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Abstract: This study estimated the risk of hepatitis A virus (HAV) foodborne illness outbreaks
through the consumption of fermented clams in South Korea. HAV prevalence in fermented clams
was obtained from the Ministry of Food and Drug Safety Report, 2019. Fermented clam samples
(2 g) were inoculated with HAV and stored at −20–25 ◦C. Based on the HAV titer (determined
using plaque assay) in fermented clams according to storage, the Baranyi predictive models pro‑
vided by Combase were applied to describe the kinetic behavior of HAV in fermented clams. The
initial estimated HAV contamination level was −3.7 Log PFU/g. The developed predictive mod‑
els revealed that, when the temperature increased, the number of HAV plaques decreased. The
Beta‑Poisson model was chosen for determining the dose–response of HAV, and the simulation re‑
vealed that there was a 6.56 × 10−11/person/day chance of contracting HAV foodborne illness by
eating fermented clams. However, when only regular consumers of fermented clams were assumed
as the population, the probability of HAV foodborne illness increased to 8.11 × 10−8/person/day.
These results suggest that, while there is a low likelihood of HAV foodborne illness from consum‑
ing fermented clams across the country, regular consumers should be aware of the possibility of
foodborne illness.

Keywords: fermented clam; hepatitis A virus; quantitative microbial risk assessment (QMRA);
foodborne illness; predictive model

1. Introduction
The hepatitis A virus (HAV) is an RNA virus belonging to the genus Hepatovirus

within the family Picornaviridae. HAV infects the blood through the intestinal tract and
causes liver inflammation. There are seven HAV genotypes (I [A, B], II, III [A, B], IV, V,
VI, and VII), of which IA and IB genotypes mainly infect humans [1]. Upon infection with
HAV, clinical symptoms appear after an incubation period of 4 weeks. HAV infection can
cause fever, loss of appetite, vomiting, abdominal pain, diarrhea, and jaundice in adults.
HAV can be transferred by the fecal–oral route; however, the majority of cases involve
direct human‑to‑human contact or indirect transmission through the consumption of con‑
taminated food or drinks. It is estimated that 10% of hepatitis A infections in the US are
caused by food, and these outbreaks have a significant financial impact on both society
and the food industry [2–4].

HAV is known as a causative agent of foodborne illnesses in several countries, and
mainly contaminates clams such as oysters and mussels, and fruits and vegetables such as
leafy vegetables and berries [5]. Since bivalves accumulate various viruses in their midgut
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through filtration, shellfish, such as oysters and clams, are the main causes of viral food‑
borne illness [6,7]. Accordingly, research on contaminated food, as well as case studies
of patients infected with HAV are required. According to the World Health Organization,
more than 100 million HAV infections occur annually [8]. In 2019, hepatitis A infection
was prevalent in Korea, and the number of patients was 17,598, a sevenfold increase com‑
pared to the previous year (2,437 patients in 2018) [9]. The main cause was identified as
HAV‑contaminated fermented clams called Jogaejeotgal in South Korea [10]. Fermented
clams are a fermented food that is self‑digested and matured by adding salt to fresh clams
to prevent spoilage [11]. The salinity of the fermented clams is 9.6%, and the pH ranges
from 5.5 to 6.0 [12,13].

Quantitativemicrobial risk assessment (QMRA), a scientificmethod for quantitatively
estimating the risk caused by microorganisms, entails hazard identification, exposure as‑
sessment, hazard characterization, and risk characterization [14].

In this study, the risk of HAV by intake of fermented clams in South Korea was esti‑
mated with QMRA and the results are expected to aid in risk management.

2. Materials and Methods
2.1. Estimation of Initial Contamination Concentration

In 2019, the Ministry of Food and Drug Safety (MFDS) analyzed fermented clam sam‑
ples to detect HAV in South Korea, and the data were cited in this study. The prevalence
data were fitted with the Beta distribution, and @RISK software ver.8.0 (Palisade Corp.,
Ithaca, NY, USA) was used to estimate the initial contamination level [15,16].

2.2. Estimation of Time and Temperature Data during Transport and Storage of the
Fermented Clams

Through personal communication with market employees and literature reviews, the
temperature and time data during transport and storage were collected. The data were
then used to simulate the fate of HAV using the models developed in this study.

