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Abstract
Motivation: Efficient assessment of the blood–brain barrier (BBB) penetration ability of a drug compound is one of the major hurdles in central
nervous system drug discovery since experimental methods are costly and time-consuming. To advance and elevate the success rate of
neurotherapeutic drug discovery, it is essential to develop an accurate computational quantitative model to determine the absolute logBB value
(a logarithmic ratio of the concentration of a drug in the brain to its concentration in the blood) of a drug candidate.

Results: Here, we developed a quantitative model (LogBB_Pred) capable of predicting a logBB value of a query compound. The model achieved
an R2 of 0.61 on an independent test dataset and outperformed other publicly available quantitative models. When compared with the available
qualitative (classification) models that only classified whether a compound is BBB-permeable or not, our model achieved the same accuracy
(0.85) with the best qualitative model and far-outperformed other qualitative models (accuracies between 0.64 and 0.70). For further evaluation,
our model, quantitative models, and the qualitative models were evaluated on a real-world central nervous system drug screening library. Our
model showed an accuracy of 0.97 while the other models showed an accuracy in the range of 0.29–0.83. Consequently, our model can
accurately classify BBB-permeable compounds as well as predict the absolute logBB values of drug candidates.

Availability and implementation: Web server is freely available on the web at http://ssbio.cau.ac.kr/software/logbb_pred/. The data used in this
study are available to download at http://ssbio.cau.ac.kr/software/logbb_pred/dataset.zip.
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1 Introduction

The blood–brain barrier (BBB) is a highly selective semi-
permeable membrane composed of endothelial cells. The BBB
regulates the transport of molecules from blood vessels to the
central nervous system (CNS) (Bradbury 1993), and the
tightly selective permeability enables to maintain homeostasis
of the brain microenvironment, and protects the CNS from
damage by harmful substances (Abbott et al. 2010).

CNS diseases are the second most common following car-
diovascular diseases (Vilella et al. 2015). The lower success
rate of the CNS drugs (8%) than that of the cardiovascular
drugs (20%) is mainly due to the BBB since most small-
molecule and macromolecule drugs are not able to cross
through the BBB into the brain (Chen and Liu 2012, Gao
et al. 2013, Valentini et al. 2019). Therefore, BBB permeabil-
ity of CNS drugs should be improved to elevate the success
rate in CNS drug discovery (Di et al. 2013).

Various in vivo and in vitro experimental assays have been de-
veloped to measure the BBB permeability of molecules: a loga-
rithmic ratio of the concentration of a drug in the brain to its
concentration in the blood (logBB) (Abbott 2004, Carpenter
et al. 2014, Ciura and Dziomba 2020). In vitro methods such as
parallel artificial membrane permeability assay (PAMPA) and
immobilized artificial membrane (IAM) typically use cultured
brain tissue cells or artificial membranes to measure a drug con-
centration on each side (Reichel et al. 2003, Carrara et al. 2007,
Mensch et al. 2009). Though in vitro methods have advantages
in performing experiments in parallel and are suitable for drug
screening, none of the methods can reproduce in vivo environ-
ments and, thus, in vitro logBB values are often not consistent
with in vivo logBB values (Colquitt et al. 2011). On the con-
trary, in vivo methods using living animals are appropriate to
obtain real logBB values, but they are more difficult to conduct
as well as time-consuming and laborious, and thus are not suit-
able for large-scale experiments (Srinivasan et al. 2015,
Valentini et al. 2019).

