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Abstract: Human breast milk (HBM) is the ideal source of nutrients for infants and is rich in mi-
croRNA (miRNA). In recent years, expressed breast milk feeding rather than direct breastfeeding has
become increasingly prevalent for various reasons. Expressed HBM requires storage and processing,
which can cause various changes in the ingredients. We investigated how the miRNAs in HBM
change due to processes often used in real life. HBM samples collected from 10 participants were
each divided into seven groups according to the storage temperature, thawing method, and storage
period. In addition, we analyzed the miRNA changes in each group. The number of microRNAs that
showed significant expression was not large compared to the thousands of miRNAs contained in
breast milk. Therefore, it is difficult to suggest that the various storage and thawing processes have
a great influence on the overall expression of miRNA. However, a short-term refrigeration storage
method revealed little change in nutrients compared to other storage and thawing methods. Taking
all factors into consideration, short-term refrigeration is recommended to minimize changes in the
composition or function of breast milk.

Keywords: human milk; microRNAs; freezing

1. Introduction

Human breast milk (HBM) contains complex proteins, lipids, and carbohydrates,
and is the ideal source of nutrients for infants. Additionally, it contains antibodies in-
volved in the human immune response and oligosaccharides involved in shaping the
intestinal microbiota and supporting health, among numerous other biologically active
compounds [1,2]. Breastfeeding provides economic and medical benefits to mothers, but
also improves short-term health outcomes in the infant, such as lowering the risk of infec-
tion, diarrhea, sudden infant death syndrome, and other childhood diseases and conditions,
and long-term health benefits, such as lowering the risk of diabetes, obesity, and asthma
after infancy [3,4]. According to these findings, the World Health Organization (WHO),
United Nations International Children’s Emergency Fund (UNICEF), and the American
Academy of Pediatrics (AAP) encourage governments to create an environment supportive
of breastfeeding or the provision of breast milk and recommend exclusive breastfeeding
until six months after birth. As the importance of breastfeeding has emerged, interest and
education in breastfeeding have been increasing in Korea over the past 20 years, and the
breastfeeding rate has also been steadily increasing [5,6]. Expressed breast milk feeding
rather than direct breastfeeding has become increasingly prevalent, especially in some de-
veloped countries, because of various maternal factors and for practical reasons. Expressed
breast milk undergoes various storage and processing procedures, which can change the
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composition, ingredients, and functions, compromising the nutritional quality of breast
milk [7]. Therefore, it has become necessary to clarify such changes in the macronutrient
and immunological components [8].

Breast milk is particularly diverse and rich in microRNA (miRNA). Accordingly, there
is much interest in the role of miRNA in breast milk, particularly how miRNAs contained
in breast milk are nutritionally absorbed through the infant’s digestive tract and benefit
the infant, as well as their role as epigenetic regulators of gene expression in infants [9,10].
miRNAs are small (approximately 22 nucleotides), single-stranded, non-expressing RNAs
that form a complex with proteins to engage in RNA silencing or bind to target messenger
RNAs (mRNAs) to direct post-transcriptional silencing. By suppressing the expression of
their target genes, miRNAs are regulators of cell and tissue development, differentiation,
proliferation, and metabolism [11]. miRNAs regulate at least 60% of human mRNAs, and
some of the tens of thousands of miRNAs are known to be related to cancer and other
diseases, while ongoing research efforts are directed at examining the feasibility of miRNAs
as biomarkers for the diagnosis, treatment, and recurrence prediction of diseases [12]. In
breast milk, miRNAs are speculated to function as immune protectors and developmental
regulators between infants and nursing mothers [13]. Milk-derived miRNAs may not
only serve as a fingerprint of the mother’s health but also of potential outcomes to the
health of the infant receiving the milk [9–12]. Mir-181 and mir-155 are associated with the
differentiation in B cells, and mir-17 and mir-92 affect the differentiation and maturation of
B and T cells. HBM-derived miRNAs also regulate the proliferation of intestinal epithelial
cells, have a preventive effect on atopy, and are key regulators of milk lipid metabolism.