2.3. HAV Inoculation and Titer Enumeration in the Fermented Clams
After grinding a fermented clam sample (25 g) for 1 min, 2 g of each sample was

transferred to a 50 mL tube. Fermented clam samples were inoculated with 300 µL of
HAV HM175 (VR‑2097; ATCC, Manassas, VA, USA) to obtain 7.4 Log PFU/mL. The HAV‑
inoculated fermented clam samples were then incubated for 0, 1, 2, 3, 5 and 7 days at
−20 ◦C, 4 ◦C, and 25 ◦C. The artificially inoculated HAV in the samples was recovered
using the next steps. The fermented clam samples were treated with 18 mL glycine buffer
(0.1 M glycine, 0.3 M NaCl; pH 9.5; Sigma‑Aldrich, St. Louis, MO, USA). To obtain the su‑
pernatant, the suspension was vortexed at 21 ◦C for 5 min before centrifugation(Beckman
Coulter, Brea, CA, USA) at 10,000× g at 4 ◦C for 15 min. The supernatant was treated with
20 mL of 16% polyethylene glycol (PEG; Sigma‑Aldrich) 8000 containing 0.25 M NaCl and
then rocked for 20min (60 oscillations/min) at room temperature. The supernatant was dis‑
carded after the suspension was centrifuged for 10 min at 10,000× g at 4 ◦C.
Then, 1 mL of phosphate‑buffered saline was used to resuspend the pellet (pH 7.0). The re‑
sultant solution was diluted 10 times in Hank’s balanced salt solution (Gibco,
Carlsbad, CA, USA) and filtered through 0.22 µm and 0.45 µm syringe filters. The filtrate
was immediately assayed for plaque formation. Plaque assays for HAV were performed
as previously described [17]. Fetal Rhesus Kidney‑4 (FRhK‑4) cells were seeded approxi‑
mately 2× 104 cells/well in 12‑well plates and incubated at 37 ◦C and 5% CO2 for 4–6 days
to reach 95% confluence for each well. The inoculum extracted from the fermented clam
samples was serially diluted 10‑fold in serum‑free Dulbecco’s Modified Eagle Medium
(DMEM,Gibco). Eachwell of confluent FRhK‑4 cells was inoculatedwith 0.1mL of diluted
inoculum, and the plates were incubated for 1 h at 37 ◦C and 5% CO2. After incubation,
1 mL of type 2 agarose mixed with 2×DMEM (1:1) was overlaid at room temperature and
incubated for 6–7 days at 37 ◦C and 5% CO2. Cells were fixed with 10% neutral forma‑
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lin (Sigma‑Aldrich) and stained for 20 min at room temperature with a 0.1% crystal violet
solution. The HAV titer was calculated as Log PFU/g [18].

2.4. Predictive Model Development
To develop primary models, the HAV plaque counts were fitted to the Baranyi model

with DMfit 3.5, provided by Combase, as follows [15]:

Nt = N0 + At × DR − ln
[

1 +
exp(DR × At)− 1
exp(Nmax − N0)

]

At = t +
1

DR
ln
(

exp(−DR) + q0

1 + q0

)
q0 =

1
exp(h0)− 1

whereNmax andN0 denote the final and initial viral titers, respectively,Nt denotes the viral
titers at time t, and h0 is a parameter that defines the initial physiological state of HAV.DR
(Log PFU/g/h) represents the death rate of HAV, At represents the physiological state of
the virus titer when the shoulder period is defined as the time in hours where the levels of
pathogen remain at the level of inoculation and q0 is a measure of the initial physiological
state of the cells [19]. The Baranyi model estimates HAV quantity after exposure to various
temperatures along the three different counting points, market, transportation, and home
storage. Because HAV does not grow in food, the Baranyi model in the death curve model
was used based on two parameters: shoulder period (h) and death rate (Log CFU/g/h).
To assess the effect of temperature on DR, DR data were fitted with the second predictive
model described below.