Due to the experimental difficulties, computational meth-
ods have been introduced to estimate the BBB permeability of
drug candidates (Kumar et al. 2013; Radan et al. 2022). Early
prediction models were mainly qualitative and predicted
whether a query compound was BBB-permeable or non-
permeable (Muehlbacher et al. 2011). Several machine learn-
ing algorithms including random forest (RF) (Svetnik et al.
2003), support vector machine (SVM) (Ghorbanzad’e and
Fatemi 2012), genetic algorithm (Shen et al. 2008), and artifi-
cial neural network (ANN) (Jung et al. 2007) have been used
to develop BBB permeability classification models (Gerebtzoff
and Seelig 2006, Guerra et al. 2008, Mehdipour and Hamidi
2009, Martins et al. 2012, Suenderhauf et al. 2012, Wang
et al. 2018, Singh et al. 2020, Tang et al. 2022). In a recent
study, a BBB classification model was developed based on
Light Gradient Boosting Machine (LightGBM), a gradient-
boosting framework based on decision tree algorithms, with
7162 compounds and achieved a high area under the curve
(AUC) value of 0.94 (Shaker et al. 2021).

Recently, the demand for quantitative BBB permeability
models has been increasing to predict the permeability of drug
candidates to cross BBB (Muehlbacher et al. 2011). Several
quantitative models have been developed with the logBB val-
ues of compounds. However, since the publicly available
logBB dataset is very limited, it is difficult to develop a high-
performance quantitative model using a small dataset.
Therefore, out of several published quantitative models, only

few are publicly accessible (Platts et al. 2001, Bayat et al.
2011, Muehlbacher et al. 2011, Shin et al. 2021). One of the
publicly accessible models for quantitative prediction is
PreADMET (Lee et al. 2004). It is an online web server for
the quantitative prediction of drug properties, developed by
Lee et al., in 2004 based on ANN trained with the 2D descrip-
tors calculated by TOPOMOL (Lee et al. 2004, Polyakova
et al. 2006). Another available model is ADMET Prediction
Service developed by Dyabina et al. (2016). It was trained
based on ANN with the logBB values of 529 compounds. In a
recent study by Ciura et al. (2020), multi-linear regression
(MLR) and SVM were developed with known logBB values of
only 45 marketed drugs. They used 30 of the drugs for model
training and 11 for testing. The models achieved an R2 score
of 0.69 by SVM model and 0.76 by MLR model on the train-
ing dataset. When applied to the test dataset, R2 was over >
0.9. The abnormally high R2 score on the test dataset might
be due to the extremely small amount of data. Wang et al., as-
sembled a dataset of 439 logBB values (341 for training and
98 for validation) and developed three machine learning mod-
els based on RF, SVM, and k-nearest neighbor (kNN) using
192 2D descriptors calculated by Molecular Operating
Environment (MOE) (Wang et al. 2015). Then, they devel-
oped a consensus model that averages the predicted scores
generated from the three machine learning models. The con-
sensus model attained an R2 of 0.52 on validation dataset.
Liu et al. (2001) developed a quantitative structure activity re-
lationship (QSPR) models to evaluate the BBB penetration.
The authors used a dataset of 112 compounds with experi-
mentally determined BBB penetration and calculated various
molecular descriptors using Dragon software. They used
MLR and partial least squares regression to develop QSPR
models. The best model achieved an R2 of 0.70 on validation
dataset. Wu et al., proposed an ANN model to predict the
BBB permeability of drug-like compounds (Wu et al. 2021).
The model used a group contribution method to estimate the
molecular descriptors and was trained on a dataset of experi-
mentally measured logBB values of 255 compounds. The
model achieved a prediction accuracy with a relative error of
0.810 and root mean square error (RMSE) of 0.236 on an ex-
ternal validation dataset (40 compounds).

Here, we aimed at developing a quantitative BBB perme-
ability prediction model with a larger dataset and thereby
having a higher accuracy. To the best of our knowledge, we
compiled the largest logBB dataset from various literature
(Platts et al. 2001, Fu et al. 2005, Bayat et al. 2011,
Muehlbacher et al. 2011, Carpenter et al. 2014, Shin et al.
2021, Tang et al. 2022) and used a gradient boosting machine
learning algorithm (LightGBM) for model construction
(Zhang et al. 2019). Our constructed model (LogBB_Pred)
showed an R2 of 0.61 and mean square error (MSE) of 0.36,
which were better than publicly available quantitative BBB
models when evaluated on a test dataset. Our model is freely
accessible via http://ssbio.cau.ac.kr/software/logbb_pred/ for
practical use and we believe that our model would be useful
in early high-throughput screening of CNS drugs and would
increase the success rate in CNS drug development.

