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We consider the embedding of Higgs inflation with a nonminimal coupling into the Weyl gravity. In this
model, the effective current-current interactions from the heavy Weyl gauge field cancel the noncanonical
Higgs kinetic term in Einstein frame, so the unitarity problem of the original Higgs inflation becomes less
severe. For a simple case where the couplings of the heavy Weyl gauge field appears from the nonminimal
couplings to the Ricci curvature scalar in Weyl gravity, we find that the resultant model for Higgs inflation
is the same as in the Palatini formulation for Higgs inflation. The crucial difference of our model from the
Palatini formulation for Higgs inflation is that there is a light Weyl gauge field coupled to the Higgs fields.
We also generalize the unitarization of Higgs inflation with general covariant kinetic terms for the dilaton
and the Higgs fields and realize a successful Higgs inflation, interpolating between the Palatini formulation
for Higgs inflation and a Higgs-like inflation. We also discuss the Higgs mechanism for the light Weyl
gauge field with an extra singlet scalar and show some interesting signatures for Higgs physics, such as the
overall suppression of Higgs couplings and the direct couplings of the light Weyl gauge field to the Higgs
boson.
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I. INTRODUCTION

Effective field theories have been important tools for
particle physics and cosmology due to the fact that it is
enough to keep a finite number of parameters consistent
with symmetries at low energies for accurate calculations of
observable quantities. The Standard Model (SM) has been
shown to be a consistent effective field theory, which is an
efficient and accurate way of describing interactions of
fundamental particles, probably up to very high energies,
due to the null results for new physics at the Large Hadron
Collider (LHC). Nonetheless, there are hints for new
physics solving the empirical problems such as neutrino
masses, baryon number asymmetry, dark matter, and the
theoretical problems such as the hierarchy problem, the
cosmological constant problem, the flavor hierarchy prob-
lem, etc.
Cosmic inflation requires a slowly rolling extra scalar

field, the so-called inflaton, in the early era of cosmology,
solving the problems for homogeneity, isotropy, relics, etc.
Quantum fluctuations of the inflaton set the initial con-
ditions for the standard big bang cosmology by generating

the seeds for inhomogeneities of the cosmic microwave
background (CMB) and the large-scale structures. In usual
cases, we need to go beyond the SM with a singlet inflaton
and introduce extra couplings of the inflaton appropriately
for reheating process. Although it is a challenging task to
find a consistent framework for inflation models, the power
spectrum of the observed CMB anisotropies such as Planck
data [1] have put meaningful constraints on the inflation
models through the spectral index, the tensor-to-scalar
ratio, etc.
The Higgs boson is the only fundamental scalar field in

the SM, so it is a good candidate for the inflaton. Then, it is
an interesting possibility to regard the Higgs boson as the
inflaton, instead of introducing an extrascalar field beyond
the SM. Higgs inflation [2] is the minimal extension of the
SM with a nonminimal coupling ξH of the Higgs fields to
gravity, resulting in the consistent predictions for inflation.
However, a large nonminimal coupling gives rise to a
premature violation of unitarity from the noncanonical
Higgs kinetic terms in Einstein frame, so the Higgs
inflation is still an effective field theory (the validity of
which is limited below the unitarity scale, MP=ξH [3]).
Thus, there are several proposals to unitarize the Higgs
inflation in linear sigma models with an extra singlet scalar
field [4–6] or with R2 or higher curvature terms [7–13].
In this article, we make an attempt to embed the Higgs

inflation in the context of Weyl gravity where the con-
formal symmetry is gauged by a Weyl gauge field [14]. In
this framework, the conformal symmetry is spontaneously
broken by the vacuum expectation value (VEV) of the
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dilaton scalar. As a result, the Planck scale and the Higgs
mass parameter are generated dynamically, and the Weyl
gauge field coupled to the dilaton becomes heavy [15]. We
study the conditions that the effective current-current
interactions coming from the Weyl gauge field cancel
the noncanonical Higgs kinetic terms in Higgs inflation
such that the unitarity scale gets higher than in Higgs
inflation. In the cases with one or two Weyl gauge fields,
we show how a solution to unitarity problem in Higgs
inflation and a successful inflation are achieved at the same
time. The couplings of one Weyl gauge field is always
absorbed into the nonminimal couplings to the Ricci
curvature scalar in Weyl gravity, but those of the other
Weyl gauge field is not. We show the interplay of infla-
tionary predictions with the unitarity scale in the case with
two Weyl gauge fields.
The paper is organized as follows. We first review the

unitarity problem in Higgs inflation and identify the
noncanonical Higgs kinetic terms in Einstein frame as
the current-current interactions for the heavy Weyl gauge
field. Then, we propose the Weyl invariant Lagrangian with
nonminimal couplings for the dilaton and the Higgs fields,
and discuss the roles of the second Weyl gauge field for
unitarization and inflation, in comparison to the case with a
single Weyl gauge field. Next we generalize the Weyl
invariant Lagrangian with extra kinetic terms for the dilaton
and the Higgs fields, which are not absorbed into the
nonminimal couplings to the Ricci curvature scalar in Weyl
gravity. We continue to discuss the implications of the light
Weyl gauge field for Higgs physics and collider experi-
ments. Finally, conclusions are drawn. There are two
appendices for the comparison to the unitarization of
Higgs inflation with a singlet scalar and the details on
the generalized Weyl-invariant Lagrangian.

II. HIGGS INFLATION AND UNITARIZATION

We consider the Higgs inflation with a nonminimal
coupling in relation to the unitarity problem and sketch a
new way of unitarizing the Higgs inflation in the presence
of the heavy Weyl gauge coupled to the Higgs fields.

A. Unitarity problem in Higgs inflation

The Lagrangian for Higgs inflation [2] is given by

L¼ ffiffiffiffiffiffi
−g

p �
−
1

2
ðM2

Pþ2ξHjHj2ÞRþjDμHj2−VðHÞ
�
; ð1Þ

where VðHÞ is the Higgs potential,

VðHÞ ¼ m2
HjHj2 þ λHjHj4: ð2Þ

Making a Weyl transformation by gE;μν ¼ Ωgμν with
Ω ¼ 1þ 2ξHjHj2=M2

P, we get the Einstein frame
Lagrangian as

LE¼
ffiffiffiffiffiffiffiffi
−gE

p �
−
M2

P

2
Rþ 1

Ω
jDμHj2þ3ξ2H

M2
P

ð∂μjHj2Þ2
Ω2

−
VðHÞ
Ω2

�
:

ð3Þ

Then, for 2ξHjHj2 ≫ M2
P, a slow-roll inflation takes

place, because the Einstein frame is given by
VE ≃ λH

4ξ2H
M4

Pð1þM2
P=ð2ξHjHj2ÞÞ−2, and the canonical

Higgs field identified during inflation is given by

χ=MP¼
ffiffi
3
2

q
lnð2ξHjHj2=M2

PÞ, leading to VE ≃ λH
4ξ2H

M4
Pð1þ

e−
ffiffi
2
3

p
χ=MPÞ−2. Thus, the inflationary predictions are

consistent with Planck data under the condition that
ξH ∼ 104

ffiffiffiffiffiffi
λH

p
is fixed by the CMB normalization.

Therefore, we need a large nonminimal coupling ξH ≫ 1
for a sizable λH during inflation.
The noncanonical Higgs kinetic term with ξH ≫ 1 in

Eq. (3) contains a dimension-six operator, ð∂μjHj2Þ2, with
the cutoff scale given by Λ ∼MP=ξH, so it leads to a
premature violation of unitarity at Λ ¼ MP=ξH, which is
much below the inflation scale, VI ∼MP=

ffiffiffiffiffiffi
ξH

p
[3]. Such a

low cutoff scale in the vacuum and during reheating casts
doubt on the validity of the semiclassical description of
Higgs inflation at large Higgs field values. For unitarizing
the Higgs inflation beyond the unitarity scale, as reviewed
in Appendix A, several extensions of the Higgs inflation,
such as linear sigma models [4,5], singlet scalars [6], R2

term [7–12], and general higher curvature terms [10,13],
have been proposed.

B. Weyl current interactions for unitarization

For the nonminimal coupling for the Higgs in the
Jordan frame, we take the Noether current for the
conformal transformation, given by Kμ ¼ ∂μKH with
KH ¼ 12ξHjHj2. Then, we can rewrite the non-
canonical Higgs kinetic term by the current-current inter-
action,

LH;effffiffiffiffiffiffiffiffi−gE
p ¼ 3ξ2H

M2
P

ð∂μjHj2Þ2
Ω2

¼ 1

48M2
P

KμKμ

Ω2
: ð4Þ

The purpose of the following discussion is to propose the
necessary Weyl couplings to cancel the above dangerous
interactions in Weyl gravity.
Now we consider a Weyl gauge field with mass

m2
w ¼ 6g2wM2

P, with the following Jordan frame Lagrangian,

LJffiffiffiffiffiffi−gp ¼−
1

4
wμνwμνþ1

2
m2

wwμwμ−
1

2
gwwμKμþ1

2
g2wwμwμKH:

ð5Þ
The above form of the Lagrangian can be obtained from a
nonminimal coupling of theHiggs toWeyl gravity, aswill be
discussed in Sec. III A and later sections. Then, after
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integrating out the Weyl gauge field with its equation of
motion,

wμ ¼
gw
2

Kμ

m2
w þ g2wKH

; ð6Þ

we get the effective interactions for the Higgs as

LJ;effffiffiffiffiffiffi−gp ¼ −
g2w
8

KμKμ

m2
w þ g2wKH

;

¼ −
1

48M2
P

KμKμ

Ω
: ð7Þ

As a result, the corresponding Einstein frame Lagrangian is

LE;effffiffiffiffiffiffiffiffi−gE
p ¼ −

1

48M2
P

KμKμ

Ω2
: ð8Þ

Therefore, the effective interaction coming from the Weyl
gauge field in Eq. (8) cancels exactly the noncanonical
Higgs kinetic term in Eq. (4), so the unitarity problem in
Higgs inflation disappears. In the following, we consider a
concrete realization of the effective interactions in Weyl
gravity. We note that the dimension-six operator of the form
ð∂μjHj2Þ2 as in Eq. (8) was introduced in Jordan frame for
unitarity [16], but the origin of such a higher-dimensional
operator was not discussed. In contrast, in our work, wewill
show for the first time that the counter term in Ref. [16] is the
part of the Weyl invariant Lagrangian by construction.

