1, + Gw,W2,)/\/ 95, + I

and X, = (9u,W1, — G, Wau)/\/ 9%, + g5,- We note that

there are three equations for four unknown parameters,
a;, k(i =1,2), in Eq. (30), so generically there is one
parameter family of the solutions realizing the effective
Weyl gravity. Moreover, the covariant derivative with X,
for the Higgs fields is given D,H = (9, — gxX,,)H with an
independent gauge coupling gx.

We remark that the Weyl transformations of the rede-
fined Weyl gauge fields, w, and X,,, become

1
w, >w, ————0,(q) + @), (34)

U I u
\/ 9o + i,
1 ,
—9, <%a, - %c&) . (3%)
N g

As a result, we can identify the remaining Weyl symmetry
in the effective Lagrangian in Eq. (32) by

Xﬂ—>Xﬂ—

1
——0o,aq,
Gw

w, =W

1
4 u X, = X, ——0,a, (36)
9x

with the Weyl transformation parameter being identified as

—_—

a=(a +a) (37)
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and

_ ng/gwl - gX/gw

—_— 38
gwl/ng +gX/gw ! ( )

Thus, both of the two Weyl transformations are nontrivial,
as far as |gX/gw| # |gw2/gw1 |

We remark on the extra Weyl-invariant terms with two
Weyl gauge fields, w, and X, in the effective Weyl gravity.
First, Weyl gauge self-interactions, (g,w, — gxX,)" with
n =2 and n > 6, are Weyl-gauge invariant under the Weyl
transformations in Eq. (36), but they violate the scale
symmetry of the gravitational Lagrangian. On the
other hand, there is a Weyl invariant self-interaction,
(9w, — 9xX,)*, which could lead to new interactions
between X, and the SM Higgs after the heavy Weyl gauge
field w, is integrated out. But they are suppressed by the
mass of the heavy Weyl photon mass, so we do not include it
in the following discussion. Furthermore, we could con-
struct the Wely-invariant terms with dilaton and Higgs fields
by ¢*(g,w, — 9xX,)* and |H|*(g,,w, — gxX,)*. However,
those terms are absent by construction in the extended Weyl
gravity, for appropriate choices of the parameters in the
original Lagrangian in Eq. (26) with Egs. (30) and (31).
Thus, it is sufficient to take the extra Higgs kinetic term
respecting the remnant of the Weyl symmetry under X, as
introduced in Eq. (32). More general cases with covariant
derivative terms for the dilaton and the Higgs fields will be
discussed in the next section.

Consequently, for the later discussion, we consider a
Weyl invariant Lagrangian with two Weyl gauge fields, w,
and X, in the effective Weyl gravity with a single metric
tensor, in the following simple form:

Ly,
VA’

1
(5¢¢2 + 2§H|H|2)R( ) - Zw;wwﬂy

X, X" + |D,H* = V(H,¢). (39)

-|>|'—‘ l\-)lr—i

The above Lagrangian is invariant under the local con-
formal transformation with

H — e *H,

b — e, (40)

G = € Gy
and Eq. (36). We note that both Weyl gauge fields, w, and
X, transform with only one gauge transformation para-
meter a. Since the Weyl gauge field X, couples to gravity
minimally, it can survive at low energy and it receives mass
from the VEVs of Higgs and extra light singlet scalars, as
will be discussed in Sec. V.

After expanding the Weyl-invariant Lagrangian in
Eq. (39), we get

Ly

1 1
¢——g:‘55¢<¢2R +6(0,0)° = 6(D, ) = g

- §H(|H|2R +6|a,H|? - 6|D,,H|2)

1
- ZXWX“” + |D;,H|2 -V(H,¢), (41)

where the Weyl covariant derivatives are defined as
D¢ = (0, - g,w,)$, D,H = (9, — g,w,)H. Fixing the
gauge to (¢p?) = M3 /&,. Then, from Eq. (41), we obtain
the gauge-fixed Lagrangian as follows:

£ 1o n 2 2
\/__g:—E(MP+2§H|H| )R+ |D;, H|* -
1

1
—Zwm,w’”“ +2ma,w wH

1
-4 X, X"

V(H)

1 1
ngw K* —|—29Ww WKy,

(42)

Thus, in this case, we realize the exactly same Jordan-frame
Lagrangian for the Weyl gauge field as in Eq. (5), with
m2 = 6g2M% and K, = 12&,|H|?.