DR = Y0 + a × T

where Y0 is constant, a is the rate constant, and T denotes temperature.
Fermented clams were infected with HAV as described above and stored at 15 ◦C to

validate the efficacy of the predictive models with the parameter estimates in the Baranyi
model. To obtain the observed values, HAV plaque counts were determined during stor‑
age using the plaque assay described above. The root mean square error (RMSE), accuracy
factor (Af), and bias factor (Bf) were calculated to measure the differences between the ob‑
served and predicted HAV titers, as follows [20]:

RMSE =
√

∑(observed value − predicted value)2/n

A f = 10(∑ |Log(predicted value/observed value)|/n)

B f = 10(∑ Log(predicted value/observed value)/n)

where nmeans the number of data points.

2.5. Consumption Ratio and Amount of Fermented Clams in South Korea
The consumption amounts and ratio of fermented clams in South Korea were calcu‑

lated using data from the Korea Disease Control and Prevention Agency (KDCA) Korea
National Health and Nutrition Examination Survey (KNHANES) in 2018. The consump‑
tion amount and ratio of the fermented clamswere extracted from the raw data using SAS®
version 9.4 (SAS Institute Inc., Cary, NC, USA), and duplicate data were excluded by per‑
forming a redundancy test in an Excel spreadsheet. The consumption data were evaluated,
and an acceptable probability distribution was determined using @RISK software.

2.6. Dose–Response Model
The HAV dose–response model was investigated using published studies to analyze

the response to HAV foodborne illness after the consumption of fermented clams.
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2.7. Risk Characterization
In an Excel spreadsheet, a simulation model was developed using the HAV level of

contamination in fermented clams, predictive models, probabilistic distributions for tem‑
perature and time during transportation and storage, probabilistic distribution of con‑
sumption amount, consumption ratio, and dose–response model. This simulation model
was used for the simulation using @RISKwith 10,000 iterations to calculate the risk of HAV
foodborne illnesses caused by fermented clam ingestion per person per day. Furthermore,
variables with a major impact on risk were identified.

3. Results and Discussion
3.1. Prevalence and Initial Contamination Level of HAV in Fermented Clams

The investigation of HAV contamination in fermented clams revealed that 44 of
136 samples were positive for HAV [21]. Of these 44 samples, 30 were produced in
South Korea and 14 were imported. This result was fitted to the Beta distribution
[Beta(45, 93)], and the initial contamination level of HAV in the fermented clams was esti‑
mated using @RISK. The average level was−3.7 Log PFU/g. The prevalence of pathogenic
microorganisms in salt‑treated foods is thought to be rare; however, as evidenced by re‑
cent HAV foodborne illness cases of fermented clams in South Korea, numerous microor‑
ganisms have been discovered in foods with high concentrations of salt [21–23]. While
research on microbial contamination of meat such as chicken, cattle, and pork has been
conducted sufficiently, research on microbial contamination of aquatic products contain‑
ing salt, sugar, and acid is limited [24–28]. Therefore, investigations on themicrobiological
contamination level of marine products that contain salt, sugar, and acid should be carried
out continually; in particular, studies on the contamination of viruses that cause foodborne
illnesses need to be conducted.

3.2. Temperature and Time of the Fermented Clams during Storage and Transportation
To predict the number of HAV immediately before consumption, the probabilistic

distributions of the fermented clams were set as moving from the market to home storage
and consumption. The temperature displayed in the markets was fitted to the Uniform
distribution [Uniform(2.2281, 35)] [29,30]. The display time at the market showcase was
up to 5 months and was mainly displayed for 1 week. Hence, it was fitted to the Pert dis‑
tribution [Pert(0, 168, 3600)]. For the time and temperature at which consumers purchase
food from a market and move to their homes, data from Jung (2011) were used [30]. The
transportation time ranged from 0.325 h to 1.643 h, and thus, it was fitted to the Uniform
distribution [Uniform(0.325, 1.643)]. The temperatures during the fermented clams trans‑
portation ranged from 10 ◦C to 25 ◦C; thus, it was fitted to the Pert distribution [Pert(10.0,
18.0, 25.0)]. For home storage, fermented clams were stored for up to 720 h [31]. Thus,
it was fitted to the Uniform distribution [Uniform(0, 720)]. The LogLogistic distribution
[LogLogistic(−29.28, 33.22, 26.66, Truncate(−5, 10)] from a study by Lee et al. (2015) was
referenced for the storage temperature at home [32].