III. MINIMAL WEYL GRAVITY FOR HIGGS
INFLATION

In this section, we introduce the minimal Weyl invariant
Lagrangian with a single Weyl gauge field wμ and discuss
the Higgs inflation and the unitarity problem in this case.

A. Weyl invariant Lagrangian

In Weyl gravity, the Weyl gauge field can be introduced
as a part of the redefined Christoffel symbols with a Weyl
gauge coupling gw [15,17] by

Γ̃ρ
μν ¼ Γρ

μν þ gw
�
δρμwν þ δρνwμ − gμνwρ

�
; ð9Þ

which is Weyl invariant. Thus, the resulting Ricci scalar in
Weyl gravity [15,17] is given in terms of the one in Einstein
gravity and the Weyl gauge field contribution from wμ, as
follows:

R̃ðΓ̃Þ ¼ RðΓÞ − 6gwDμwμ − 6g2wwμwμ; ð10Þ

with Dμwμ ¼ ∂μwμ þ 1
2
wρgλβ∂ρgλβ. Consequently, we can

construct the minimal Lagrangian with one Weyl gauge
field wμ and the Higgs, as follows:

Lminffiffiffiffiffiffi−gp ¼ −
1

2
ðξϕϕ2 þ 2ξHjHj2ÞR̃ðΓ̃Þ − 1

4
wμνwμν − VðH;ϕÞ;

ð11Þ

which is Weyl invariant under the following transforma-
tions:

gμν → e2αgμν; ϕ → e−αϕ; H → e−αH;

wμ → wμ −
1

gw
∂μα: ð12Þ

Here, the scalar potential is given by

VðH;ϕÞ ¼ 1

2
λϕHϕ

2jHj2 þ 1

4
λϕϕ

4 þ λHjHj4: ð13Þ

The Lagrangian in Eq. (11) is expanded as follows:

Lminffiffiffiffiffiffi−gp ¼ −
1

2
ξϕ
�
ϕ2Rþ 6ð∂μϕÞ2 − 6ðDμϕÞ2

�
−
1

4
wμνwμν

− ξH
�
jHj2Rþ 6j∂μHj2 − 6jDμHj2

�
− VðH;ϕÞ:

ð14Þ

Here, we rewrote the Weyl current interactions to the
dilaton and Higgs fields through the nonminimal couplings
by integration by parts and absorbed them in the Weyl
covariant derivative terms, ðDμϕÞ2 and jDμHj2. However,
in this case, there is no net kinetic term for Higgs or dilaton
in the Jordan frame. As a result, ϕ2Rþ 6ð∂μϕÞ2 and
jHj2Rþ 6j∂μHj2 are Weyl invariant, respectively, so the
Weyl invariance is manifest in Einstein gravity.
Therefore, we need to extend the minimal case in

Eq. (14) by introducing the Higgs kinetic term in the
Jordan frame in the following way. Using Eq. (B1) with a
single Weyl gauge field wμ in Appendix B, we can
generalize the above Lagrangian in Eq. (14) to the general
Weyl invariant Lagrangian [15],

L1ffiffiffiffiffiffi−gp ¼ −
1

2
ξϕ
�
ϕ2Rþ 6ð∂μϕÞ2 − 6rϕðDμϕÞ2

�
−
1

4
wμνwμν

− ξH
�
jHj2Rþ 6j∂μHj2 − 6rHjDμHj2

�
− VðH;ϕÞ:

ð15Þ

Here, we note that rϕ and rH parametrize the relative
strength of the gravitational couplings for two Weyl
invariants, ϕ2

i Rþ 6ð∂μϕiÞ2 and ðDμϕiÞ2, so they cannot
be eliminated by the field redefinitions. But we need to take
rH ¼ 1þ 1

6ξH
for the canonical kinetic term for the Higgs

fields in Jordan frame in the following discussion.
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We remark that Weyl symmetry appears anomalous at
the quantum level in usual dimensional regularization or
cutoff regularization where an explicit mass scale is
introduced. However, Weyl symmetry can be respected
at the quantum level in the presence of quantum scale
invariance [15,18]. In this case, the renormalization scale μ
is replaced by the dilaton scalar ϕ at the expense
of nonrenormalizable dilaton interactions and the loop
corrections can be included systematically while preserving
the Weyl symmetry.
Fixing the gauge by hϕ2i ¼ M2

P=ξϕ, from Eq. (15), we
obtain the gauge-fixed Lagrangian as follows:

L2ffiffiffiffiffiffi−gp ¼ −
1

2
ðM2

Pþ 2ξHjHj2ÞRþ j∂μHj2 −VðHÞ

−
1

4
wμνwμν þ 1

2
m2

wwμwμ −
1

2
gwwμKμ þ 1

2
g2wwμwμKH

ð16Þ

with

VðHÞ ¼ λϕM4
P

4ξ2ϕ
þ λϕHM2

P

2ξϕ
jHj2 þ λHjHj2: ð17Þ

The second line in the above Lagrangian takes the same
form as in Eq. (5), except that m2

w ¼ 6rϕg2wM2
P and KH are

now modified to KH ¼ 12rHξHjHj2 ¼ 2ð1þ 6ξHÞjHj2,
instead of KH ¼ 12ξHjHj2. Here, we can choose a very
small λϕ for the observed cosmological constant, and the

effective Higgs mass is determined by m2
H ¼ λϕH

2ξϕ
M2

P.

For electroweak symmetry breaking, we need to choose
λϕH < 0 and jλϕH=ð2ξϕÞj ≪ 1.

B. Einstein frame Lagrangian

Taking the same procedure as in Appendix B (namely,
the conformal transformation to Einstein frame and the
field redefinition of the Weyl gauge field), we obtain
the Einstein frame Lagrangian after a gauge fixing,
hϕ2i ¼ M2

P=ξϕ, as follows:

LEffiffiffiffiffiffiffiffi−gE
p ¼ −

M2
P

2
Rþ 6ξHðrH − 1Þ j∂μHj2

Ω
þ 3ξ2H

M2
P

ð∂μjHj2Þ2
Ω2

−
VðHÞ
Ω2

−
1

4
w̃μνw̃μν þ 1

2
ðm2

w þ g2wrHKHÞΩ−1w̃μw̃μ −
g2wr2H
8Ω

KμKμ

m2
w þ g2wrHKH

; ð18Þ

where w̃μ is similarly redefined as in Eq. (B3) but with the modified KH. This result gives rise to the Lagrangian relevant for
inflation as follows:

LE;infffiffiffiffiffiffiffiffi−gE
p ¼ −

M2
P

2
Rþ 1

Ω
ð6ξHðrH − 1ÞÞj∂μHj2 þ 3ξ2H

M2
PΩ2

rϕ − r2H þ 2rHð1 − rHÞξHjHj2=M2
P

rϕ þ 2rHξHjHj2=M2
P

ð∂μjHj2Þ2 − VðHÞ
Ω2

;

¼ −
M2

P

2
Rþ 1

Ω
j∂μHj2 þ 1

M2
PΩ2

3rϕξ2H − 3ðξH þ 1
6
Þ2 − ξHðξH þ 1

6
ÞjHj2=M2

P

rϕ þ 2ðξH þ 1
6
ÞjHj2=M2

P
ð∂μjHj2Þ2 − VðHÞ

Ω2
; ð19Þ

where we chose rH ¼ 1þ 1
6ξH

for the Higgs fields in Jordan frame to take a canonical form. Thus, expanding the above
Lagrangian for the Higgs about zero, we obtain the leading higher dimensional terms,

LE;infffiffiffiffiffiffiffiffi−gE
p ⊃ −

2ξH
M2

P
jHj2j∂μHj2 þ 3

M2
P

�
ξ2H −

1

rϕ

�
ξH þ 1

6

�
2
�
ð∂μjHj2Þ2

¼ 3

M2
P

�
ξ2H −

1

rϕ

�
ξH þ 1

6

�
2

þ ξH
3

�
ð∂μjHj2Þ2 þ � � � ; ð20Þ

where integration by parts are made, and the equation of
motion for the Higgs fields, namely, □H ≃ − ∂VE

∂H†,
with VE ¼ VðHÞ=Ω2, is used in the second line. Here,
we note that there also appear extra higher-dimensional
terms from the potential, but they are suppressed by
powers of MP=

ffiffiffiffiffiffi
ξH

p
. Therefore, from Eq. (20), the

unitarity scale is identified from the leading dimension-
six operator by

Λ1 ¼
MP����ξHð3ξH þ 1Þ
�
1 − 1

rϕ

�
− 1

12rϕ

����1=2
; ð21Þ

which becomes the order of the Planck scale for
rϕ ¼ 1, independent of ξH. Indeed, for rϕ ¼ 1, the Ricci
curvature scalar for the Higgs field metric becomes
constant, RðHÞ ¼ −2=M2

P, so the Higgs fields live in a
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four-dimensional hyperbolic space with the curvature
along the order of the Planck scale. However, the
higher-dimensional terms from the scalar potential lead
to the cutoff scale, Λ ¼ MP=

ffiffiffiffiffiffi
ξH

p
, which is still much

larger than the one in Higgs inflation.