Making a field redefinition for the Weyl gauge field by

_ 1
W,M = wﬂ — 2—()” ln(m%, + g\%KH)’ (43)

Gw
we can rewrite the gauge-fixed Lagrangian as

L 1
2 — (M} +2&4|H)R+|D,H|*~

o

1
-2 X, X"

V(H)

? KK
md + ga Ky ), W —
( w gw H) 8m +ngH

(44)

1
— W+

B. Einstein-frame Lagrangian and unitarity

Making a Weyl transformation of the metric, g ,, =g,

with the frame function,
Q= 1+2&|H|? /M3, (45)

and using m?2 + g2Ky, = 6g2M%Q for m2, = 6g2,M3%, we
get the Einstein-frame Lagrangian from Eq. (44) as

Lo _ My IDHP 38 0,HP) V(H)
N Q Mp @ Q?
Ly xm O L
e LR 48M3 Q
(46)

Consequently, from K, = 12£40,|H|?, the above Einstein-
frame Lagrangian becomes
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L M> DH> V(H) 1
£ :——PR—i—‘ WH| _#__XWXW
/=08 2 Q Q 4
1
-2 W, W+ 3 m2w, i (47)

Asaresult, the noncanonical kinetic terms for the Higgs field
containing &2, are canceled out, taking the same form as in
the Palatini formulation for Higgs inflation [19-21].
Moreover, the redefined Weyl gauge field w, is decoupled
from the Higgs field. Therefore, from the remaining Higgs
kinetic term and the scalar potential, we can identify the
unitarity cutoff as A = Mp//Ey in the vacuum, which is
much larger than the one in the original Higgs inflation,
AN=Mp/éy, for £y > 1.

We remark that the crucial difference from the Palatini
formulation is that there exists a light Weyl gauge field X,
which gets mass only from the VEVs of the Higgs and extra
singlet scalars and has interesting implications for Higgs
physics, as will be discussed in the later section.

C. Inflation

Taking the unitary gauge for the Higgs fields by
H = \/LE (0, )" in Eq. (47), the part of the Einstein-frame
Lagrangian relevant for inflation is given by

Com  Mi, 1 @A v
v~—9E 2 2(1+¢Eyh*/M3) (14 Egh*/ME)*
(48)

We assume that the Higgs quartic term is dominant
during inflation and £y > 0. Then, we first make a field
redefinition for the canonical field y by

dh
- 00— d)(’
V14 &yl /M5

which gives rise to

x/Mp = %57,1“ [\/Eh/MP +4/1+ fyhz/M%] (50)

(49)

or
| B
h/MP:\/—f_HSIHh[ éH)(/MP:| (51)
Then, the Einstein frame potential becomes
A
V= éM‘}, tanh* [\ /gH;(/MP} . (52)
H

The slow-roll parameters, ¢ and 7, and the number of
e-foldings N, are defined as

€ = —— —_— 5 53
d*V g/ dy?
n=Mp—= (54)
E
1 [x dy
N=— | —Z=, 55
MP/;@ V2e G3)

where y, is the field value at the end of inflation, and the
CMB normalization, the spectral index and the tensor-to-
scalar ratio are, respectively, given by

L ve/M
S Un? e

ng=1-6e+2n, r=16e. (56)

Then, we take &yh® > M3 for which we get h/Mp ~

ﬁe ¢nx/Mr and the inflationary parameters become
H

1

N ~ 3¢, o2 fH)(/MP’ (57)
_ 1
€~ 128E e~ *Ven/Mp NG, (58)
1
ne =328 eV e Me e (59)

Thus, we obtain the approximate results for the inflationary
observables,

N? ) 2
Asz—z—H, nge~l——, re~——. (60)
127 &y N N-¢y
Taking the observed value A, =2.1x10"" with
N = 50-60, we have the following relation
&y = 1.0 x 101, (61)

in comparison to the case in the metric formulation for
Higgs inflation, which requires &5 ~ 10*/1.