To perform their functions, miRNAs must remain stable. Despite the rise in expressed
breast milk feeding, there has been little analysis of changes in miRNA in expressed breast
milk. Our research seeks to determine how the miRNA in expressed breast milk is affected
by various storage and handling conditions often used in real life. Based on these studies,
optimal breastfeeding management guidelines can be presented, and an environment can
be provided to enhance the convenience of nursing mothers and promote the best health
conditions for infants.

2. Methods
2.1. Collection of Breast Milk and Storage and Processing

Human breast milk was collected at the Chung-Ang University Breastfeeding Research
Institute (Seoul, Korea) for current lactating mothers who agreed to participate in the study.
There was no particular restriction on the research participants because our focus was to
compare only the change according to storage and thawing with initially collected HBM
and confirm the stability of miRNAs. Breast milk was collected in a fresh state within
a day of milking and was collected after refrigerating for less than 24 h at home except
when delivered immediately after the milking. The donated breast milk of 40 to 50 cc was
divided into seven aliquots (samples) immediately after collection, and each sample was
treated, stored, and thawed as follows (Figure 1): Sample 1: initial miRNA analysis; Sample
2: microwave treatment (700 W, 60 s); Sample 3: stored at room temperature (10–20 ◦C) for
one week; Sample 4: refrigerated (4 ◦C) for one week; Sample 5: stored frozen for one week
and then thawed in a bottle warmer (300 W, 5 min; Philips, Amsterdam, The Netherlands);
Sample 6: stored frozen for one week and then thawed by heating in a microwave (700 W,
60 s); Sample 7: stored frozen for four weeks, and then thawed by heating in a bottle
warmer (300 W, 5 min).

The seven samples were compared for their changes in miRNAs according to mi-
crowave treatment (Sample 1, Sample 2), storage condition (Sample 1, Sample 3, Sample 4),
thawing method (Sample 1, Sample 5, Sample 6), and duration of frozen storage (Sample 1,
Sample 6, Sample 7).
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Figure 1. Process of treatment, storage, and thawing of collected breast milk. * Sample 7 treatment
procedure was conducted in all participants except for Participant 5.

2.2. Human Breast Milk Fractionation and miRNA Isolation

miRNA analysis of each sample was performed according to the breast milk collec-
tion date and storage period. To prepare the nonfat skim milk fraction, human breast
milk samples were centrifuged (3000× g, 4 ◦C, 10 min) twice, and fat, cells, and debris
were removed. The skim milk samples were centrifuged (12,000× g, 4 ◦C, 20 min) and
sequentially filtered through 0.8, 0.45, and 0.22 µm syringe filters (Sartorius AG, Göttingen,
Germany) to remove residual fat and cell debris. miRNAs of skim milk were extracted by
acid-phenol/chloroform separation combined with column-based filtration using the mir-
Vana miRNA Isolation Kit (Invitrogen, Waltham, MA, USA). The concentration and purity
(260:280 ratio) of miRNAs were analyzed using a NanoDrop™ 1000 spectrophotometer
(Thermo Scientific, Waltham, MA, USA). Aliquots (>20 ng RNA) of the miRNA samples
were used for small RNA sequencing (RNA-seq).

2.3. Library Preparation and Sequencing

The library was constructed using a NEBNext Multiplex Small RNA Library Prep
Kit (New England BioLabs, Inc., Ipswich, MA, USA) according to the manufacturer’s
instructions. Briefly, for library construction, total RNA from each sample was used to
ligate the adaptors, and cDNA was then synthesized using reverse-transcriptase with
adaptor-specific primers. PCR was performed for library amplification, and the libraries
were cleaned up using a QIAquick PCR Purification Kit (Qiagen, Inc., Hilden, Germany)
and polyacrylamide gel electrophoresis gel. The yield and size distribution of the small
RNA libraries were assessed with an Agilent High Sensitivity DNA Assay on an Agilent
2100 Bioanalyzer instrument (Agilent Technologies, Inc., Santa Clara, CA, USA). High-
throughput sequences were produced by a NextSeq 500 system using 75 bp single-end
sequencing (Illumina, San Diego, CA, USA).