C. Inflation

We consider the case with rϕ ¼ rH ¼ 1þ 1
6ξH

for
simplicity. Then, the Weyl gauge field is decoupled from
the Higgs fields, and the Lagrangian in Eq. (19) gets
simplified to

LE;infffiffiffiffiffiffiffiffi−gE
p ¼ −

M2
P

2
Rþ 1

Ω
j∂μHj2 − ξH

2M2
PΩ2

ð∂μjHj2Þ2 −VðHÞ
Ω2

:

ð22Þ

We note that the unitarity scale is given by Λ ¼ MP=
ffiffiffiffiffiffi
ξH

p
for ξH ≳ 1. In unitary gauge for the Higgs fields, Eq. (22)
becomes

LE;infffiffiffiffiffiffiffiffi−gE
p ¼ −

M2
P

2
Rþ ð∂μhÞ2

2ð1þ ξHh2=M2
PÞ2

−
VðhÞ

ð1þ ξHh2=M2
PÞ2

:

ð23Þ

Taking h ≫ MP=
ffiffiffiffiffiffi
ξH

p
during inflation, we find that

the coefficient of the Higgs kinetic term is dominated by
1=h4, so the canonical field χ is approximated to
χ ≃ −M2

P=ðξHhÞ. Thus, the inflaton potential in Einstein
frame becomes

VE¼
λHM4

P

4ξ2H

�
1þ M2

P

ξHh2

�
−2

≃
λHM4

P

4ξ2H

�
1þξHχ

2

M2
P

�
−2
: ð24Þ

In this case, we need to choose a very small ξH for a
successful inflation [15], so it belongs to a different class of
inflation models where there is no unitarity problem below
the Planck scale from the beginning. Similarly, for rϕ ≠ rH,
the Weyl gauge field is not decoupled from the Higgs.
However, as far as the Weyl gauge field is sufficiently
heavier than the Hubble scale during inflation, a slow-roll
inflation can be still realized for a very small ξH even for
rϕ ≠ rH as in Ref. [15].
We conclude this section by saying that the minimal

Weyl gravity with a very small ξH is an interesting
possibility without a unitarity problem below the
Planck scale. However, we would need a very small λH
to get the correct CMB normalization, which requires a
severe fine-tuning of the low-energy parameters for a
small running Higgs quartic coupling at the inflation
scale. Moreover, in our work, we are interested in the

dynamical mechanism for unitarizing the original Higgs
inflation with a large nonminimal coupling. So, we
consider a possibility of extending the Weyl symmetry
in the next sections.

IV. HIGGS INFLATION WITH EXTENDED WEYL
SYMMETRY

We consider the Weyl invariant Lagrangian with the
dilaton and the Higgs fields, in the presence of non-
minimal couplings for them. We introduce the nonmini-
mal couplings to the modified Ricci curvature scalar
in Weyl gravity that contains the couplings of the Weyl
gauge fields and add an extra kinetic term for the
Higgs fields with an extra Weyl gauge field. In this case,
we discuss the unitarity scale and the inflationary
predictions.

A. Lagrangian with two Weyl gauge fields

For a concrete realization of unitarization and successful
Higgs inflation with a large nonminimal coupling, we
consider the Lagrangian including the dilaton ϕ and two
Weyl gauge fields, wμ and Xμ, in the Jordan frame. Another
Weyl gauge field Xμ does not appear in the Ricci scalar but
it gives rise to an extra Weyl-invariant kinetic term for the
Higgs field.
We first discuss the origin of two Weyl gauge fields.

Since the Weyl gauge fields are originated from the local
scale symmetries, we need to consider the doubled coor-
dinates, xμ1 and x

μ
2, leading to the extended diffeomorphism

invariance in Weyl gravity, Diff1 × Diff2, with two metric
tensors, g1;μν and g2;μν, and the corresponding Christoffel
symbols, Γ̃ρ

1;μν and Γ̃ρ
2;μν, Weyl gauge fields, w1;μ and w2;μ,

as well as the dilaton scalars, ϕ1 and ϕ2. Then, including a
pair of Higgs fields, H1 and H2, with the nonminimal
couplings in the extended Weyl gravity, we can generalize
the action for the conformal sector in Eq. (11) to

S ¼
X
i¼1;2

Z
dvi

�
−
1

2
ðξiϕ2

i þ 2ζijHij2ÞR̃ðΓ̃iÞ −
1

4
wi;μνw

μν
i

	

þ ΔS; ð25Þ

where dvi ≡ d4xi
ffiffiffiffiffiffiffi−gi

p
are the infinitesimal spacetime

volumes, ξi; ζi (i ¼ 1; 2) are the nonminimal couplings
for the dilaton and Higgs fields, the Ricci scalar in Weyl
gravity is decomposed into R̃ðΓ̃iÞ ¼ RðΓiÞ − 6gwi

Dμw
μ
i −

6g2wi
wμ
i wi;μ with gwi

(i ¼ 1; 2) being the Weyl gauge
couplings, and ΔS are the interaction terms between the
Weyl gauge fields and the general covariant derivative
terms for the Higgs fields given by
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ΔS ¼
X
i¼1;2

Z
dvið−3aiξiϕ2

i Þ
�
gw1

w1;μ þ κigw2
w2;μ

��
gw1

w1;ν þ κigw2
w2;ν

�
gμνi

þ
X
i¼1;2

Z
dvið−6âiζijHij2Þ

�
gw1

w1;μ þ κ̂igw2
w2;μ

��
gw1

w1;ν þ κ̂igw2
w2;ν

�
gμνi

þ
X
i¼1;2

Z
dvi

�
∂μ − bigw1

w1;μ − cigw2
w2;μ

�
H†

i

�
∂ν − bigw1

w1;ν − cigw2
w2;ν

�
Hig

μν
i ; ð26Þ

with ai; âi; κi; κ̂i; bi; ciði ¼ 1; 2Þ being extra couplings.
Then, the action S is Weyl invariant under

gi;μν → e2αiðxiÞgi;μν; ϕi → e−αiðxiÞϕi; Hi → e−αiðxiÞHi;

wi;μ → wi;μ −
1

gwi

∂αiðxiÞ
∂xμi

; ð27Þ

with αiði ¼ 1; 2Þ being two independent Weyl transforma-
tion parameters. On the other hand, the extra actionΔSwith
generic parameters breaks the extended diffeomorphism
invariance as well as the Weyl invariance explicitly.
However, after the doubled coordinates are identified by
xμ1 ¼ xμ2, ΔS becomes diffeomorphism invariant, as well as
Weyl invariant, provided that

α1 þ κiα2 ¼ 0; α1 þ κ̂iα2 ¼ 0; i ¼ 1; 2 ð28Þ

and

biα1 þ ciα2 ¼ αi; i ¼ 1; 2: ð29Þ

Suppose that the full diffeomorphism invariance
is broken by Diff1 × Diff2 → Diff0, such that two coor-
dinates, two metric tensors and the dilaton scalars are
identified by xμ1 ¼ xμ2, g1;μν ¼ g2;μν ≡ gμν and ϕ1 ¼
ϕ2 ≡ ϕ=

ffiffiffi
2

p
, respectively. Moreover, we also identify

two Higgs fields by H1 ¼ H2 ≡H=
ffiffiffi
2

p
. Furthermore,

taking ξ1 ¼ ξ2 ≡ ξϕ and ζ1 ¼ ζ2 ≡ ξH, and imposing the
following conditions for the parameters in the extra action
ΔS in Eq. (26),

a1 þ a2 ¼ a1κ21 þ a2κ22 ¼ −a1κ1 − a2κ2 ¼
1

2
; ð30Þ

with âi ¼ ai and κ̂i ¼ κi (i ¼ 1; 2), and

b1 ¼ b2 ¼
gw2

gX
2gw1

gw
; c1 ¼ c2 ¼ −

gw1
gX

2gw2
gw

; ð31Þ

we obtain the effective Weyl gravity Lagrangian in terms of
two redefined Weyl gauge fields, wμ and Xμ, as follows:

Leff ¼
ffiffiffiffiffiffi
−g

p �
−
1

2
ðξϕϕ2 þ 2ξHjHj2ÞR̃ðΓ̃Þ

−
1

4
wμνwμν −

1

4
XμνXμν þ jD0

μHj2
	
; ð32Þ

where the Ricci scalar in the effective Weyl gravity is given
by R̃ðΓ̃Þ ¼ RðΓÞ − 6gwDμwμ − 6g2wwμwμ in terms of the
redefined Christoffel symbols:

Γ̃ρ
μν ¼ 1

2
ðΓ̃ρ

1;μν þ Γ̃ρ
2;μνÞ;

¼ Γρ
μν þ gw

�
δρμwν þ δρνwμ − gμνwρ

�
: ð33Þ

Here, gw ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2w1

þ g2w2

q
, and the redefined Weyl gauge

fields are given by wμ ¼ ðgw1
w1;μ þ gw2

w2;μÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2w1

þ g2w2

q
and Xμ ¼ ðgw2

w1;μ − gw1
w2;μÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2w1

þ g2w2

q
. We note that

there are three equations for four unknown parameters,
ai; κiði ¼ 1; 2Þ, in Eq. (30), so generically there is one
parameter family of the solutions realizing the effective
Weyl gravity. Moreover, the covariant derivative with Xμ

for the Higgs fields is givenD0
μH ¼ ð∂μ − gXXμÞH with an

independent gauge coupling gX.
We remark that the Weyl transformations of the rede-

fined Weyl gauge fields, wμ and Xμ, become

wμ → wμ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2w1
þ g2w2

q ∂μðα1 þ α2Þ; ð34Þ

Xμ → Xμ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2w1
þ g2w2

q ∂μ

�
gw2

gw1

α1 −
gw1

gw2

α2

�
: ð35Þ

As a result, we can identify the remaining Weyl symmetry
in the effective Lagrangian in Eq. (32) by

wμ → wμ −
1

gw
∂μα; Xμ → Xμ −

1

gX
∂μα; ð36Þ

with the Weyl transformation parameter being identified as

α ¼ 1

2
ðα1 þ α2Þ ð37Þ
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and

α2 ¼
gw2

=gw1
− gX=gw

gw1
=gw2

þ gX=gw
α1: ð38Þ

Thus, both of the two Weyl transformations are nontrivial,
as far as jgX=gwj ≠ jgw2

=gw1
j.

We remark on the extra Weyl-invariant terms with two
Weyl gauge fields, wμ and Xμ, in the effective Weyl gravity.
First, Weyl gauge self-interactions, ðgwwμ − gXXμÞn with
n ¼ 2 and n ≥ 6, are Weyl-gauge invariant under the Weyl
transformations in Eq. (36), but they violate the scale
symmetry of the gravitational Lagrangian. On the
other hand, there is a Weyl invariant self-interaction,
ðgwwμ − gXXμÞ4, which could lead to new interactions
between Xμ and the SM Higgs after the heavy Weyl gauge
field wμ is integrated out. But they are suppressed by the
mass of the heavyWeyl photonmass, sowe do not include it
in the following discussion. Furthermore, we could con-
struct theWely-invariant terms with dilaton andHiggs fields
by ϕ2ðgwwμ − gXXμÞ2 and jHj2ðgwwμ − gXXμÞ2. However,
those terms are absent by construction in the extendedWeyl
gravity, for appropriate choices of the parameters in the
original Lagrangian in Eq. (26) with Eqs. (30) and (31).
Thus, it is sufficient to take the extra Higgs kinetic term
respecting the remnant of the Weyl symmetry under Xμ, as
introduced in Eq. (32). More general cases with covariant
derivative terms for the dilaton and the Higgs fields will be
discussed in the next section.
Consequently, for the later discussion, we consider a

Weyl invariant Lagrangian with two Weyl gauge fields, wμ

and Xμ, in the effective Weyl gravity with a single metric
tensor, in the following simple form:

L2ffiffiffiffiffiffi−gp ¼ −
1

2
ðξϕϕ2 þ 2ξHjHj2ÞR̃ðΓ̃Þ − 1

4
wμνwμν

−
1

4
XμνXμν þ jD0

μHj2 − VðH;ϕÞ: ð39Þ

The above Lagrangian is invariant under the local con-
formal transformation with

gμν → e2αgμν; ϕ → e−αϕ; H → e−αH; ð40Þ

and Eq. (36). We note that both Weyl gauge fields, wμ and
Xμ, transform with only one gauge transformation para-
meter α. Since the Weyl gauge field Xμ couples to gravity
minimally, it can survive at low energy and it receives mass
from the VEVs of Higgs and extra light singlet scalars, as
will be discussed in Sec. V.
After expanding the Weyl-invariant Lagrangian in

Eq. (39), we get

L2ffiffiffiffiffiffi−gp ¼ −
1

2
ξϕ
�
ϕ2Rþ 6ð∂μϕÞ2 − 6ðDμϕÞ2

�
−
1

4
wμνwμν

− ξH
�
jHj2Rþ 6j∂μHj2 − 6jDμHj2

�
−
1

4
XμνXμν þ jD0

μHj2 − VðH;ϕÞ; ð41Þ

where the Weyl covariant derivatives are defined as
Dμϕ ¼ ð∂μ − gwwμÞϕ, DμH ¼ ð∂μ − gwwμÞH. Fixing the
gauge to hϕ2i ¼ M2

P=ξϕ. Then, from Eq. (41), we obtain
the gauge-fixed Lagrangian as follows:

L2ffiffiffiffiffiffi−gp ¼−
1

2
ðM2

Pþ2ξHjHj2ÞRþjD0
μHj2−VðHÞ−1

4
XμνXμν

−
1

4
wμνwμνþ1

2
m2

wwμwμ−
1

2
gwwμKμþ1

2
g2wwμwμKH:

ð42Þ
Thus, in this case, we realize the exactly same Jordan-frame
Lagrangian for the Weyl gauge field as in Eq. (5), with
m2

w ¼ 6g2wM2
P and KH ¼ 12ξHjHj2.

Making a field redefinition for the Weyl gauge field by

w̃μ ¼ wμ −
1

2gw
∂μ lnðm2

w þ g2wKHÞ; ð43Þ

we can rewrite the gauge-fixed Lagrangian as

L2ffiffiffiffiffiffi−gp ¼−
1

2
ðM2

Pþ2ξHjHj2ÞRþjD0
μHj2−VðHÞ−1

4
XμνXμν

−
1

4
w̃μνw̃μνþ1

2
ðm2

wþg2wKHÞw̃μw̃μ−
g2w
8

KμKμ

m2
wþg2wKH

:

ð44Þ

B. Einstein-frame Lagrangian and unitarity

Making aWeyl transformation of themetric, gE;μν¼Ωgμν,
with the frame function,

Ω ¼ 1þ 2ξHjHj2=M2
P; ð45Þ

and using m2
w þ g2wKH ¼ 6g2wM2

PΩ for m2
w ¼ 6g2wM2

P, we
get the Einstein-frame Lagrangian from Eq. (44) as

LEffiffiffiffiffiffiffiffi−gE
p ¼−

M2
P

2
RþjD0

μHj2
Ω

þ3ξ2H
M2

P

ð∂μjHj2Þ2
Ω2

−
VðHÞ
Ω2

−
1

4
XμνXμν−

1

4
w̃μνw̃μνþ1

2
m2

ww̃μw̃μ−
1

48M2
P

KμKμ

Ω2
:

ð46Þ

Consequently, from Kμ ¼ 12ξH∂μjHj2, the above Einstein-
frame Lagrangian becomes
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LEffiffiffiffiffiffiffiffi−gE
p ¼ −

M2
P

2
Rþ jD0

μHj2
Ω

−
VðHÞ
Ω2

−
1

4
XμνXμν

−
1

4
w̃μνw̃μν þ 1

2
m2

ww̃μw̃μ: ð47Þ

As a result, the noncanonical kinetic terms for theHiggs field
containing ξ2H are canceled out, taking the same form as in
the Palatini formulation for Higgs inflation [19–21].
Moreover, the redefined Weyl gauge field w̃μ is decoupled
from the Higgs field. Therefore, from the remaining Higgs
kinetic term and the scalar potential, we can identify the
unitarity cutoff as Λ ¼ MP=

ffiffiffiffiffiffi
ξH

p
in the vacuum, which is

much larger than the one in the original Higgs inflation,
Λ ¼ MP=ξH, for ξH ≫ 1.
We remark that the crucial difference from the Palatini

formulation is that there exists a light Weyl gauge field Xμ,
which gets mass only from the VEVs of the Higgs and extra
singlet scalars and has interesting implications for Higgs
physics, as will be discussed in the later section.