We also get the spectral index, n, = 0.960-0.967,
for N = 50-60, which is consistent with the Planck data,
ng = 0.967 4+ 0.0037 [1]. Thus, the inflationary predictions
in our model coincide with those in the Palatini formulation
for Higgs inflation [19-21]. Namely, the nonminimal
coupling &y is larger than that of the original Higgs
inflation for a sizable Ay, resulting in quite a tiny tensor-
to-scalar ratio r. However, even for a large &y, the cutoff
scale does not fall below the typical energy scales of
inflation and reheating [22].
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We remark that, from the Einstein-frame Lagrangian in
Eq. (47), the Weyl gauge field X, gets mass during inflation
as follows:

gxh?
1+ &ph? /M3’

2 g2
~ 9xMp (1 n e—ﬁx/%)”
&y ’

which is sufficiently larger than the Hubble scale,
H? ~yM3%/(48%), for g% > Ay/(4&y). Therefore, we
can safely ignore the dynamics of the Weyl gauge field
X, during inflation.

2
my =

(62)

V. GENERAL COUPLINGS FOR TWO WEYL
GAUGE FIELDS

We generalize the discussion in the previous section with
extra Weyl-covariant kinetic terms for the dilaton and the
Higgs fields and discuss the unitarity scale and the infla-
tionary predictions.

A. General Lagrangian in Weyl gravity

Introducing the extra parameters, r, and ry, and using
the results in Appendix B, we consider the most general
Lagrangian in Weyl gravity with two Weyl gauge fields and
the Ricci scalar given by Eq. (10) as follows:

= = ElHPIR + 38y (ry = 1D, + G (ry = 11D, H
W~ LXK 4 (1= 684 (r — 1)|DLHP ~ V(H. ). (63)
Then, we expand the above Lagrangian by using Eq. (10) as follows:
Lo 1 2 2 2 1 v 2 2 2
== 6a(PR+ 60,0 = 61y (D)) = g = ([HPR + 60,HP = 61 DH )
— XX (1= 6841y~ 1))|D,HP = V(H. ). (64)

Here, we note that the net Higgs kinetic term is normalized to be canonical in a Jordan frame.
Following a similar step in Appendix B as in the case with r, = ry = 1, we obtain the Einstein-frame Lagrangian with

gauge fixing, (¢*) = M3 /&, as follows:

Ly M3 19,H|” IDLHP
=-—PR+6 —1)—=—+(1-6 -D)—q—
—— =~ R4 — 1) =g+ (1= 684 (ry = 1)) =g
N 38, ry—ry+2rg(1 = ry)éy|H? /M3 (0,|H|?)?
MpQ? ry +2rpéylHI /M3 g
V(H) 1 1 1
- s(zz ) 7 XX = W = (G K g ) Qo (65)

where W), is the redefined heavy Weyl gauge field, given by

1

=wy=3 0, In(m} + gruKy),
w

(66)

with Ky = 12&4|H|?, and the mass of the heavy Weyl
gauge field becomes mj, = 6r,gi,M7. Then the heavy
Weyl gauge field W, is generically not decoupled from
the Higgs field, except for ry = ry.

We now discuss the unitarity scale in the presence of the
general gravitational couplings. To this, we focus on the
noncanonical Higgs kinetic terms as follows:

[
Lin |0, H|?
V=9t 1 +2E4|HP/M?}
3¢, ry—ry+2rg(l —rp)éulHPP /M3
M—%(l +2§H|H|2/M%>2(”¢ + 2ryéy|HI?/M3)
(0, |H[)>. (67)

Therefore, the cutoff scale depends on various combina-
tions of &, r4, and ry, but it can be generically much larger
than the one in Higgs inflation. For instance, we obtain the
leading dimension-six operator for the Higgs,
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L 3 r2
Lan o 2y g S (1——) (0, |HP)?
V=9t  Mp M3 Ty

—orz (38, (=) v ) QPR (o9

where integration by parts are made and the equation of
motion for the Higgs fields is used in the second line. Thus,
the unitarity scale identified from the leading dimension-six
operator is

Mp
Th
~ +¢u

A = (69)

(ol

which can be much larger than the one in Higgs inflation,
depending on &y, ry, and ry. On the other hand, even
higher-dimensional derivative terms and the higher-
dimensional terms in the scalar potential lead to the cutoff

scale, A = Mp//Ey.

For r; = ry, the Einstein-frame Lagrangian becomes

L M3 |0,
=——"R+6 )=
—r 5 R+ Eu(ry —1) 0
|D,H|?
(1= 684 1>>*"Q
3¢, (1= ru) _v(#H)
1 I
_ZX””X —Zw,ww" +2m W, (70)

so the heavy Weyl gauge field w, is decoupled from the
Higgs fields in Einstein frame. In this case, we find that the
unitarity scale is given by A, = Mp/\/3&%(1 — ry) + &y
from the leading dimension-six operator and A =
Mp/+\/Ey from the other higher-dimensional terms.