2.4. Data Analysis

Sequence reads were mapped by the Bowtie2 software tool to obtain a bam file. Mature
miRNA sequences were used as a reference for mapping. Read counts mapped to mature
miRNA sequences were extracted from the alignment file using BEDtools v2.25.0 and a
bioconductor using the R statistical programming language. Read counts were used for
determining the expression level of miRNAs. The counts per million-trimmed mean of M-
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values (CPM-TMM) normalization method was used to compare samples. For the miRNA
target study, miRWalk 2.0 was performed. Functional gene classification was performed by
DIANA. In addition, differentially expressed gene analysis was used to identify miRNAs
with a significant expression. We found miRNA with a normalized RC (log2) value of 4 or
higher, with the expression of miRNA increasing or decreasing by more than twofold on a
subgroup basis and the p-value of 0.05 in the t-test.

3. Results
3.1. Participant Information

Breast milk was collected 10 times from nine lactating mothers (Table 1). Participants
3 and 6 are the same lactating mother who participated in different periods of breast-
feeding. Each collection time was postpartum 12 and 146 days. The average age of the
lactating mother was 34.4 years, and the baby’s postpartum period was 84.6 days at the
sample collection date. The average gestational age for babies was 35 weeks and one day,
and the average birth weight was 2.59 kg. In the HBM sample of 10 participants, the
difference in expression was confirmed according to the storage and thawing method of
2588 microRNAs.

Table 1. Participant information for microRNA analysis of breast milk.

Participant
Number †

Age of
Lactating

Mother (Years)

Postpartum
Periods (Days)

GA at Birth
(Weeks)

Birth Weight
(kg) Sex Delivery

Method

1 30 19 38 2/7 3.92 F NSVD
2 32 70 38 3/7 3.26 M C/S
3 39 12 24 1/7 0.609 F C/S
4 28 60 40 3/7 3.65 F NSVD
5 29 46 34 5/7 2.87 M NSVD
6 40 146 24 1/7 0.609 F C/S
7 36 124 40 0/7 3.31 F C/S
8 40 44 32 2/7 2.12 M NSVD
9 31 108 38 6/7 2.3 M NSVD

10 39 217 39 3/7 3 F C/S

Average 34.4 84.6 35 1/7 2.59

† Participants 3 and 6 are the same lactating mother who participated in different periods of breastfeeding. GA:
Gestational age, NSVD: Normal spontaneous vaginal delivery, C/S: Cesarean section.

3.2. Changes in miRNA According to Microwave Treatment of Breast Milk

When comparing the expression level of miRNAs between the control (Sample 1)
and microwave treatment (Sample 2), two miRNAs showed significant changes in all
participants (hsa-miR-24-3p and hsa-miR-27a-3p). However, there was no tendency for
increased and decreased gene expression, according to the participant (Table 2, Figure 2).

3.3. Changes in miRNA According to the Storage Conditions of Breast Milk
3.3.1. Changes in miRNA According to One Week of Storage at Room Temperature

When we compared the expression level of miRNAs between the control (Sample
1) and one week of storage at room temperature (Sample 3), we saw that four miRNAs
showed significant changes in all participants (hsa-miR-193b-5p, hsa-miR-365a-3p, hsa-miR-
365b-3p, and hsa-miR-378a-3p). The expression level of hsa-miR-378a-3p was significantly
decreased in all participants. Furthermore, hsa-miR-365a-3p and hsa-miR-365b-3p were
significantly decreased in all participants except for Participant 6 (Table 2, Figure 2).
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Table 2. Fold change of microRNAs with significant expression differences compared to the control group *.

1 2 3 4 5 6 7 8 9 10Participants

Sample 2
Microwaved

hsa-miR-24-3p 0.325 0.001 2.191 0.003 3.250 0.203 0.388 0.106 3.651 52.371
hsa-miR-27a-3p 0.344 0.007 0.063 0.004 0.003 0.260 0.110 0.343 2.579 53.597

Sample 3
Stored at room temperature

(10–20 ◦C) for 1 week

hsa-miR-193b-5p 0.454 15.714 5.518 34.734 0.019 0.457 2.888 1.262 1526.7 0.349
hsa-miR-365a-3p 0.361 0.001 0.001 0.001 0.003 3.971 0.008 0.057 0.001 0.001
hsa-miR-365b-3p 0.382 0.004 0.001 0.001 0.001 3.514 0.019 0.057 0.001 0.001
hsa-miR-378a-3p 0.416 0.071 0.438 0.165 0.003 0.089 0.072 0.123 0.342 0.169