2 Materials and methods

2.1 Dataset collection and preprocessing

The size and quality of datasets greatly impact the perfor-
mance of the prediction models trained by machine learning

2 Shaker et al.
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algorithms (Chen et al. 2021). For a better performance, we
compiled the largest dataset, to the best of our knowledge, of
the experimentally measured 1276 logBB values from the lit-
erature (Platts et al. 2001, Fu et al. 2005, Bayat et al. 2011,
Muehlbacher et al. 2011, Carpenter et al. 2014, Shin et al.
2021, Tang et al. 2022). To avoid bias in the dataset leading
to a biased or overfitted prediction model, similar chemical
compounds were discarded based on Tanimoto similarity
with a cutoff of 0.85 (Bajusz et al. 2015, Macomber et al.
2015). For the similarity calculation, chemical compounds
were represented in the format of simplified molecular-input
line-entry system (SMILES) (Weininger 1988) and their fin-
gerprints were calculated by Dragon software (Mauri et al.
2006). Tanimoto similarity was calculated based on the
fingerprints of compounds. Consequently, the final dataset
contained 913 logBB values ranging from �2.69 to 1.7. The
equation for Tanimoto similarity is:

Tða; bÞ ¼
Nc

Na þNb �Nc
: (1)

T denotes Tanimoto similarity between molecules a and b,
where Na and Nb represent the numbers of on bits in the mol-
ecules a and b, and Nc denotes the number of bits that are on
in both molecules.

For feature preparation, the physical and chemical proper-
ties of chemical compounds were calculated from the chemi-
cal structures represented in the SMILES format. Specifically,
the properties (1650 2D/3D molecular descriptors) including
eccentric connectivity index (Sharma et al. 1997) and charged
partial surface area (Stanton and Jurs 1990) were calculated
using a publicly available tool, Mordred, which is a recently
published molecular descriptor calculator (Grisoni et al.
2018, Moriwaki et al. 2018).

After removing descriptors with missing values, the result-
ing dataset contained 1164 informative molecular descriptors
for each compound. Since there might be redundant features,
we filtered out such features by Pearson’s correlation coeffi-
cient (PCC) between features (Thakkar et al. 2021). If two
features are redundant, only one with lower PCC with logBB
was discarded. To find an optimal feature set, different train-
ing datasets were constructed with different coefficient thresh-
olds from 0.1 to 0.9. After filtering, features were normalized
using standard scaling technique (Raju et al. 2020). The data-
sets were used for cross-validation and an optimal threshold
was determined.

In order to validate model performance, we collected addi-
tional 109 compounds (Hou and Xu 2003). Compounds that
showed a Tanimoto similarity >0.85 with those in the train-
ing dataset were discarded, which resulted in a total of 27
unique compounds. These compounds were used as an inde-
pendent test dataset for external validation. For the evalua-
tion of our model as a classification model, we also collected
binary data of compounds (BBB-permeable and BBB-
nonpermeable) from MedChemExpress (https://www.medche
mexpress.com/).

2.2 Model construction and evaluation

In this study, we used LightGBM algorithm to develop a re-
gression model to predict BBB permeability (logBB value)
(Zhang et al. 2019). LightGBM is an advanced method of
gradient boosting decision tree and is known to perform bet-
ter than other decision tree learning algorithms (Friedman

2001, Al Daoud 2019). LightGBM also implements sparse
optimization, multiple loss functions, regularization, bagging,
early stopping, and efficient parallel training.