B. Inflation with ry=ry

For ry = ry, the heavy Weyl gauge field is decoupled
from the Higgs field and the Higgs kinetic term in Eq. (67)
becomes simplified. For ry # ry, the Weyl gauge field is
not decoupled from the Higgs in Eq. (65), but a slow-roll
inflation can be maintained even in this case, as far as the
Weyl gauge field is sufficiently heavier than the Hubble
scale during inflation. For simplicity in the following
discussion, we choose Ty =Ty for the inflation with a
varying unitarity scale depending on ry.

In the following, we take r; = ry, for which the relevant
Einstein-frame Lagrangian for inflation is simplified to

‘CE,inf_ MP 1
e = SR g (1 0138 (1 ) 208
V(h
x (0,h)? ‘sg—z)’ (71)

with Q = 1 + £5h?/M?%. The parameter ry must satisfy
ry > 0, for the Weyl gauge field mass to be positive. Also,
to avoid a ghost mode in the large field region with
&4 h? > M3, we consider a case with 0 < 5 < 1. In the
following discussion, we set Mp =1 for notational
simplicity.

In order to see the modification for ry # 1, we first
introduce the field redefinition by

Eyh? = Vel (72)

Then, we can rewrite Eq. (71) in terms of 7 as

Leine _ M3 41 L(1+384(1 = ry) + e72VE)
N 2 2 ( 1+ o2 :Hx)
“2\/enr\ 2
x (0,7)* - <§H (1—|—e %) . (73)

We can make a further redefinition of the inflaton by

1+3§H(1 —rH)+€_2 Sl

3¢y(1=ry)

1/§H—|—3(1—rH)Arctanh\/ 1438, (1=r)

3(1— rH)Arccoth\/ (74)

1438, (1= ryg) + o2Vt

But, this is not of invertible form for the canonical inflaton y. Thus, instead we compute the slow-roll parameters and the

number of e-foldings in terms of 7 as below.
First, for ™2

‘1% « 1, we obtain the slow-roll parameters as
1 [dp\2/dV\?

c=— |2 -

2V \dy dy

_dpd (dv
Tdydy\dy)

=4/ Euk
o Sone VI (75)
1+384(1 = ry)
=2\/¢Euk
8&pe (76)

1438 (1—ry)
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and the number of e-foldings is

N_/)( dy <d){>2
| dnv/dy\dy)
eV éuk

~5E (14 36n(1 = 1) = 66 (1 = ry)ze>Von?).

(77)

Then, we can get an approximate solution for ¥ to the above
equation, as follows:

1+3§H(1 —}"H)

AVAT /e
eV e N
3 8&,N

As a result, we can rewrite the slow-roll parameters in
terms of the number e-foldings as follows:

3=, 3, 8exN ]2
T 8N [l av ! ’H)1“1+35H<1—rﬁ>]’
(79)

Lo o3 _ 8&uN
= N{l sv r”)1n1+3§H(1—rH)]' (80)

Consequently, we get the general expressions for the
inflationary observables as

Ny
ST R2a% Eg 1+ 3E(1 = 1ry)

3 8EuN 17
X[l‘@“‘fﬁ)h‘m]’ W
N E _i _ 85#
201+ 384(1 = ry))
r =
En?
3 8EuN ?
X[l‘g—zv“"f*”“m]' w

Then, for ry =1, we recover the results in Eq. (60).
Otherwise, all the inflationary observables are different
from the case with ry = 1. In particular, the spectral index
can be corrected sizably. For instance, from & = 10194,
Ay =001, and N =50, we get Uin(8s,N) =
0.4(ry — 1), so the deviation in the spectral index can
be significant.

Moreover, for ry < 1, the CMB normalization deter-
mines the nonminimal coupling approximately by

1

102
1074+
=~ 1076
1078

10-10

10—12

0.955 0.960 0.975

0.965
ns

0.970 0.980

FIG. 1. The spectral index n; and the tensor-to-scalar ratio r as
a function of ry. The bounds on n and r, from the combined
results of Planck, WMAP, BICEP, and Keck data, are shown in
dark and light blue regions, within 1o and 20 errors, respectively.
The red points correspond to 7y = 1 for N = 50, 60, respectively.