Sample 4
Refrigerated (4 ◦C) for 1 week None **

Sample 5
Frozen (−20 ◦C) for 1 week,

then thawed in a bottle warmer

hsa-miR-205-5p 0.085 2.175 0.313 19.064 0.011 0.146 0.403 0.003 0.123 0.076

hsa-miR-3182 0.061 0.002 0.002 0.069 0.028 0.159 0.007 2.651 0.316 0.091

Sample 6
Frozen (−20 ◦C) for 1 week,

then thawed by microwave treatment

hsa-miR-10b-5p 0.065 58.722 21.386 20.856 33.252 0.153 0.047 295.56 0.002 0.442
hsa-miR-205-5p 0.429 0.076 0.100 51.381 0.003 0.255 2.674 0.003 0.002 0.414
hsa-miR-486-5p 0.207 4.039 22.914 13.471 24.941 4.238 0.115 16.666 0.006 2.099
hsa-miR-3960 9.266 5.111 32.091 0.032 15.237 4.287 3.020 5.723 5.989 2.955
hsa-miR-24-3p 0.304 0.012 0.080 3.575 0.001 0.193 0.403 0.030 0.185 0.282

hsa-miR-378a-3p 0.324 0.006 0.262 0.200 0.005 6.643 5.442 0.094 2.549 0.171

Sample 7
Frozen (−20 ◦C) for 4 weeks,

then thawed in a bottle warmer

hsa-miR-103a-3p 0.163 0.011 0.032 0.012 *** 0.251 0.225 0.297 4.490 0.015
hsa-miR-193b-5p 5.107 189.26 8.350 115.6 *** 3.341 2.711 11.067 339.79 0.370

hsa-miR-103b 0.176 0.012 0.031 0.014 *** 0.227 0.270 0.389 4.607 0.057
hsa-miR-29a-3p 0.204 0.000 0.001 2065.6 *** 0.390 0.442 0.054 3.260 12.458

* Significant expression differences: fold change > 2, normalized data (log2) > 4, p-value < 0.05. ** For Sample 4, none of the microRNAs showed a significant change in all participants
compared to the control group. *** Sample 7 treatment procedure was conducted in all participants except for Participant 5.
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Figure 2. Heatmap of microRNAs showing the significant differences in expression levels compared
with the control group.

3.3.2. Changes in miRNA According to One Week of Refrigerated Storage

When we compared the expression level of miRNAs between the control (Sample 1)
and one week of refrigerated storage (Sample 4), we saw that no miRNAs showed signifi-
cant changes in all participants (Table 2, Figure 2).

3.3.3. Changes in miRNA According to Bottle Warmer Thawing after 1 Week of
Frozen Storage

When we compared the expression level of miRNAs between the control (Sample 1)
and bottle warmer thawing after one week of frozen storage (Sample 5), we saw that two
miRNAs showed significant changes in all participants (hsa-miR-205-5p and hsa-miR-3182).
hsa-miR-3182 was significantly decreased in all participants except for Participant 8 (Table 2,
Figure 2).
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3.4. Changes in miRNA According to the Thawing Method of Breast Milk
3.4.1. Changes in miRNA According to Bottle Warmer Thawing after 1 Week of
Frozen Storage

To explore the change in miRNA of breast milk according to the thawing method,
breast milk was exposed to different thawing methods (bottle warmer and microwave
treatment) after one week of frozen storage. Again, when we compared the expression
level of miRNAs between the control (Sample 1) and bottle warmer thawing after one week
of frozen storage (Sample 5), we saw that two miRNAs showed significant changes in all
participants (hsa-miR-205-5p and hsa-miR-3182). hsa-miR-3182 was significantly decreased
in all participants except for Participant 8 (Table 2, Figure 2).