3.3. Predictive Models to Describe the Fate of HAV during Transport and Storage as Temperature
and Time Changes

To describe the changes in the HAV contamination level in the fermented clams ac‑
cording to the changes in temperature and time, predictive models were developed. The
generated curves of primary predictive models for the number of HAV with the Baranyi
model based on temperature and time changes revealed that viral titers at 25 ◦C decreased
slightly over time. At −20 ◦C and 4 ◦C, the HAV concentration barely changed (Figure 1).
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Figure 1. Hepatitis A virus death in the fermented clam during storage at −20 ◦C (a), 4 ◦C (b), and
25 ◦C (c) with the Baranyi model (•: observed data; ―: fitted line).

Accordingly, the shoulder period of HAV for fermented clams was 70 h at −20 ◦C,
but the shoulder period was 5.4 h at 25 ◦C (Table 1). The salinity of fermented clams is
approximately 10%, which may not interact with the virus at low temperatures. However,
at 25 ◦C, 10% salinity may interfere with the molecular structure of the virus [33]. Thus,
a slight decrease in the HAV titer was observed at 25 ◦C. As the temperature increased,
the shoulder period decreased (Table 1). Secondary predictive models were created to
evaluate the influence of temperature on the shoulder period and death rate values using
a linearmodel (Figure 2). Thedeveloped secondarymodels and their corresponding graphs
are shown in Figure 2. An additional experiment was conducted at 15 ◦C to validate the
performance of the developed predictive models. Although the R2 value of the developed
secondarymodelwas not high, the validation results showed that the developed predictive
models were applicable to depict the fates of HAV in fermented clams. The RMSE value
was 0.116, which was close to 0, andAf and Bf were 1.00 and 1.03, respectively, which were
close to 1.

Table 1. Kinetic parameters for hepatitis A virus in fermented clams calculated from the primary
predictive model.

Parameter
Temperature

−20 ◦C 4 ◦C 25 ◦C

Death rate
(Log PFU/g/h) −1.6 × 10−3 −2.0 × 10−3 −8.2 × 10−3

Shoulder period (h) 70 26 5.4
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The changes in the HAV contamination level in the fermented clams simulated by the
developed predictive models with the probabilistic distributions of temperature and time
during transport and storage are presented in Figure 3. When the initial contamination
level went through the market (C1)—transfer from market to house (C2)—storage at the
house (C3), the average predicted HAV contamination level slightly decreased from −6.7
to −7.8 Log PFU/g.
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3.4. Consumption Ratio and Amount of Fermented Clams
Nine participants stated they ate ‘fermented clam (Jogaejeotgal)’ out of a total of

7064 who took the KNHANES in 2018. Accordingly, 0.13% of South Koreans consumed
fermented clams, and they consumed 9.77 g on average. The optimal probability dis‑
tribution for the consumption amount was the Exponential distribution [Expon(8.1789,
Shift(0.69235))] (Figure 4).
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3.5. Dose–Response Model
In this study, the Beta Poisson model [P = 1 − (1 + dose/β)−α] with α = 0.373 and

β = 186.4 was cited because this dose–response model was most frequently used in other
studies [34].

3.6. Risk Characterization and Simulation
To assess the risk of HAV foodborne illness occurring per person per day when fer‑

mented clams were ingested, a simulation model was developed using the data gathered
in this investigation (Table 2). The results showed that the mean probability of HAV food‑
borne illness per person per day was 6.56 × 10−11 (minimum 0, maximum 2.54 × 10−7).
Compared to other foods, fermented clams had a lower consumption ratio (0.13%) and av‑
erage intake (9.77 g), which had an impact on the risk calculation results. Thus, the riskwas
estimated to be slightly lower. However, when assuming regular consumers of fermented
clams, the probability of HAV foodborne illness increased to 8.11 × 10−8 on average, with
a maximum of 7.12 × 10−5. After analyzing the correlation between the variables and
risk, the consumption ratio showed the greatest correlation with risk (Figure 5). As a re‑
sult, while the risk of HAV foodborne illness from fermented clams is low throughout the
country, regular consumers of fermented clams should be aware of foodborne illness.