C. Inflation

Taking the unitary gauge for the Higgs fields by
H ¼ 1ffiffi

2
p ð0; hÞT in Eq. (47), the part of the Einstein-frame

Lagrangian relevant for inflation is given by

LE;infffiffiffiffiffiffiffiffi−gE
p ¼ −

M2
P

2
Rþ 1

2

ð∂μhÞ2
ð1þ ξHh2=M2

PÞ
−

VðhÞ
ð1þ ξHh2=M2

PÞ2
:

ð48Þ

We assume that the Higgs quartic term is dominant
during inflation and ξH > 0. Then, we first make a field
redefinition for the canonical field χ by

dhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξHh2=M2

P

p ¼ dχ; ð49Þ

which gives rise to

χ=MP ¼ 1ffiffiffiffiffiffi
ξH

p ln

� ffiffiffiffiffiffi
ξH

p
h=MP þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξHh2=M2

P

q 	
ð50Þ

or

h=MP ¼ 1ffiffiffiffiffiffi
ξH

p sinh
h ffiffiffiffiffiffi

ξH
p

χ=MP

i
: ð51Þ

Then, the Einstein frame potential becomes

VE ¼ λH
4ξ2H

M4
P tanh

4
h ffiffiffiffiffiffi

ξH
p

χ=MP

i
: ð52Þ

The slow-roll parameters, ϵ and η, and the number of
e-foldings N, are defined as

ϵ ¼ M2
P

2

�
dVE=dχ

VE

�
2

; ð53Þ

η ¼ M2
P
d2VE=dχ2

VE
; ð54Þ

N ¼ 1

MP

Z
χ

χe

dχffiffiffiffiffi
2ϵ

p ; ð55Þ

where χe is the field value at the end of inflation, and the
CMB normalization, the spectral index and the tensor-to-
scalar ratio are, respectively, given by

As¼
1

24π2
VE=M4

P

ϵ
; ns¼1−6ϵþ2η; r¼16ϵ: ð56Þ

Then, we take ξHh2 ≫ M2
P for which we get h=MP ≃

1ffiffiffiffi
ξH

p e
ffiffiffiffi
ξH

p
χ=MP and the inflationary parameters become

N ≃
1

32ξH
e2

ffiffiffiffi
ξH

p
χ=MP; ð57Þ

ϵ ≃ 128ξHe
−4

ffiffiffiffi
ξH

p
χ=MP ≃

1

8N2ξH
; ð58Þ

η ≃ −32ξHe−2
ffiffiffiffi
ξH

p
χ=MP ≃ −

1

N
: ð59Þ

Thus, we obtain the approximate results for the inflationary
observables,

As ≃
N2

12π2
λH
ξH

; ns ≃ 1 −
2

N
; r ≃

2

N2ξH
: ð60Þ

Taking the observed value As ¼ 2.1 × 10−9 with
N ¼ 50–60, we have the following relation

ξH ¼ 1.0 × 1010λH ð61Þ

in comparison to the case in the metric formulation for
Higgs inflation, which requires ξH ∼ 104

ffiffiffiffiffiffi
λH

p
.

We also get the spectral index, ns ¼ 0.960–0.967,
for N ¼ 50–60, which is consistent with the Planck data,
ns ¼ 0.967� 0.0037 [1]. Thus, the inflationary predictions
in our model coincide with those in the Palatini formulation
for Higgs inflation [19–21]. Namely, the nonminimal
coupling ξH is larger than that of the original Higgs
inflation for a sizable λH, resulting in quite a tiny tensor-
to-scalar ratio r. However, even for a large ξH, the cutoff
scale does not fall below the typical energy scales of
inflation and reheating [22].
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We remark that, from the Einstein-frame Lagrangian in
Eq. (47), theWeyl gauge field Xμ gets mass during inflation
as follows:

m2
X ¼ g2Xh

2

1þ ξHh2=M2
P
;

≃
g2XM

2
P

ξH

�
1þ e−

ffiffiffiffi
ξH

p
χ=MP

�
−1
; ð62Þ

which is sufficiently larger than the Hubble scale,
H2

I ≃ λHM2
P=ð4ξ2HÞ, for g2X ≫ λH=ð4ξHÞ. Therefore, we

can safely ignore the dynamics of the Weyl gauge field
Xμ during inflation.

V. GENERAL COUPLINGS FOR TWO WEYL
GAUGE FIELDS

We generalize the discussion in the previous section with
extra Weyl-covariant kinetic terms for the dilaton and the
Higgs fields and discuss the unitarity scale and the infla-
tionary predictions.

A. General Lagrangian in Weyl gravity

Introducing the extra parameters, rϕ and rH, and using
the results in Appendix B, we consider the most general
Lagrangian in Weyl gravity with twoWeyl gauge fields and
the Ricci scalar given by Eq. (10) as follows:

LGffiffiffiffiffiffi−gp ¼ −
1

2
ðξϕϕ2 þ ξHjHj2ÞR̃þ 3ξϕðrϕ − 1ÞðDμϕÞ2 þ 6ξHðrH − 1ÞjDμHj2

−
1

4
wμνwμν −

1

4
XμνXμν þ ð1 − 6ξHðrH − 1ÞÞjD0

μHj2 − VðH;ϕÞ: ð63Þ

Then, we expand the above Lagrangian by using Eq. (10) as follows:

LGffiffiffiffiffiffi−gp ¼ −
1

2
ξϕ
�
ϕ2Rþ 6ð∂μϕÞ2 − 6rϕðDμϕÞ2

�
−
1

4
wμνwμν − ξH

�
jHj2Rþ 6j∂μHj2 − 6rHjDμHj2

�

−
1

4
XμνXμν þ ð1 − 6ξHðrH − 1ÞÞjD0

μHj2 − VðH;ϕÞ: ð64Þ

Here, we note that the net Higgs kinetic term is normalized to be canonical in a Jordan frame.
Following a similar step in Appendix B as in the case with rϕ ¼ rH ¼ 1, we obtain the Einstein-frame Lagrangian with

gauge fixing, hϕ2i ¼ M2
P=ξϕ, as follows:

LEffiffiffiffiffiffiffiffi−gE
p ¼ −

M2
P

2
Rþ 6ξHðrH − 1Þ j∂μHj2

Ω
þ ð1 − 6ξHðrH − 1ÞÞ jD

0
μHj2
Ω

þ 3ξ2H
M2

PΩ2

rϕ − r2H þ 2rHð1 − rHÞξHjHj2=M2
P

rϕ þ 2rHξHjHj2=M2
P

ð∂μjHj2Þ2

−
VðHÞ
Ω2

−
1

4
XμνXμν −

1

4
w̃μνw̃μν þ 1

2
ðm2

w þ g2wrHKHÞΩ−1w̃μw̃μ; ð65Þ

where w̃μ is the redefined heavy Weyl gauge field, given by

w̃μ ¼ wμ −
1

2gw
∂μ lnðm2

w þ g2wrHKHÞ; ð66Þ

with KH ¼ 12ξHjHj2, and the mass of the heavy Weyl
gauge field becomes m2

w ¼ 6rϕg2wM2
P. Then the heavy

Weyl gauge field w̃μ is generically not decoupled from
the Higgs field, except for rϕ ¼ rH.
We now discuss the unitarity scale in the presence of the

general gravitational couplings. To this, we focus on the
noncanonical Higgs kinetic terms as follows:

Lkinffiffiffiffiffiffiffiffi−gE
p ¼ j∂μHj2

1þ 2ξHjHj2=M2
P

þ 3ξ2H
M2

P

rϕ − r2H þ 2rHð1− rHÞξHjHj2=M2
P

ð1þ 2ξHjHj2=M2
PÞ2ðrϕ þ 2rHξHjHj2=M2

PÞ
· ð∂μjHj2Þ2: ð67Þ

Therefore, the cutoff scale depends on various combina-
tions of ξH, rϕ, and rH, but it can be generically much larger
than the one in Higgs inflation. For instance, we obtain the
leading dimension-six operator for the Higgs,
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Lkinffiffiffiffiffiffiffiffi−gE
p ⊃−

2ξH
M2

P
jHj2j∂μHj2þ3ξ2H

M2
P

�
1−

r2H
rϕ

�
ð∂μjHj2Þ2

¼ 1

M2
P

�
3ξ2H

�
1−

r2H
rϕ

�
þξH

�
ð∂μjHj2Þ2þ���; ð68Þ

where integration by parts are made and the equation of
motion for the Higgs fields is used in the second line. Thus,
the unitarity scale identified from the leading dimension-six
operator is

Λ1 ¼
MP���3ξ2H�1 − r2H
rϕ

�
þ ξH

���1=2 ; ð69Þ

which can be much larger than the one in Higgs inflation,
depending on ξH; rϕ, and rH. On the other hand, even
higher-dimensional derivative terms and the higher-
dimensional terms in the scalar potential lead to the cutoff
scale, Λ ¼ MP=

ffiffiffiffiffiffi
ξH

p
.

For rϕ ¼ rH, the Einstein-frame Lagrangian becomes

LEffiffiffiffiffiffiffiffi−gE
p ¼ −

M2
P

2
Rþ 6ξHðrH − 1Þ j∂μHj2

Ω

þ ð1 − 6ξHðrH − 1ÞÞ jD
0
μHj2
Ω

þ 3ξ2Hð1 − rHÞ
Ω2M2

P
ð∂μjHj2Þ2 − VðHÞ

Ω2

−
1

4
XμνXμν −

1

4
w̃μνw̃μν þ 1

2
m2

ww̃μw̃μ; ð70Þ

so the heavy Weyl gauge field w̃μ is decoupled from the
Higgs fields in Einstein frame. In this case, we find that the
unitarity scale is given by Λ1 ¼ MP=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ξ2Hð1 − rHÞ þ ξH

p
from the leading dimension-six operator and Λ ¼
MP=

ffiffiffiffiffiffi
ξH

p
from the other higher-dimensional terms.