1

Sy (VN = )i/ (24 =1).. (84)

$n =~

For N2(1 — ry)Ay/(7*A;) < 1, we recover the value of &y
in BEq. (61) with ry = 1; for N*(1 — ry)dgy/(7*A;) > 1,
we get Eg(N/6m)\/Ay/(A(1=ry))=6x10°/\/T=ry
for Ay = 0.01 and N = 50.

In Fig. 1, we show the predicted values for the spectral
index n, and the tensor-to-scalar ratio r by fixing N =
50,60 and Ay = 0.01 but varying ry in the range of
0<ry <1 We set £y from the CMB normalization,
and imposed the bounds on ng and r, for Planck data
combined with WMAP, BICEP, and Keck data [23]. The
dark blue and light blue regions are within 1o and 26 errors.
The red dots are for ry = 1 with N = 50, 60, respectively,
which is equivalent to the minimal Weyl gravity or the
Palatini formulation for Higgs inflation. But, for ry # 1,
our model connects between the Palatini formulation for
Higgs inflation and a Higgs-like inflation continuously.
There was a similar construction of interpolating between
the original Higgs inflation and its Palatini formulation in
the context of Einstein-Cartan gravity [24].

We also remark that from the Einstein-frame Lagrangian
in Eq. (70), the Weyl gauge field X, gets mass during
inflation as follows:

2 aHgg(hz
My = 22
1+ Euh”/Mp
2112
z—“”gXMP (1 + e—vfﬂ)?/’”f’)'], (85)
H

with ay = 1-6y(ry — 1). Thus, the Weyl gauge field
mass is sufficiently larger than the Hubble scale for
aHgf( > Ay /&y as in the case with r; = 1 in the previous
subsection, so we can safely ignore the dynamics of the
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Weyl gauge field X, in the case with general Weyl
invariant terms.

VI. LIGHT WEYL GAUGE FIELD AND HIGGS
PHYSICS

The Weyl gauge field w, coupled to the dilaton ¢
gets a large mass after the Weyl symmetry is broken
spontaneously. On the other hand, another Weyl gauge
field X, couples only to the Higgs fields and extra light
scalars, so it receives a mass at low energy. As the Higgs
fields couple to the light Weyl gauge field directly via the
covariant kinetic term, we discuss some interesting impli-
cations for Higgs physics and new resonance searches at
colliders.

A. Higgs mechanism for light Weyl gauge field

In our model, the extra Weyl gauge field X, can be light,
as far as it couples to an extra light scalar s, with the
covariant kinetic term in Jordan frame as follows:

AL 1
V=i 2

with Djs = (9, — gxX,)s. We note that the extra light
scalar s also couples to the heavy Weyl gauge field w,,
being consistent with the Weyl symmetry, for instance,
through D,s = (9, — cg,w, — (1 = ¢)gxX,)s, with ¢
being constant. Then, there appears a mixing between

w, and X, in this case. But, for gy(s) < g,(¢) =

gwMp/ \/(f_ , we can safely decouple the heavy Weyl gauge
field w, without changing our conclusions below.

Then, from Eq. (86), we get the leading interactions
between the light Weyl gauge field and the Higgs and
singlet fields in Einstein frame as

(Dps)?, (86)

Ly = an(=9xX,0"| HP + G;X, X!
1 1
-3 9x X, 0"s* + 3 g% X, XVs?, (87)

with  ay = 1-6E4(ry —1). Here, we assume that
the extra singlet scalar s does not change the previous
discussion on inflation for s = 0 during inflation, but it is
crucial for the Higgs mechanism for the light Weyl
gauge field.

After the Higgs and the singlet get VEVs, we expand
them by H = (0,v + h)T/\/§ and s = v, + 5. Then, the
light Weyl gauge field X, gets a nonzero mass by

mx = gx(agv® + v3). (88)

Moreover, there appears a mixing between the Weyl gauge
field and the Higgs fields in Eq. (87), which can be

eliminated by a gauge fixing term for the Weyl gauge
field,

1 O\ 2
L= _2_C <0MX” + Cgx(agvh + USS)> . (89)

with { being the gauge fixing parameter. Thus, the
wouldbe Goldstone, Gy ~ agvh + v,§, is eaten by the
Weyl gauge field X,, and the orthogonal combination,
hgm ~ vgh — ayvs, is identified as the SM Higgs boson.
From the gauge fixing term in Eq. (89), the wouldbe
Goldstone has mass, mg = {gx((ayv)* + v5), so the
Goldstone Gy would be decoupled in unitary gauge
with { — oo as usual in spontaneously broken gauge
theories.