For comparison, we also developed prediction models
based on other machine learning algorithms: RF (Svetnik
et al. 2003), kNN (Song et al. 2017), ANN (Tadeusiewicz
2015), MLR (Vieira et al. 2016), AdaBoost (CAO et al.
2014), XGBoost (Ogunleye and Wang 2020), and SVM (Ben-
Hur et al. 2008). RF is an ensemble learning method that
combines multiple decision trees to improve model accuracy
and generalization. It has been widely applied for classifica-
tion as well as regression (Svetnik et al. 2003). kNN is an-
other simple and efficient algorithm for both classification
and regression tasks. kNN algorithm finds the k-nearest data
points in a training dataset close to a given input data point,
and then predict an output based on the majority vote or the
average of the k-nearest neighbors (Song et al. 2017). ANN is
an algorithm mimicking human brain learning and is com-
posed of nodes and connections (Lancashire et al. 2009). The
learning process of ANN is to find the best interconnections
(weights) between nodes constituting the network topology.
MLR is a statistical method used to model a linear relation-
ship between a dependent variable and one or more indepen-
dent variables. The objective of MLR is to find the best-fit line
that represents the relationship between variables (Vieira
et al. 2016). SVM is a supervised learning algorithm used for
classification and regression analysis. Its fundamental concept
is to identify a hyperplane that most effectively divides data
points into distinct classes. The objective of the algorithm is
to locate the decision boundary that optimizes the margin be-
tween the classes, which is defined as the gap between the hy-
perplane and the closest data points from each class (Ben-Hur
et al. 2008). AdaBoost, known as Adaptive Boosting, is an en-
semble method in machine learning. This algorithm initially
assigns equal weights to all data points and constructs a
model. It then increases the weights of misclassified points,
emphasizing their importance in the subsequent model. This
process continues until a lower error rate is achieved, leading
to the training of multiple models (Cao et al. 2014). XGBoost
(Extreme Gradient Boosting) uses gradient boosting, which
adjusts the weights of misclassified data points to prioritize
difficult-to-predict instances. This process leads to the crea-
tion of a strong ensemble model that provides accurate predic-
tions for various tasks, such as classification and regression
(Ogunleye and Wang 2020).

The 913 compounds were utilized as a training dataset. For
evaluation, we conducted a 10-fold cross-validation with the
training dataset. For model optimization, we performed pa-
rameter optimization since parameters often impact the accu-
racy of prediction models (Yang and Shami 2020).
Parameters were optimized on the basis of their impact on
model performance, GridSearchCV method was applied for
parameters optimization and selected parameters and their
range values investigated are listed in Supplementary Table S1
(Belete and Huchaiah 2022). An optimized model was evalu-
ated on the independent dataset of 27 unique compounds.

2.3 Performance metrics

The quantitative model performance was measured based on
two statistical criteria namely coefficient of determination
(R2) and mean square error (MSE). They are defined as
below:

Quantitative model to predict BBB permeability (LogBB value) 3
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R2 ¼ 1�
Pn

i¼ 1 yi � ŷið Þ2Pn
i¼ 1 yi � yið Þ2

; (2)

MSE ¼ 1
n

Xn

i¼ 1
ðyi � ŷiÞ

2: (3)

yi denotes a predicted logBB value, ŷi denotes an actual logBB
value, yi is the mean of the actual values, and n is the amount
of data. The R2 score close to þ1 and MSE score close to 0
represent a higher accuracy and better performance. These
metrics were used to evaluate our model and to compare the
performances of publicly available models.

The qualitative model performance was calculated based
on Matthew’s correlation coefficient (MCC), sensitivity, and
specificity. They are defined as below:

Sensitivity ¼ TP
TPþ FN

; (4)

Specificity ¼ TN
TN þ FP

; (5)

MCC ¼ TP� TN � FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞðTPþ FNÞðTN þ FPÞðTN þ FNÞ

p ;

(6)

where TP represents the number of true positives, TN repre-
sents the number of true negatives, FP represents the number
of false positives, and FN denotes the number of false
negatives.