3.4.2. Changes in miRNA According to Microwave Thawing after 1 Week of
Frozen Storage

When we compared the expression level of miRNAs between the control (Sample
1) and microwave thawing after one week of frozen storage (Sample 6), six miRNAs we
saw significant changes in all participants (hsa-miR-10b-5p, hsa-miR-205-5p, hsa-miR-486-
5p, hsa-miR-3960, hsa-miR-24-3p, and hsa-miR-378a-3p). hsa-miR-3960 was significantly
increased in all participants except for Participant 4, and hsa-miR-24-3p was significantly
decreased in all participants except for Participant 4 (Table 2, Figure 2).

3.5. Changes in miRNA According to the Frozen Period of Breast Milk
3.5.1. Changes in miRNA According to Bottle Warmer Thawing after One Week of
Frozen Storage

To assess the changes in miRNA of breast milk according to the duration of frozen
storage, all samples were thawed by the same method in a bottle warmer after frozen
storage at −20 ◦C for one and four weeks. When we compared the expression level of
miRNAs between the control (Sample 1) and bottle warmer thawing after one week of
frozen storage (Sample 5), we saw that two miRNAs showed significant changes in all
participants (hsa-miR-205-5p and hsa-miR-3182). Moreover, hsa-miR-3182 was significantly
decreased in all participants except for Participant 8 (Table 2, Figure 2).

3.5.2. Changes in miRNA According to Bottle Warmer Thawing after Four Weeks of
Frozen Storage

When we compared the expression level of miRNAs between the control (Sample 1)
and bottle warmer thawing after four weeks of frozen storage (Sample 7), we saw that four
miRNAs showed significant changes in all participants (hsa-miR-103a-3p, hsa-miR-193b-5p,
hsa-miR-103b, and hsa-miR-29a-3p). hsa-miR-103a-3p and hsa-miR-103b were significantly
decreased in all participants except for Participant 9. hsa-miR-193b-5p was significantly
increased in all participants except for Participant 10 (Table 2, Figure 2).

4. Discussion

Direct breastfeeding is the ideal method, but due to various social or medical issues,
expressed breast milk feeding is often performed, necessitating the collection, processing,
and storage of breast milk [14,15]. Breast milk contains several miRNAs as well as nutrients
and immune components. Therefore, our study confirmed changes in the miRNA of breast
milk by processing, storing, and thawing according to realistic methods rather than methods
used in laboratories. Much of the miRNA in milk is encapsulated in exosomes, and it has
been shown that these milk exosome miRNAs can resist a low pH (acidic environment),
RNase (an enzyme that degrades RNA), and freeze−thaw cycles at −20 ◦C [16–18].

In previous studies, Zhao et al. confirmed a decrease in the amount of miRNA and
extracellular vesicles in cow milk according to a microwave treatment (305 W for 32 s) [19].
Recently, it has been suggested that a microwave treatment of breast milk (500 W for
40 s) helps prevent the transmission of infections, such as human cytomegalovirus, but it
should be considered that this is accompanied by the destruction of several nutrients and
miRNAs in breast milk [20]. Therefore, the Centers for Disease Control and Prevention
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(CDC) abstains from microwave heating for reasons such as destruction of nutrients in
breast milk, although thawing breast milk in a microwave is a convenient and practical
approach in the home.

In our findings, there were up to six miRNAs with significant differences in expression
in all participants, which were less significant than the thousands of miRNAs contained
in breast milk. Therefore, it is difficult to suggest that the various storage and thawing
processes previously performed have a great influence on the overall expression of miRNA.
However, there was no significant change in the amount of miRNA expressed in breast
milk subjected to refrigerated storage for one week. This means that refrigerated storage
has little effect on miRNA among the storage methods. Many preterm infants are unable
to breastfeed; hence, refrigeration storage of breast milk is a common practice in neonatal
intensive care units. In previous studies, breast milk refrigerated at 4 ◦C for up to 96 h
showed no significant difference in pH, osmolality, white blood cell counts, bacterial
colony counts, and the concentrations of secretory IgA, protein, total fat, and free fatty
acids [21,22]. Taking all factors into consideration, the refrigerated storage of breast milk is
an ideal storage method for miRNA, as well as macronutrient and immune components.