We remark that in order to keep the wouldbe Goldstone
boson massless in the scalar potential, we need to take the
alignment limit for the mass mixing between Higgs and
singlet scalars. To this, we need to set the quartic potential
for them to Ay (|H|* +5,-5%)*. Then, there would be a
generic fine-tuning for the mixing quartic coupling between
the singlet and the Higgs, but the aforementioned quartic
coupling is protected by the SO(5) symmetry in the limit of
ay =1 or ry = 1, for which the unitarity scale becomes
maximized to Mp/+/Ey. Then, during inflation, the
effective mass for the singlet scalar becomes m? ~
IgM3/(2éyay) for |H|? 2 M3%/(2&y), which is much
larger than the Hubble scale during inflation,
H? ~ AyM3%/(1282), for a large &y. Therefore, we can
safely ignore the dynamics of the singlet scalar s during
inflation.

B. Weyl gauge field interactions

As we discussed with the gauge-fixing Lagrangian in the
previous subsection, we introduce a mixing angle between
the Higgs and singlet scalars by

<i~z):<co.59 sm6’><hSM>’ (90)
5 —sinf cos6 Gy

with tan@ = (ayv)/v,. Since the SM particles couple only
to &, the SM Higgs couplings for the physical scalar, Agy;,
are modified as compared to the SM. Thus, the decays and
production channels for the SM Higgs are modified by the
mixing angle. Therefore, in order to be consistent with
Higgs data, we need to take the mixing angle sufficiently
small, for instance, sin 6 =~ (ayv)/v, < 0.3(0.03) at the 10
(1)% level.

Taking the general covariant gauge with the gauge fixing
term for the Weyl gauge field in Eq. (89), we can reduce the
interaction terms of the Weyl gauge field to the wouldbe
Goldstone Gy and the SM Higgs boson hgy in the
following:
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1
Ly i = —aggxX,ho*h + Eah,gg()(,,xﬂ(h2 + 2vh)

= —gX(aH00829 + SinZG)X”hSMaﬂhSM — gx(aH

1
— gxX,30'3 + 3 93X, X" (32 + 20,3),

— 1) cos@sin0X (Gxd/‘hSM + hgm Gy)

— gx(aysin®@ + cos?0)X, Gy "Gy + gx\/ (ayv)* + viX, X'Gy + = gf((chos 6 + sin*0)X, X" hdy,

+ gx(ay

Here, we note that the perturbativity conditions on the Weyl
gauge field couplings are given by
(92)

gx<1, aHg§(<1

In unitary gauge, the wouldbe Goldstone is decoupled,
so we only have to consider the Weyl gauge field couplings
for the SM Higgs, X, hsmd*hsy and X, X¥h3y,. But the
derivative couplings of the Weyl gauge field can be written
as X, hgmo* hsy = —10,X*h}y,, etc., up to total derivative
terms, so there is no decay of the on-shell Weyl gauge field
because of 6,,X" = (0. Moreover, we note that there is no
linear Higgs coupling to the Weyl gauge field, so there is
no additional decay of the SM Higgs boson. Since there is
no direct coupling between the Weyl gauge field and the
other SM particles (fermions and gauge bosons), it is
challenging to test the Weyl gauge field at current collider
experiments.

We remark the effects of a gauge kinetic mixing for the
Weyl gauge field for testing the Weyl gauge field models.
In the presence of a gauge kinetic mixing between the Weyl
gauge field and the hypercharge gauge boson B, in the
following form,

1.
Leomix = —5sin X, B", (93)

1
— 1) cos 0sin X, X*Gyhgy + > g% (aysin®0 + cos?0) X, X*Gx.

o1

|
with B, being the gauge field strength for the hypercharge
gauge boson, we need to diagonalize the gauge kinetic
terms and the mass matrix for neutral gauge bosons
simultaneously. As a result, the electroweak neutral gauge
bosons and the Weyl gauge field are mixed [25,26] by

B, Cw eS¢ —Swer —SwSg—1eCe A,
Wi, | = sw Cwee CwS¢ .
Xﬂ 0 _SC/Cf Cc/Cé ~”
(94)
Here, c; =cosé, t: =tané, cy =cosby, sy = sinby,

and ¢ is the mixing angle between Z and X bosons,
given [25,26] by

msy sin(2€)
tan(20) = ——4 =
my — mz(cg - SWS§>

(95)