3 Results and discussion

To advance the CNS drug discovery, it is essential to develop
a cheap, fast, and accurate method to assess the BBB perme-
ability of drug candidates. Computational prediction of BBB
permeability would be an alternative method to the in vitro
and in vivo methods. Though computational predictions are
not perfect yet, they can reduce the number of drug candi-
dates enough to afford experimental testing and allow
high-throughput screening of a huge number of chemical
compounds at a much faster speed. Thus, the challenge in
CNS drug discovery is the development of an accurate BBB
permeability prediction model.

In this study, we compiled the largest logBB dataset, to our
knowledge, and used an efficient machine learning algorithm
to build a more accurate quantitative model. Currently, most
published BBB permeability prediction models are classifica-
tion models that just determine whether a query compound is
BBB-permeable or not (Castillo-Garit et al. 2017, Wang et al.
2018, Plisson and Piggott 2019, Singh et al. 2020). In CNS
drug discovery, it is essential to predict the quantitative BBB
permeability of chemical compounds, such as logBB since cer-
tain BBB-less-permeable drugs are still effective at low concen-
trations enough to be used as drug candidates. However, due
to the limited data size of available logBB values, there are
several quantitative BBB permeability prediction models (Sun
2004, Bayat et al. 2011, Wu et al. 2021) and only few of
them are publicly available to access (Lee et al. 2004,
Dyabina et al. 2016).

3.1 Overall flow of model construction

The overall scheme to construct a quantitative logBB predic-
tion model is illustrated in Fig. 1. Firstly, we collected the
logBB values of chemical compounds from the various pub-
lished literature and removed redundant chemicals to avoid
biased or overfitted learning (Fig. 1A). To prepare features,
we calculated the physical and chemical properties (descrip-
tors) of the chemical compounds and discarded the descrip-
tors with missing values. Redundant features were also
removed based on PCC threshold. An optimal PCC threshold
was determined by testing models built on various feature
numbers, i.e. PCC threshold. Prediction models were devel-
oped based on various learning algorithms including
LightGBM and trained models were cross validated (Fig. 1B).
The final optimized model trained using LightGBM algorithm
with different parameters were evaluated quantitatively on a
test dataset and its performance was compared with other
quantitative models (Fig. 1C). To investigate whether our
model performs well as a classification model, the compounds
in the test dataset were binarized into BBB-permeable and
nonpermeable by a logBB threshold of �1 (Gao et al. 2017).
The performance as a qualitative model was also compared
with other qualitative models (Fig. 1D).

3.2 Data collection

In this study, as data size is one of the critical factors affecting
the performance of machine learning models, we compiled
1276 logBB values of chemical compounds from the literature
(Platts et al. 2001, Fu et al. 2005, Bayat et al. 2011,
Muehlbacher et al. 2011, Carpenter et al. 2014, Shin et al.
2021, Tang et al. 2022), which is the largest logBB dataset, to
our knowledge. Although we collected the largest dataset, it
should be noted that logBB values were determined by differ-
ent experimental methods or under different conditions, and,
thus, the quality of the dataset can still be improved.
However, this issue could be resolved only when a robust and
high-throughput experimental method is used.

3.3 Data preprocessing

Since there might be similar chemical compounds in the col-
lected logBB dataset, similar compounds were discarded
based on Tanimoto similarity between chemicals to maintain
the uniqueness of the compounds. Otherwise, the dataset may
lead to a biased and overfitted model with abundant similar
compounds. To calculate Tanimoto similarity, chemical com-
pounds were firstly represented in SMILES format and then
proceeded to Extended connectivity fingerprints (ECFPs) cal-
culation using Dragon software (Mauri et al. 2006). The fin-
gerprints, represented as 1024 bits of 0 or 1, were then used
to calculate the similarity of two chemical compounds. The
compounds with a similarity of over 0.85 were discarded
from the dataset, which was a commonly accepted threshold
to determine whether the two chemical compounds are simi-
lar or not (Macomber et al. 2015). Finally, 913 compounds
were left in the logBB dataset and the distribution of these
logBB values is shown in Fig. 2A.