B. Inflation with rϕ = rH
For rϕ ¼ rH, the heavy Weyl gauge field is decoupled

from the Higgs field and the Higgs kinetic term in Eq. (67)
becomes simplified. For rϕ ≠ rH, the Weyl gauge field is
not decoupled from the Higgs in Eq. (65), but a slow-roll
inflation can be maintained even in this case, as far as the
Weyl gauge field is sufficiently heavier than the Hubble
scale during inflation. For simplicity in the following
discussion, we choose rϕ ¼ rH for the inflation with a
varying unitarity scale depending on rH.
In the following, we take rϕ ¼ rH, for which the relevant

Einstein-frame Lagrangian for inflation is simplified to

LE;infffiffiffiffiffiffiffiffi−gE
p ¼ −

M2
P

2
Rþ 1

2Ω2

�
1þ ξHð1þ 3ξHð1− rHÞ

�
h2=M2

PÞ

× ð∂μhÞ2 −
VðhÞ
Ω2

; ð71Þ

with Ω ¼ 1þ ξHh2=M2
P. The parameter rH must satisfy

rH > 0, for the Weyl gauge field mass to be positive. Also,
to avoid a ghost mode in the large field region with
ξ2Hh

2 ≫ M2
P, we consider a case with 0 < rH < 1. In the

following discussion, we set MP ¼ 1 for notational
simplicity.
In order to see the modification for rH ≠ 1, we first

introduce the field redefinition by

ξHh2 ¼ e2
ffiffiffiffi
ξH

p
χ̂ : ð72Þ

Then, we can rewrite Eq. (71) in terms of χ̂ as

LE;infffiffiffiffiffiffiffiffi−gE
p ¼ −

M2
P

2
Rþ 1

2

ð1þ 3ξHð1 − rHÞ þ e−2
ffiffiffiffi
ξH

p
χ̂Þ�

1þ e−2
ffiffiffiffi
ξH

p
χ̂
�
2

× ð∂μχ̂Þ2 −
λH
4ξ2H

�
1þ e−2

ffiffiffiffi
ξH

p
χ̂
�
−2
: ð73Þ

We can make a further redefinition of the inflaton by

χ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ξHþ3ð1−rHÞ

p
Arctanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ3ξHð1−rHÞþe−2

ffiffiffiffi
ξH

p
χ̂

1þ3ξHð1−rHÞ

s
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1−rHÞ

p
Arccoth

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ξHð1−rHÞ

1þ3ξHð1−rHÞþe−2
ffiffiffiffi
ξH

p
χ̂

s
: ð74Þ

But, this is not of invertible form for the canonical inflaton χ. Thus, instead we compute the slow-roll parameters and the
number of e-foldings in terms of χ̂ as below.

First, for e−2
ffiffiffiffi
ξH

p
χ̂ ≪ 1, we obtain the slow-roll parameters as

ϵ ¼ 1

2V

�
dχ̂
dχ

�
2
�
dV
dχ̂

�
2

≃
8ξHe

−4
ffiffiffiffi
ξH

p
χ̂

1þ 3ξHð1 − rHÞ
; ð75Þ

η ¼ dχ̂
dχ

d
dχ̂

�
dV
dχ

�
≃ −

8ξHe
−2

ffiffiffiffi
ξH

p
χ̂

1þ 3ξHð1 − rHÞ
; ð76Þ
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and the number of e-foldings is

N ¼
Z

χ

χe

dχ̂
d lnV=dχ̂

�
dχ
dχ̂

�
2

;

≃
e2

ffiffiffiffi
ξH

p
χ̂

8ξH

�
1þ 3ξHð1 − rHÞ − 6ξ3=2H ð1 − rHÞχ̂e−2

ffiffiffiffi
ξH

p
χ̂
�
:

ð77Þ
Then, we can get an approximate solution for χ̂ to the above
equation, as follows:

e−2
ffiffiffiffi
ξH

p
χ̂ ≃

1þ 3ξHð1 − rHÞ
8ξHN

×

�
1 −

3

8N
ð1 − rHÞ ln

8ξHN
1þ 3ξHð1 − rHÞ

	
: ð78Þ

As a result, we can rewrite the slow-roll parameters in
terms of the number e-foldings as follows:

ϵ≃
1þ 3ξHð1− rHÞ

8ξHN2

�
1−

3

8N
ð1− rHÞ ln

8ξHN
1þ 3ξHð1− rHÞ

	
2

;

ð79Þ

η ≃ −
1

N

�
1 −

3

8N
ð1 − rHÞ ln

8ξHN
1þ 3ξHð1 − rHÞ

	
: ð80Þ

Consequently, we get the general expressions for the
inflationary observables as

As ≃
N2

12π2
λH
ξH

1

1þ 3ξHð1 − rHÞ

×

�
1 −

3

8N
ð1 − rHÞ ln

8ξHN
1þ 3ξHð1 − rHÞ

	
−2
; ð81Þ

ns ≃ 1 −
2

N

�
1 −

3

8N
ð1 − rHÞ ln

8ξHN
1þ 3ξHð1 − rHÞ

	
; ð82Þ

r ≃
2ð1þ 3ξHð1 − rHÞÞ

ξHN2

×

�
1 −

3

8N
ð1 − rHÞ ln

8ξHN
1þ 3ξHð1 − rHÞ

	
2

: ð83Þ

Then, for rH ¼ 1, we recover the results in Eq. (60).
Otherwise, all the inflationary observables are different
from the case with rH ¼ 1. In particular, the spectral index
can be corrected sizably. For instance, from ξH ¼ 1010λH,

λH ¼ 0.01, and N ¼ 50, we get 3ðrH−1Þ
4N lnð8ξHNÞ ¼

0.4ðrH − 1Þ, so the deviation in the spectral index can
be significant.
Moreover, for rH < 1, the CMB normalization deter-

mines the nonminimal coupling approximately by

ξH ≃
1

6ð1 − rHÞ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ N2ð1 − rHÞλH=ðπ2AsÞ
q

− 1
�
: ð84Þ

For N2ð1 − rHÞλH=ðπ2AsÞ ≪ 1, we recover the value of ξH
in Eq. (61) with rH ¼ 1; for N2ð1 − rHÞλH=ðπ2AsÞ ≫ 1,
we get ξH≃ðN=6πÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λH=ðAsð1−rHÞÞ
p

≃6×103=
ffiffiffiffiffiffiffiffiffiffiffiffi
1−rH

p
for λH ¼ 0.01 and N ¼ 50.
In Fig. 1, we show the predicted values for the spectral

index ns and the tensor-to-scalar ratio r by fixing N ¼
50; 60 and λH ¼ 0.01 but varying rH in the range of
0 < rH < 1. We set ξH from the CMB normalization,
and imposed the bounds on ns and r, for Planck data
combined with WMAP, BICEP, and Keck data [23]. The
dark blue and light blue regions are within 1σ and 2σ errors.
The red dots are for rH ¼ 1 with N ¼ 50; 60, respectively,
which is equivalent to the minimal Weyl gravity or the
Palatini formulation for Higgs inflation. But, for rH ≠ 1,
our model connects between the Palatini formulation for
Higgs inflation and a Higgs-like inflation continuously.
There was a similar construction of interpolating between
the original Higgs inflation and its Palatini formulation in
the context of Einstein-Cartan gravity [24].
We also remark that from the Einstein-frame Lagrangian

in Eq. (70), the Weyl gauge field Xμ gets mass during
inflation as follows:

m2
X ¼ aHg2Xh

2

1þ ξHh2=M2
P
;

≃
aHg2XM

2
P

ξH

�
1þ e−

ffiffiffiffi
ξH

p
χ̂=MP

�
−1
; ð85Þ

with aH ¼ 1–6ξHðrH − 1Þ. Thus, the Weyl gauge field
mass is sufficiently larger than the Hubble scale for
aHg2X ≫ λH=ξH as in the case with rH ¼ 1 in the previous
subsection, so we can safely ignore the dynamics of the

FIG. 1. The spectral index ns and the tensor-to-scalar ratio r as
a function of rH . The bounds on ns and r, from the combined
results of Planck, WMAP, BICEP, and Keck data, are shown in
dark and light blue regions, within 1σ and 2σ errors, respectively.
The red points correspond to rH ¼ 1 forN ¼ 50; 60, respectively.
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Weyl gauge field Xμ in the case with general Weyl
invariant terms.

VI. LIGHT WEYL GAUGE FIELD AND HIGGS
PHYSICS

The Weyl gauge field wμ coupled to the dilaton ϕ
gets a large mass after the Weyl symmetry is broken
spontaneously. On the other hand, another Weyl gauge
field Xμ couples only to the Higgs fields and extra light
scalars, so it receives a mass at low energy. As the Higgs
fields couple to the light Weyl gauge field directly via the
covariant kinetic term, we discuss some interesting impli-
cations for Higgs physics and new resonance searches at
colliders.