In the limit of m% < m% (or m% > m%) and |&| < 1,
2

we obtain { ~ —sy & (or { & %swé). Moreover, the mass
X

eigenvalues for Z-like and X-like gauge bosons are
given [25,26] by

1
mi, =5|™m m(1 +swt.»g mex/cg \/

We first recall that the current interactions in the
interaction basis are given by

Lem/ne = gXXﬂJ";( + e(swWs, + CWB;;)JI;:M
e
2swew (CWW3;4 - SWB/J)JI%’ (97)
where J% are the Weyl current given by

Jy = —apo,|HI* +10,5%, and Jgy and J% are electro-
magnetic and neutral currents. Then, using Eq. (94), we can
approximate the above current interactions in the basis of
mass eigenstates [25,26], for e = Cyle & cwé k1, as

1+ s3y12) + mx/ci)? 4m%m§/c4 : (96)
[
Lem/Ne = eAyJI;:M +Z [ J7 +egxtw ]
ZSW Cw
+X, [gXJ’;( - eeJ’]f:M} . (98)

Therefore, we find that the redefined Weyl gauge field X u
couples to the electromagnetic current Jiy; too, so it is
possible to produce the Weyl gauge field directly at the
LHC and other collider experiments. Consequently, we can
test the Weyl gauge field models by the interplay of
standard decay modes into a pair of SM particles (apart
from Higgs) appearing in non-Weyl Z’' models and the
Weyl current interaction.
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VII. CONCLUSIONS

We considered the embedding of Higgs inflation with a
nonminimal coupling into the Weyl gravity where the
unitarity problem of the original Higgs inflation is less
severe, thanks to the heavy Weyl gauge field coupled to the
Higgs fields. When the couplings of the heavy Weyl gauge
field are absorbed into the nonminimal couplings to
the Ricci curvature scalar in Weyl gravity, we found that
the resultant model for Higgs inflation is the same as in the
Palatini formulation for Higgs inflation. The covariant
kinetic term for the Higgs fields with the second light
Weyl gauge field is necessary for a successful Higgs
inflation with a large nonminimal coupling. Thus, the
crucial difference of our model from the Palatini formu-
lation for Higgs inflation is that there is a light Weyl gauge
field coupled to the Higgs fields.

We also generalized the unitarization of Higgs inflation
with Weyl gauge fields in the presence of general covariant
kinetic terms for the dilaton and the Higgs fields. In this
case, we realized a successful Higgs inflation, interpolating
between the Palatini formulation for Higgs inflation and a
Higgs-like inflation. However, due to the unitarity problem,
the region of the parameter space close to the Palatini
formulation for Higgs inflation is favored.

We also showed that the light Weyl gauge field gets a
small mass due to the VEV of an extra singlet scalar and the
Goldstone boson associated with the light Weyl gauge field
is a mixture of the Higgs and extra singlet scalars.
Therefore, we found that the mixing between the Higgs
and extra singlet scalars can be constrained by Higgs data.
Furthermore, in the presence of a gauge kinetic mixing for
the light Weyl gauge field, there are interesting signatures
for Z'-like resonances at the LHC, with the direct couplings
of the light Weyl gauge field to the SM Higgs bosons,
unlike in usual Z' models.
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APPENDIX A: COMPARISON TO
UNITARIZATION WITH SINGLET SCALARS

1. Linear sigma models

We consider an induced gravity model for the sigma field
o, with the following Jordan frame Lagrangian [4,5],

L, 1 ! ! ’
= =R+ 5 (0,00 = ol = Mp — 2241 )

(A1)

Then, after integrating out the sigma field with its
equation of motion,

62 = M%) + 2§H|H

g (A2)

we obtain the effective nonminimal coupling for the Higgs

from the one for the sigma field in Eq. (Al).
From Eq. (A1), the effective Higgs quartic coupling is
related to the running quartic couplings by
Aett = Ay — /105%-17 (A3)

where 1,£% < 1 should be taken from perturbativity.

2. Starobinsky model
We can add an R? term in Higgs inflation by

Lao = GaR” (A4)
which is dual to the scalaron Lagrangian,
Lry = =2ayR — ay’. (AS)
Then, after the field redefinitions,
G = LG, x> Q% H— QH,  (A6)

with Q72 = (1 + \/ig)z, and

1 1
Q2 428, |H)? +day =1 - 3 |H|* - 602’ (A7)

it was shown that the Higgs-R?> Lagrangian can be recast
into a linear sigma model type [9-12],

L 1 1 1 1
Lo _ 1 (1 L —§|H|2>R 50,0 +10,HP

N 2 6
1 V6?2 N, 3]?