In machine learning, numerical values (features) are re-
quired for training. Mordred was used to calculate the physi-
cal and chemical properties (descriptors), and those numerical
values were used as features for machine learning. Mordred
calculated 1650 2D and 3D molecular descriptors including
molecular weight, lipophilicity (logP), number of rings, num-
ber of bonds, and number of atoms. Molecular descriptors

4 Shaker et al.
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are mathematical representation of molecular properties: 2D
descriptors provide information regarding size, shape, and
electronic distribution, and 3D descriptors describe the 3D
conformation of a molecule, such as intramolecular bonding
(Nettles et al. 2006). A total of 1650 descriptors were initially
considered for the analysis. Those with missing values were
removed from the dataset, leaving a subset of informative
descriptors.

Like the similarity between chemicals, there may be similar
features that have similar impact on model performance. We
calculated pairwise PCC values between features, and be-
tween feature and logBB. If a pair of features has a greater
correlation than a threshold, one with lower correlation with
logBB was discarded. The optimal PCC threshold was 0.8
when we evaluated the effect of various PCC thresholds on
performance.

3.4 Cross-validation with training dataset

We constructed models based on different learning algorithms
(LightGBM, RF, kNN, MLR, SVM, AdaBoost, XGBoost, and
ANN) and cross-validated them in 10-fold. Firstly, we set a PCC
threshold and selected features. The number of features with re-
spect to PCC threshold is shown in Fig. 2B. Once features were
selected, six different models using different learning algorithms
were constructed using 90% of the training dataset and then
evaluated on the remaining 10% of the data. This model con-
struction and evaluation were iterated 10 times and averaged
performance values were obtained. The cross-validation results
with respect to various feature numbers, i.e. PCC threshold, are
shown in Fig. 2C. LightGBM outperformed other algorithms in

terms of R2 score when trained with the features extracted using
a PCC threshold of 0.8 (Fig. 2C).

LightGBM has many advantages such as faster training
speed, higher efficiency, and better accuracy, and, thus, it out-
performs existing boosting frameworks in terms of accuracy
(Al Daoud 2019). Another advantage is the employment of
Gradient-Based One-Side Sampling and Exclusive Feature
Bundling techniques, which allows handling a large number
of data instances and data features, respectively, and therefore
avoiding overfitting problems (Zhang et al. 2019). In addi-
tion, the algorithm supports an exclusive feature bundling to
reduce the dimensionality of a dataset, and thereby making it
faster and more efficient (Al Daoud 2019).

The evaluation revealed that the model trained using
LightGBM algorithm with 396 informative features selected
with a PCC threshold of 0.8 demonstrated better prediction
performance in terms of R2 score compared with other algo-
rithms and other numbers of features. The resulting average
MSE of LightGBM model was 0.22 and its R2 score was 0.59
(Table 1). During the cross-validation, parameters of the algo-
rithms were investigated to optimize the models since parame-
ter optimization can improve model accuracy (Huang 2020).
The investigated parameters of LightGBM are listed in
Supplementary Table S1 along with their searched value
ranges and selected optimal parameter values.

3.5 Performance comparison with other quantitative

models

The LightGBM model was further evaluated using an inde-
pendent dataset collected separately for an unbiased model

Figure 1. Schematic diagram of logBB prediction model construction. (A) LogBB dataset collection and features preprocessing. (B) Model was trained on

a complete dataset and further evaluated on external dataset, and average model performance was also measured by applying 10-fold cross-validation.

(C) Independent test dataset was used to compare the performance of our model with other publicly available quantitative models. (D) Binarized test

dataset and additional BBB-permeable drug library were used to compare the performance of our model as a qualitative model with publicly available

qualitative models.

Quantitative model to predict BBB permeability (LogBB value) 5
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validation. The model achieved an R2 score was 0.61 and
MSE of 0.36 (Table 1 and Fig. 3), indicating that our model
can be used as a highly accurate tool for predicting the poten-
tial blood–brain barrier permeability of query compounds.
Therefore, it can also be used for screening large chemical
compounds for CNS drug candidates.