Table 2. Simulation model for estimating the risk of hepatitis A virus in the fermented clams
with @RISK.

Input Unit Variable Equation Reference

Initial contamination level

Hepatitis A virus prevalence PR =Beta(45, 93) This research; [21]

Hepatitis A virus concentration GC/g HAV =−LN(1 − PR)/2 g [15]

Initial contamination level PFU/g CL =1/1000 × HAV [35]

Log PFU/g LogIC =Log(CL)

MARKET

Display time h Timemark =Pert(0, 168, 3600) This research

Temperature during display ◦C Tempmark =Uniform(2.2281, 35) [29,30]

Hepatitis A virus death

h0 =0.001

This research; [19]

Log PFU/g Y0 =average(Y0i) Fixed 3.5

Log PFU/g Yend =average(Yendi) Fixed 3.2

LN(q) =LN(1/(EXP(h0) − 1))

Death rate Log PFU/g/h DRmark =−0.0035 − 0.0001 × Tempmark

Hepatitis A virus death Log PFU/g C1

=LogIC + 1/(1 −
(10‑lY0‑Yendl/LN(10))) × (1 +
EXP(‑LN(q)) × DRmark

× Timemark

TRANSPORTATION FROMMARKET TO HOME

Transportation time h Timeveh =Uniform(0.325, 1.643) [30]

Temperature during transportation ◦C Tempveh =Pert(10.0, 18.0, 25.0) [30]

Hepatitis A virus death
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Table 2. Cont.

Input Unit Variable Equation Reference

h0 =0.001

This research; [19]

Log PFU/g Y0 =average(Y0i) Fixed 3.5

Log PFU/g Yend =average(Yendi) Fixed 3.2

LN(q) =LN(1/(EXP(h0) − 1))

Death rate Log PFU/g/h DRveh =−0.0035 − 0.0001 × Tempveh

Hepatitis A virus death Log PFU/g C2

=C1 + 1/(1 −
(10‑lY0‑Yendl/LN(10))) × (1 +
EXP(‑LN(q)) × DRveh

× Timeveh

HOME

Storage time h Timehome =Uniform(0, 720) [31]

Temperature during storage ◦C Temphome
=LogLogistic(−29.28, 33.22,
26.66, RiskTruncate(−5, 10))

[32]

Hepatitis A virus death

h0 =0.001

This research; [19]

Log PFU/g Y0 =average(Y0i) Fixed 3.5

Log PFU/g Yend =average(Yendi) Fixed 3.2

LN(q) =LN(1/(EXP(h0)−1))

Death rate Log PFU/g/h DRhome =−0.0035 − 0.0001 × Temphome

Hepatitis A virus death Log PFU/g C3

=C2 + 1/(1 −
(10‑lY0‑Yendl/LN(10))) × (1 +
EXP(‑LN(q)) × DRhome

× Timehome

PFU/g C3PFU/g =10C3

CONSUMPTION

Average consumption amount
per day

g Consump
=Expon (8.1689,

RiskShift(0.69235),
RiskTruncate(3, 36.3))

This research; [9]

Consumption ratio per day % ConRatio =0.13 This research; [9]

CR(0) =1 − 0.13/100 [9]

CR(1) =0.13/100 [9]

CR =Discrete({0,1}, {CR(0), CR(1)}) [9]

g Amount =IF(CR = 0, 0, Consump) [9]

DOSE–RESPONSE

Hepatitis A virus amount PFU/g D =C3PFU/g × Amount

α =Fixed 0.373
[34]

β =Fixed 186.4

RISK

Probability of illness P =1 − (1 + D/β)−α [34]

PR, prevalence; CL, contamination level; Temp, Temperature; DR, death rate; Consump, consumption; ConRatio,
consumption ratio; D, dose.
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6.56 × 10−11/person/day for the entire population, but only for those who consumed
the fermented clams, the probability of HAV foodborne illness increased to
8.11 × 10−8/person/day. In conclusion, the risk of HAV foodborne illness caused by fer‑
mented clams is considered minor throughout the country, but those who regularly con‑
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