(A8)

As a result, there is no unitarity problem below the Planck
scale, as far as the following perturbativity conditions
are fulfilled,
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1 1 1 1\2
a(fy-l-g) <1, a(gy—Fg) <1. (A9)

In this case, there is a similar shift in the effective Higgs

quartic coupling by
Aot = 4 ! Ey + 1y? (A10)
eff H ™ HT o)

3. Singlet scalar with a triple coupling

We consider a real singlet scalar S, with the following
Lagrangian [6]:

1 1
L= 5(@,,5)2 - 5mgs2 — uS|H|%. (A11)
Then, after integrating out the singlet scalar by
U
S=-=|H, (A12)
g

we get the effective interactions for the Higgs doublet as

2 MZ
'Ceff = 2— (014|H|2)2 + a2 |H|4

,u
Al3
m 2m3 (AL3)

Therefore, we obtain the desired noncanonical kinetic term
for the Higgs with

2 3 2
”—4:%{ (A14)
my  Mp

and there is a tree-level shift in the Higgs quartic
coupling by

2

. (A15)
2m3

et = Ay =

APPENDIX B: GENERAL WEYL-INVARIANT
LAGRANGIAN

Introducing extra parameters, r4 and ry, we consider the

most general Lagrangian with Weyl invariance as follows:

c 1 1
N (4 R+6(0,07 ~6ry(D,9)?) = g

~ & (|HI*R+6l0,H 6y D, HP)

1
_ZXﬂVXMD+(1 _6§H(rH_1))|D;tH|2_V(H’¢)'

(B1)

Here, we chose the net Higgs kinetic term to be canonical in
the Jordan frame without loss of generality. Then, fixing
the gauge to (¢?) = M3 /&, the gauge-fixed Lagrangian
becomes

L 1 1 1
5= 3 (M + 264 HPIR -+ 68 (rg = DIOHP -+ (1 = 68y = DIDHP = V(H) = X, X0 = fon
—l—lmzw wh——r wK”—l—lr 2w WK (B2)
zwy 2ngl4 2ng;4 H>
where m?2, = 6r,/)gva%,. For ry = ry = 1, we recover the simple Lagrangian introduced in Eq. (41) in the text.
In this case, making a field redefinition of the Weyl gauge field by
- 9w'H 1
W, =w, — . ,
! ! 2 my+guraKy "
1
=w, — 2—6ﬂ In(m2 + g ruyKy), (B3)
we obtain the general gauge-fixed Lagrangian as
L 1 2 2 2 / 2 1 v 1 T, HHY
Nl =5 (Mp + 284 HP)R + 684 (ry = V)|, + (1 = 684 (ry = 1))[DHI" = V(H) = 3 Xy X1 = 2 i, W
1 o gz r%] K, K"
ol K )W = 2GR (B9

Here, we find that m?, + goryKy = 6rygiM3(1 +2(ry/ry)én|H|?/M3%). As a result, we also get the general Einstein-

frame Lagrangian as
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DHP | 38, QHP) _ V(H) |

1
- ZXWX"” ) Wy WH

Q M @ Q?

L M3 |0,H|?
\/ET:_TPR+6§H(”H_l)ﬂ—+(1_6§H(rH_1))
—9E
1 ary K, K"
+=(m2 + GryKy)Q W, — 22 £ )
7 w wl'H H) M 30 mgv+ggerKH

(BS)

So, for the general Weyl-invariant Lagrangian, the noncanonical Higgs kinetic terms are not canceled completely, and the

Weyl gauge field w, is not decoupled from the Higgs field.

For simplicity, we take the case with ry = r;. Then, from m} + giryKy = 6rygiM3Q, a simplification arises as

follows:
L M3 |o,H |D,H|?
TZE:—T”R+66HUH—1>”T+(1 —6u(rn—1))—5—
38,1 ru) (QuHP)? _V(H) 1 [ _
- — =X, XH — — 0, WY + —mZ W, k. (B6)
M> Q2 4 4 P

In this case, we find that the noncanonical Higgs kinetic terms are not canceled out, but the Weyl gauge field w, is

decoupled from the Higgs field.
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