The performance of our model was compared with those of
publicly available quantitative BBB prediction models:
ADMET Prediction Service (Dyabina et al. 2016) and
PreADMET (Lee et al. 2004). As publicly available quantita-
tive models are few, we could compare ours with only those

two models. The compounds included in the test dataset were
queried to the public models to predict their logBB values,
and the predicted values are shown in Fig. 3 and their per-
formances are shown in Table 1. It should be noted that the
compounds used to train the model served at ADMET
Prediction Service and PreADMET were not known, the com-
pounds included in the test dataset might be used for the
training of the models. Nonetheless, our model had a higher
R2 score and smaller MSE than other models. The R2 scores
of ADMET Prediction Service and PreADMET were 0.56 and
0.30, respectively. The MSE scores of the two models were

Table 1. Performance comparison of our model with publicly available quantitative models.

Model R2 MSE Reference

Cross-validation Our model (LogBB_Pred) 0.59 0.22 This study
Independent evaluation Our model (LogBB_Pred) 0.61 0.36 This study

ADMET prediction service 0.56 0.41 Dyabina et al. (2016)
PreADMET 0.3 0.66 Lee et al. (2004)

Figure 2. LogBB value distribution of collected data, and number of features, and performances with respect to the threshold of Pearson’s correlation

coefficient. (A) Distribution of logBB values compiled in our dataset. (B) The number of selected features (y axis) when redundant features were removed

based on a given threshold of Pearson’s correlation coefficient (x axis). (C) Ten-fold cross-validation results of the models trained using various learning

algorithms with respect to various selected features based on Pearson’s correlation coefficient.

6 Shaker et al.
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0.41 and 0.66, respectively. Consequently, our model can pre-
dict logBB values of query compounds more accurately and
reliably.

3.6 Performance comparison with other qualitative

models

To date, many BBB qualitative (classification) models, that
predict whether a query molecule is BBB-permeable or not,
have been published and some of them are publicly available
to access. Thus, we compared the performance of our model
with those of the available BBB qualitative models to investi-
gate whether our quantitative model can also operate as a
qualitative model and outperform conventional qualitative
models.

The test dataset used to compare the performance of quan-
titative models was also used to compare the performances of
qualitative models. To make our quantitative model operate
as a qualitative model, compounds with a predicted logBB
over the cutoff of �1.0 was categorized as BBB-permeable
while those below the cutoff were classified as BBB-
nonpermeable (Kunwittaya et al. 2013, Dyabina et al. 2016).

Our model achieved an accuracy of 85%, MCC of 0.60,
and a positive predictive value (PPV) of 1.0, when it was used
as a qualitative model on the independent test dataset

(Table 2). The high MCC value represents that our model can
accurately classify both BBB-permeable compounds and BBB-
nonpermeable compounds. In addition, the high PPV value
represents that our model can accurately identify compounds
capable of crossing through BBB. The performance of our
model was comparable with the best qualitative model
(admetSAR) investigated in this study (Table 2), even though
our model was developed as a quantitative model. In addi-
tion, the PPV of admetSAR was only 0.66, which means that
only 66% of the admetSAR-suggested compounds are BBB
permeable, while our model was 100%. This is important in
drug discovery to find potential drug candidates and to avoid
unnecessary experiments. Other qualitative models did not
show better performance results than ours. Consequently, our
model can be used not only to predict absolute logBB values
but also to efficiently classify drug compounds into BBB-
permeable or BBB-nonpermeable based on conventional
logBB cutoff.