Two other common storage methods for breast milk other than refrigeration are
frozen storage and room temperature storage. When comparing breast milk stored at
room temperature for one week (Sample 3) with breast milk thawed in a bottle warmer
after one week of frozen storage (Sample 5), four and two miRNAs, respectively, had
a significant expression level difference in all participants. After one week of storage
at room temperature (Sample 3), the expression level of hsa-miR-378a-3p decreased in
all participants, and hsa-miR-365a-3p and hsa-miR-365b-3p decreased in all participants
except for Participant 6. hsa-miR-378a-3p has been found to function as a negative regulator
of cytokine production involved in interleukin (IL)-33 production and the inflammatory
response, and hsa-miR-365a-3p and hsa-miR-365b-3p have been found to function as
negative regulators of interleukin-6 production [23,24]. According to Wang et al., miR-
365-3p is a negative regulator of IL-17-mediated asthmatic inflammation [25]. All three
miRNAs mentioned above have a negative regulatory role in the inflammatory response;
it can therefore be suggested that in the case of long-term room temperature storage, the
expression level of miRNAs associated with modulation of the inflammatory response may
be reduced in breast milk.

When we compared thawing by bottle warming (Sample 5) and microwave (Sample
6) after one week of frozen storage, we saw that the difference in miRNA expression was
greater for microwave thawing. The number of miRNAs showing a significant difference
in expression was higher when breast milk was frozen for four weeks (Sample 7) than
one week (Sample 5). It can be inferred that the longer the frozen storage, the more the
denaturation of miRNA. Additionally, a study by García-Lara et al. confirmed that the
fat concentration and energy content decreased with the increase in the freezing time of
breast milk [26]. When a bottle warmer was used to thaw breast milk stored frozen for four
weeks (Sample 7), the expression levels of hsa-miR-103a-3p and hsa-miR-103b decreased
in all participants except for Participant 9. According to Trajkovski et al., hsa-miR-103
targeted the insulin receptor regulator caveolin-1 and was involved in the insulin-signaling
pathway [27]. The same study further confirmed that the downregulation of miR-103
enhances the caveolin-1 and insulin-signaling pathway, decreases adipocyte size, and
increases insulin sensitivity [27].

The composition and expression of miRNAs in HBM can differ due to various maternal,
infant, or other factors. However, in this study, we investigated the change in, and stability
of, miRNAs according to various storage and thawing conditions rather than the differences
between each miRNA according to such factors. Although not in HBM, previous studies
have confirmed the change in miRNAs, similar to our research. In a study by Kupec et al.,
serum miRNA was not affected by food intake or sample collection times. However, there
was a significant difference in expression according to the storage temperature (−80 vs.
4 ◦C) [28]. Glinge et al. confirmed that miRNA levels were stable for at least 24 h at room
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temperature in whole blood but were significantly changed after 72 h [29]. In addition, the
stability was maintained during short-term storage at −80 ◦C, but there was a significant
change during long-term storage for over nine months.

Our research has some limitations. First, only 10 nursing mothers participated in
the study; therefore, the total number of participants was insufficient. Second, in this
study, seven storage/treatment processes were compared, but if the storage period and
processing time had been further subdivided, the results would have been more detailed.
Third, more research is needed on how miRNAs are absorbed through the gastrointestinal
tract and their functions after being ingested by infants. A study by Luo et al. found that
the concentration of corn miRNAs in corn-fed animals remained stable in serum for seven
days, indicating that dietary miRNAs are absorbed and distributed in the circulation [30].
Zhang et al. also revealed that miRNA could be regarded as food and a nutrient [31].
However, Dickinson et al. suggested limitations on the bioavailability of miRNAs orally
fed to mice [32]. Snow et al. discussed the ineffectiveness of diet-derived miRNAs [33], and
Witwer et al. discussed the limited uptake of plant miRNAs in mammalian blood [34]. Such
findings illustrate that additional studies are needed to determine whether each miRNA is
well absorbed through the gastrointestinal tract in higher animals, such as mammals, and
their function.

In conclusion, it is difficult to suggest that the various storage and thawing processes
have a great influence on the overall expression of miRNA. However, in the case of refrig-
eration storage, miRNA changes were minimal compared to other storage and treatment
methods. It was possible to suggest that refrigerated storage may be an ideal method to
maintain a state of miRNA that is almost similar to that in direct lactation by minimizing
changes in miRNAs compared to other storage methods.
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