A. Higgs mechanism for light Weyl gauge field

In our model, the extra Weyl gauge field Xμ can be light,
as far as it couples to an extra light scalar s, with the
covariant kinetic term in Jordan frame as follows:

ΔLffiffiffiffiffiffi−gp ¼ 1

2
ðD0

μsÞ2; ð86Þ

with D0
μs ¼ ð∂μ − gXXμÞs. We note that the extra light

scalar s also couples to the heavy Weyl gauge field wμ,
being consistent with the Weyl symmetry, for instance,
through Dμs ¼ ð∂μ − cgwwμ − ð1 − cÞgXXμÞs, with c
being constant. Then, there appears a mixing between
wμ and Xμ in this case. But, for gXhsi ≪ gwhϕi ¼
gwMP=

ffiffiffiffiffi
ξϕ

p
, we can safely decouple the heavy Weyl gauge

field wμ without changing our conclusions below.
Then, from Eq. (86), we get the leading interactions

between the light Weyl gauge field and the Higgs and
singlet fields in Einstein frame as

LX;int ¼ aH
�
−gXXμ∂

μjHj2 þ g2XXμXμjHj2
�

−
1

2
gXXμ∂

μs2 þ 1

2
g2XXμXμs2; ð87Þ

with aH ≡ 1–6ξHðrH − 1Þ. Here, we assume that
the extra singlet scalar s does not change the previous
discussion on inflation for s ¼ 0 during inflation, but it is
crucial for the Higgs mechanism for the light Weyl
gauge field.
After the Higgs and the singlet get VEVs, we expand

them by H ¼ ð0; vþ hÞT= ffiffiffi
2

p
and s ¼ vs þ s̃. Then, the

light Weyl gauge field Xμ gets a nonzero mass by

m2
X ¼ g2XðaHv2 þ v2sÞ: ð88Þ

Moreover, there appears a mixing between the Weyl gauge
field and the Higgs fields in Eq. (87), which can be

eliminated by a gauge fixing term for the Weyl gauge
field,

Lgf ¼ −
1

2ζ

�
∂μXμ þ ζgXðaHvhþ vss̃Þ

�
2
; ð89Þ

with ζ being the gauge fixing parameter. Thus, the
wouldbe Goldstone, GX ∼ aHvhþ vss̃, is eaten by the
Weyl gauge field Xμ, and the orthogonal combination,
hSM ∼ vsh − aHvs̃, is identified as the SM Higgs boson.
From the gauge fixing term in Eq. (89), the wouldbe
Goldstone has mass, m2

GX
¼ ζg2XððaHvÞ2 þ v2sÞ, so the

Goldstone GX would be decoupled in unitary gauge
with ζ → ∞ as usual in spontaneously broken gauge
theories.
We remark that in order to keep the wouldbe Goldstone

boson massless in the scalar potential, we need to take the
alignment limit for the mass mixing between Higgs and
singlet scalars. To this, we need to set the quartic potential
for them to λHðjHj2 þ 1

2aH
s2Þ2. Then, there would be a

generic fine-tuning for the mixing quartic coupling between
the singlet and the Higgs, but the aforementioned quartic
coupling is protected by the SOð5Þ symmetry in the limit of
aH ¼ 1 or rH ¼ 1, for which the unitarity scale becomes
maximized to MP=

ffiffiffiffiffiffi
ξH

p
. Then, during inflation, the

effective mass for the singlet scalar becomes m2
s ≃

λHM2
P=ð2ξHaHÞ for jHj2 ≳M2

P=ð2ξHÞ, which is much
larger than the Hubble scale during inflation,
H2

I ∼ λHM2
P=ð12ξ2HÞ, for a large ξH. Therefore, we can

safely ignore the dynamics of the singlet scalar s during
inflation.

B. Weyl gauge field interactions

As we discussed with the gauge-fixing Lagrangian in the
previous subsection, we introduce a mixing angle between
the Higgs and singlet scalars by

�
h

s̃

�
¼

�
cos θ sin θ

− sin θ cos θ

��
hSM
GX

�
; ð90Þ

with tan θ ¼ ðaHvÞ=vs. Since the SM particles couple only
to h, the SM Higgs couplings for the physical scalar, hSM,
are modified as compared to the SM. Thus, the decays and
production channels for the SM Higgs are modified by the
mixing angle. Therefore, in order to be consistent with
Higgs data, we need to take the mixing angle sufficiently
small, for instance, sin θ ≃ ðaHvÞ=vs ≲ 0.3ð0.03Þ at the 10
(1)% level.
Taking the general covariant gauge with the gauge fixing

term for the Weyl gauge field in Eq. (89), we can reduce the
interaction terms of the Weyl gauge field to the wouldbe
Goldstone GX and the SM Higgs boson hSM in the
following:
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LX;int ¼ −aHgXXμh∂μhþ 1

2
aHg2XXμXμðh2 þ 2vhÞ − gXXμs̃∂μs̃þ

1

2
g2XXμXμðs̃2 þ 2vss̃Þ;

¼ −gXðaHcos2θ þ sin2θÞXμhSM∂μhSM − gXðaH − 1Þ cos θ sin θXμðGX∂
μhSM þ hSM∂μGXÞ

− gXðaHsin2θ þ cos2θÞXμGX∂
μGX þ g2X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaHvÞ2 þ v2s

q
XμXμGX þ 1

2
g2XðaHcos2θ þ sin2θÞXμXμh2SM

þ g2XðaH − 1Þ cos θ sin θXμXμGXhSM þ 1

2
g2XðaHsin2θ þ cos2θÞXμXμG2

X: ð91Þ

Here, we note that the perturbativity conditions on the Weyl
gauge field couplings are given by

gX < 1; aHg2X < 1: ð92Þ

In unitary gauge, the wouldbe Goldstone is decoupled,
so we only have to consider the Weyl gauge field couplings
for the SM Higgs, XμhSM∂μhSM and XμXμh2SM. But the
derivative couplings of the Weyl gauge field can be written
as XμhSM∂μhSM ¼ − 1

2
∂μXμh2SM, etc., up to total derivative

terms, so there is no decay of the on-shell Weyl gauge field
because of ∂μXμ ¼ 0. Moreover, we note that there is no
linear Higgs coupling to the Weyl gauge field, so there is
no additional decay of the SM Higgs boson. Since there is
no direct coupling between the Weyl gauge field and the
other SM particles (fermions and gauge bosons), it is
challenging to test the Weyl gauge field at current collider
experiments.
We remark the effects of a gauge kinetic mixing for the

Weyl gauge field for testing the Weyl gauge field models.
In the presence of a gauge kinetic mixing between the Weyl
gauge field and the hypercharge gauge boson Bμ in the
following form,

Lgmix ¼ −
1

2
sin ξXμνBμν; ð93Þ

with Bμν being the gauge field strength for the hypercharge
gauge boson, we need to diagonalize the gauge kinetic
terms and the mass matrix for neutral gauge bosons
simultaneously. As a result, the electroweak neutral gauge
bosons and the Weyl gauge field are mixed [25,26] by

0
B@

Bμ

W3μ

Xμ

1
CA¼

0
B@

cW tξsζ − sWcζ −sWsζ − tξcζ
sW cWcζ cWsζ
0 −sζ=cξ cζ=cξ

1
CA
0
B@

Ãμ

Z̃μ

X̃μ

1
CA:

ð94Þ

Here, cξ ≡ cos ξ, tξ ≡ tan ξ, cW ≡ cos θW , sW ≡ sin θW ,
and ζ is the mixing angle between Z and X bosons,
given [25,26] by

tanð2ζÞ ¼ m2
ZsW sinð2ξÞ

m2
X −m2

Zðc2ξ − s2Ws
2
ξÞ
: ð95Þ

In the limit of m2
X ≪ m2

Z (or m2
X ≫ m2

Z) and jξj ≪ 1,

we obtain ζ ≈ −sWξ (or ζ ≈ m2
Z

m2
X
sWξ). Moreover, the mass

eigenvalues for Z-like and X-like gauge bosons are
given [25,26] by

m2
1;2 ¼

1

2

�
m2

Zð1þ s2Wt
2
ξÞ þm2

X=c
2
ξ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

Zð1þ s2Wt
2
ξÞ þm2

X=c
2
ξÞ2 − 4m2

Zm
2
X=c

2
ξ

q 	
: ð96Þ

We first recall that the current interactions in the
interaction basis are given by

LEM=NC ¼ gXXμJ
μ
X þ eðsWW3μ þ cWBμÞJμEM

þ e
2sWcW

ðcWW3μ − sWBμÞJμZ; ð97Þ

where JμX are the Weyl current given by
JμX ¼ −aH∂μjHj2 þ 1

2
∂μs2, and JμEM and JμZ are electro-

magnetic and neutral currents. Then, using Eq. (94), we can
approximate the above current interactions in the basis of
mass eigenstates [25,26], for ε≡ cWtξ ≈ cWξ ≪ 1, as

LEM=NC ≃ eÃμJ
μ
EM þ Z̃μ

�
e

2sWcW
JμZ þ εgXtWJ

μ
X

	

þ X̃μ

h
gXJ

μ
X − eεJμEM

i
: ð98Þ

Therefore, we find that the redefined Weyl gauge field X̃μ

couples to the electromagnetic current JμEM too, so it is
possible to produce the Weyl gauge field directly at the
LHC and other collider experiments. Consequently, we can
test the Weyl gauge field models by the interplay of
standard decay modes into a pair of SM particles (apart
from Higgs) appearing in non-Weyl Z0 models and the
Weyl current interaction.
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VII. CONCLUSIONS