For further comparison, we also evaluated the qualitative
models on the CNS drug screening library containing only
BBB-permeable chemical compounds, obtained from
MedChemExpress (https://www.medchemexpress.com/). The
compounds included in our dataset or those similar to the
compounds included in our dataset in terms of Tanimoto sim-
ilarity were discarded. As a result, we obtained 396 BBB-
permeable compounds. Our model outperformed the other
qualitative models (Fig. 4). Our model achieved an accuracy
of 97% while admetSAR achieved 83%, LightBBB achieved
67%, BBB Predictor achieved 67%, and SwissADME
achieved 29%. We also evaluated the quantitative models
(ADMET Prediction Server and PreADMET) on the CNS
drug screening library with the same binarization of predicted
logBB values as ours. They achieved accuracies of 81% and
65%, respectively. Comparing a quantitative model with a
qualitative model poses inherent challenges. Notably, to our
knowledge, we complied the largest logBB dataset and which
was used to develop our quantitative model (LogBB_Pred).
The larger dataset could be one of the factors for the im-
proved performance of our model. These results indicate that
our model is able to accurately predict BBB-permeable com-
pounds even in a real-world drug screening library and would
be practically used for CNS drug screening.

Figure 3. Performance comparison with other quantitative models. The

predicted logBB values on an independent test dataset by our model and

by other publicly available quantitative models. The predicted logBB

values by our model are marked in red circles, those predicted by ADMET

Prediction Service are marked in orange squares, and those predicted by

PreADMET are marked in green triangles.

Table 2. Performance comparison of our model with publicly available qualitative models.

Dataset Independent test dataseta

Model Our model
(LogBB_Pred)

admetSAR LightBBB SwissADME BBB predictor

Accuracy (%) 0.85 0.85 0.70 0.70 0.70
MCC 0.6 0.65 0.42 0.29 0.15
Sensitivity 0.42 0.85 0.70 0.57 0.28
Specificity 0.99 0.66 0.74 0.75 0.85
NPVb 0.83 0.94 0.45 0.44 0.80
PPVc 1 0.66 0.89 0.22 0.77
URL http://ssbio.cau.ac.kr/

software/logbb_
pred

http://lmmd.ecust.edu.
cn/admetsar2

http://ssbio.cau.ac.kr/
software/BBB

http://www.swis
sadme.ch/

https://www.cbligand.
org/BBB/index.php

Reference This study Yang et al. (2019) Shaker et al. (2021) Daina et al. (2017) Liu et al. (2014)

a The independent test dataset used for the comparison of quantitative models was also used for qualitative model evaluation.
b Negative predictive value: (number of true negatives)/(number of true negatives þ number of false negatives).
c Positive predictive value: (number of true positives)/(number of true positives þ number of false positives).
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3.7 Web server construction

Developed prediction models should be freely accessible to
drug developers, medicinal chemists, and other researchers to
advance CNS drug discovery. To share our model, we con-
structed a web server that accepts a compound, or a list of
compounds represented in a SMILES format and returns pre-
dicted logBB values (Fig. 5). The server is accessible via http://
ssbio.cau.ac.kr/software/logbb_pred/.

4 Conclusion

Experimental methods to measure logBB values are costly and
low throughput, thus making BBB permeability assessment a
bottleneck in CNS drug discovery. In this study, we developed
a quantitative model (LogBB_Pred) to predict an absolute
logBB value of a query molecule, which showed superior per-
formance over conventional prediction models. Our model
can accurately identify which molecules are potentially BBB-
permeable, and accurately predict what their logBB values
are. Therefore, our model can be used for practical virtual
screening of a large number of chemical compounds to find
CNS drug candidates as an alternative to experimental meth-
ods and consequently facilitate the advance of CNS drug
discovery.

Supplementary data

Supplementary data are available at Bioinformatics online.
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Figure 5. User interface of our LogBB_Pred web server. (A) Input interface where a user can submit a query compound in SMILES format or upload a file

containing multiple compounds in the format of SMILES. (B) Prediction result page. The structure and predicted logBB value are displayed. “BBB

Permeable” means its predicted logBB � �1.

Figure 4. Performance comparison of qualitative models with a real-world

CNS drug screening library. Three hundred and ninety-six compounds

available from MCE company were used for model performance

comparison. It should be noted that all the compounds in the library were

BBB-permeable. The prediction accuracies of the quantitative models are

shown in light gray color, and those of qualitative models are shown in

dark gray color.
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