We considered the embedding of Higgs inflation with a
nonminimal coupling into the Weyl gravity where the
unitarity problem of the original Higgs inflation is less
severe, thanks to the heavy Weyl gauge field coupled to the
Higgs fields. When the couplings of the heavy Weyl gauge
field are absorbed into the nonminimal couplings to
the Ricci curvature scalar in Weyl gravity, we found that
the resultant model for Higgs inflation is the same as in the
Palatini formulation for Higgs inflation. The covariant
kinetic term for the Higgs fields with the second light
Weyl gauge field is necessary for a successful Higgs
inflation with a large nonminimal coupling. Thus, the
crucial difference of our model from the Palatini formu-
lation for Higgs inflation is that there is a light Weyl gauge
field coupled to the Higgs fields.
We also generalized the unitarization of Higgs inflation

with Weyl gauge fields in the presence of general covariant
kinetic terms for the dilaton and the Higgs fields. In this
case, we realized a successful Higgs inflation, interpolating
between the Palatini formulation for Higgs inflation and a
Higgs-like inflation. However, due to the unitarity problem,
the region of the parameter space close to the Palatini
formulation for Higgs inflation is favored.
We also showed that the light Weyl gauge field gets a

small mass due to the VEVof an extra singlet scalar and the
Goldstone boson associated with the light Weyl gauge field
is a mixture of the Higgs and extra singlet scalars.
Therefore, we found that the mixing between the Higgs
and extra singlet scalars can be constrained by Higgs data.
Furthermore, in the presence of a gauge kinetic mixing for
the light Weyl gauge field, there are interesting signatures
for Z0-like resonances at the LHC, with the direct couplings
of the light Weyl gauge field to the SM Higgs bosons,
unlike in usual Z0 models.

ACKNOWLEDGMENTS

The work is supported in part by Basic Science Research
Program through the National Research Foundation of
Korea (NRF) funded by the Ministry of Education, Science
and Technology (Grants No. NRF-2022R1A2C2003567
and No. NRF-2021R1A4A2001897).

APPENDIX A: COMPARISON TO
UNITARIZATION WITH SINGLET SCALARS

1. Linear sigma models

We consider an induced gravity model for the sigma field
σ, with the following Jordan frame Lagrangian [4,5],

Lσffiffiffiffiffiffi−gp ¼ −
1

2
σ2Rþ 1

2
ð∂μσÞ2 −

1

4
λσ
�
σ2 −M2

P − 2ξHjHj2
�
2
:

ðA1Þ

Then, after integrating out the sigma field with its
equation of motion,

σ2 ¼ M2
P þ 2ξHjHj2; ðA2Þ

we obtain the effective nonminimal coupling for the Higgs
from the one for the sigma field in Eq. (A1).
From Eq. (A1), the effective Higgs quartic coupling is

related to the running quartic couplings by

λeff ¼ λH − λσξ
2
H; ðA3Þ

where λσξ
2
H < 1 should be taken from perturbativity.

2. Starobinsky model

We can add an R2 term in Higgs inflation by

LR2 ¼
ffiffiffiffiffiffi
−g

p
αR2; ðA4Þ

which is dual to the scalaron Lagrangian,

LR2 ¼ −2αχR − αχ2: ðA5Þ

Then, after the field redefinitions,

gμν → Ω2gμν; χ → Ω2χ; H → ΩH; ðA6Þ

with Ω−2 ¼ ð1þ σffiffi
6

p Þ2, and

Ω−2 þ 2ξHjHj2 þ 4αχ ¼ 1 −
1

3
jHj2 − 1

6
σ2; ðA7Þ

it was shown that the Higgs-R2 Lagrangian can be recast
into a linear sigma model type [9–12],

LHþR2ffiffiffiffiffiffi−gp ¼ −
1

2

�
1 −

1

6
σ2 −

1

3
jHj2

�
Rþ 1

2
ð∂μσÞ2 þ j∂μHj2

−
1

144α

��
σ þ

ffiffiffi
6

p

2

�
2

þ 6

�
ξH þ 1

6

�
jHj2 − 3

2

	
2

:

ðA8Þ

As a result, there is no unitarity problem below the Planck
scale, as far as the following perturbativity conditions
are fulfilled,
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1

α

�
ξH þ 1

6

�
< 1;

1

α

�
ξH þ 1

6

�
2

< 1: ðA9Þ

In this case, there is a similar shift in the effective Higgs
quartic coupling by

λeff ¼ λH −
1

4α

�
ξH þ 1

6

�
2

: ðA10Þ

3. Singlet scalar with a triple coupling

We consider a real singlet scalar S, with the following
Lagrangian [6]:

L ¼ 1

2
ð∂μSÞ2 −

1

2
m2

SS
2 − μSjHj2: ðA11Þ

Then, after integrating out the singlet scalar by

S ¼ −
μ

m2
S
jHj2; ðA12Þ

we get the effective interactions for the Higgs doublet as

Leff ¼
μ2

2m4
S
ð∂μjHj2Þ2 þ μ2

2m2
S
jHj4: ðA13Þ

Therefore, we obtain the desired noncanonical kinetic term
for the Higgs with

μ2

m4
S
¼ 3ξ2H

M2
P
; ðA14Þ

and there is a tree-level shift in the Higgs quartic
coupling by

λeff ¼ λH −
μ2

2m2
S
: ðA15Þ

APPENDIX B: GENERAL WEYL-INVARIANT
LAGRANGIAN

Introducing extra parameters, rϕ and rH, we consider the
most general Lagrangian with Weyl invariance as follows:

LGffiffiffiffiffiffi−gp ¼−
1

2
ξϕ
�
ϕ2Rþ6ð∂μϕÞ2−6rϕðDμϕÞ2

�
−
1

4
wμνwμν

−ξH
�
jHj2Rþ6j∂μHj2−6rHjDμHj2

�
−
1

4
XμνXμνþð1−6ξHðrH−1ÞÞjD0

μHj2−VðH;ϕÞ:
ðB1Þ

Here, we chose the net Higgs kinetic term to be canonical in
the Jordan frame without loss of generality. Then, fixing
the gauge to hϕ2i ¼ M2

P=ξϕ, the gauge-fixed Lagrangian
becomes

Lffiffiffiffiffiffi−gp ¼ −
1

2
ðM2

P þ 2ξHjHj2ÞRþ 6ξHðrH − 1Þj∂μHj2 þ ð1 − 6ξHðrH − 1ÞÞjD0
μHj2 − VðHÞ − 1

4
XμνXμν −

1

4
wμνwμν

þ 1

2
m2

wwμwμ −
1

2
rHgwwμKμ þ 1

2
rHg2wwμwμKH; ðB2Þ

where m2
w ¼ 6rϕg2wM2

P. For rϕ ¼ rH ¼ 1, we recover the simple Lagrangian introduced in Eq. (41) in the text.

In this case, making a field redefinition of the Weyl gauge field by

w̃μ ¼ wμ −
gwrH
2

·
1

m2
w þ g2wrHKH

Kμ;

¼ wμ −
1

2gw
∂μ lnðm2

w þ g2wrHKHÞ; ðB3Þ

we obtain the general gauge-fixed Lagrangian as

Lffiffiffiffiffiffi−gp ¼ −
1

2
ðM2

P þ 2ξHjHj2ÞRþ 6ξHðrH − 1Þj∂μHj2 þ ð1 − 6ξHðrH − 1ÞÞjD0
μHj2 − VðHÞ − 1

4
XμνXμν −

1

4
w̃μνw̃μν

þ 1

2
ðm2

w þ g2wrHKHÞw̃μw̃μ −
g2wr2H
8

KμKμ

m2
w þ g2wrHKH

: ðB4Þ

Here, we find that m2
w þ g2wrHKH ¼ 6rϕg2wM2

Pð1þ 2ðrH=rϕÞξHjHj2=M2
PÞ. As a result, we also get the general Einstein-

frame Lagrangian as
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LEffiffiffiffiffiffiffiffi−gE
p ¼ −

M2
P

2
Rþ 6ξHðrH − 1Þ j∂μHj2

Ω
þ ð1 − 6ξHðrH − 1ÞÞ jD

0
μHj2
Ω

þ 3ξ2H
M2

P

ð∂μjHj2Þ2
Ω2

−
VðHÞ
Ω2

−
1

4
XμνXμν −

1

4
w̃μνw̃μν

þ 1

2
ðm2

w þ g2wrHKHÞΩ−1w̃μw̃μ −
g2wr2H
8Ω

KμKμ

m2
w þ g2wrHKH

: ðB5Þ

So, for the general Weyl-invariant Lagrangian, the noncanonical Higgs kinetic terms are not canceled completely, and the
Weyl gauge field w̃μ is not decoupled from the Higgs field.

For simplicity, we take the case with rH ¼ rϕ. Then, from m2
w þ g2wrHKH ¼ 6rϕg2wM2

PΩ, a simplification arises as
follows:

LEffiffiffiffiffiffiffiffi−gE
p ¼ −

M2
P

2
Rþ 6ξHðrH − 1Þ j∂μHj2

Ω
þ ð1 − 6ξHðrH − 1ÞÞ jD

0
μHj2
Ω

þ 3ξ2Hð1 − rHÞ
M2

P

ð∂μjHj2Þ2
Ω2

−
VðHÞ
Ω2

−
1

4
XμνXμν −

1

4
w̃μνw̃μν þ 1

2
m2

ww̃μw̃μ: ðB6Þ

In this case, we find that the noncanonical Higgs kinetic terms are not canceled out, but the Weyl gauge field w̃μ is
decoupled from the Higgs field.
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