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ABSTRACT With the development of deep learning, the performance of image-to-image translation is also
increasing. However, most of the image-to-image translation models depend on the implicit method which
does not explain why the models alter specific parts of the original input images. In this work, we assume
that we can control the extent to which the models translate the input images using an explicit method.
We explicitly create masks that will be added to the input images, aiming to highlight the difference between
the inputs and the translated images. Since limiting the area of the masks directly affects the shape of the
translated images, we can adjust the model through a simple regularization parameter. Our proposed method
demonstrates that a simple regularization parameter, which regularizes the generated masks, can control
where the model needs to change and remain. Furthermore, by adjusting the degree of the regularization
parameter, we can generate diverse translated images from one original image.

INDEX TERMS Generative adversarial network, multi-modal image-to-image translation.

I. INTRODUCTION
The development of deep learning is highly related to the
convolutional neural network [1], [2], especially in the image
domain.The performance of the image-to-image translation is
also enhanced with supervised-learning [4] and unsupervised-
learning [5], [6], [7], [8], [9], [10]. In particular, due to
the lack of the ground truth, unsupervised image-to-image
translation has been actively studied with the development
of generative adversarial network [14]. Recently, most
works have solved this image-to-image translation using the
generative adversarial network [5], [6], [7], [8], [9], [10].
However, the majority of them utilize the implicit method [5],
[6], [7], [8], [9], [10] which cannot control the size of the
area to be changed. To achieve the desired translated results
that users want, the model needs to control the size of the
regions by simply adjusting some regularization parameters.
We address this problem by generating masks for each input
image. For explicit translation, we add the generated masks
with an auto-encoder [11]. Usually, auto-encoders consist
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of two parts: the encoder and decoder. When we optimize
an auto-encoder with a specific loss function, we can obtain
meaningful features from the encoder. Utilizing this concept,
we generate masks that can be added pixel-wisely to the input
images for image-to-image translation, following the equation:
Translated Output = Mask ⊕ Input Image.

For the control, CycleGan [13] utilises a cycle-consistency
loss to ensure that translated images retain the important
features of the original input images. By employing this
loss, we can impart certain characteristics of other domains
to our generated masks. The generated masks are added
to the input images and have values between -1 and 1.
A pixel value of 0 in the mask implies that the mask does
not alter the input image. We regularize the number of
pixels with nonzero values in the mask. By controlling the
number of nonzero values through a regularization parameter,
we can produce diverse translated images(i.e., one-to-many
mapping). In some cases, this enables us to obtain diverse
backgrounds (e.g., if we do not restrict the regularization
parameter, the background can change significantly). More
details about the loss function are provided later in the
paper.
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FIGURE 1. Some examples of our results about the horse2zebra,
apple2orange and summer2winter dataset. The first row is the input, the
second row is the generated mask and the last row is the translated output.

The contributions of this work are as follows:
• We address the multi-modal image-to-image translation
problem using additional masks which can be intuitively
employed.

• Our model allows controlling the size of the area that
should be changed during translation.

• With our simple loss function, the model does not require
a complex structure for the discriminator and generator.

In the remainder of this paper, we briefly present related
works on image-to-image translation in Section II and then
explain our network’s structure with loss in Section III. Next,
we show our image-to-image translation results in Section IV.
Finally, we summarize and conclude our paper in Section V.

II. RELATED WORKS
A. GENERATIVE ADVERSARIAL NETWORK
Generative Adversarial Network (GAN) [14] has made
significant contribution to unsupervised-learning, particularly
in image generation problems. It consists of two parts:
discriminator and generator. The discriminator and the
generator are optimized in the concept of the zero-sum
game problem. As the optimization progresses, the generator
produces realistic images and the discriminator struggle
to differentiate the real image and the generated image.
GANs have also had a significant impact on image-to-image
translation [5], [6], [7], [8], [9], [10] as well. In this case, the
input images act as real images, and the translated image act as
fake images for the discriminator. However, image-to-image
translation faces challenges such as the hard optimization
problem and mode-collapse problem, leading the model to
generate the same translated image repeatedly(i.e. one-to-one
mapping) [4], [5]. WGAN [15] used Wasserstein distance
for optimization, and [16] designed Skip-Layer Excitation
(SLE) instead of residual blocks of ResNet [3] for the
deep neural network. Least Squares GAN(LSGAN) [18]
calculated the L − 2 norm between images and target
labels to avoid the mode collapse and gradient vanishing,
which can GAN training difficult. In our work, the loss
function for the generation follows the scheme of the LSGAN.
Usually, the discriminator of the GAN outputs a single value

for the entire image, indicating whether it is real or fake.
However, this single value might not capture high-frequency
information in the generated images, as the discriminator
is trained to learn the overall features of the target object
in the input images. To ensure the generated image contain
high-frequency information, PatchGan [4] was introduced.
In PatchGan, the discriminator outputs a vector for one image,
providing regional probability information. Additionally,
PatchGan uses instance normalization [21] instead of the
batch-normalization [22]. Our network also incorporates
a PatchGan to capture high-frequency information in the
generated images.

B. IMAGE-TO-IMAGE TRANSLATION
Image-to-Image translation aims to establish mapping
functions between two different domains. Early studies
addressed this task using supervised-learning. We show that
our proposed method, which adds the generated masks to
the input images, can be applied to the supervised learning
scheme Fig. 2. We can get some proper solutions with Fig. 2.
However, optimizing the models with the supervised learning
requires a large number of ground truths, and even with
ample dataset, their performance was limited due to the use of
L1 loss and L2 loss between the ground truth images and the
generated translated images, resulting in blurry results and a
one-to-one mapping problem [4], [31], [32], [33], [34], [35].
Especially, Pix2Pix [4] argue that L2 loss leads to blurry results
since L2 loss is minimized by averaging all plausible outputs.
So [4] uses L1 loss instead of L2 loss. However, despite
using the L1 loss, the blurriness issue still persisted [31],
[32], [33], [34], [35]. To overcome these limitations, recent
studies have explored unsupervised learning approaches. The
classic solution is the variational autoencoder(VAE) [19],
which learns the distribution of the input images.When we call
the x as the input data and z as a latent, VAE learns p(x|z) for
the mapping function. VAE can be optimized with variational
inference. This mapping function can be used for image-to-
image translation. However, VAE’s performance is not ideal
as the distribution p(x) is not directly obtained. GAN [14]
can address this issue effectively. Pix2Pix [4] utilized L1 loss
between the generated fake images and the real input images,
but its supervised-manner led to blurry results for sparse
input images. CycleGAN [13] can handle unpaired image
datasets. There are two discriminators and two generators
and it uses cycle-consistency loss to solve the mode collapse
problem. Our work also used the cycle consistency loss for
two unpaired image domains. InstaGAN [9] used additional
instance information. It used the binary segmentation masks
of the object in the input images as the instance information.
It does not require cycle mapping between two different
domains since it concatenates the segmentation masks to the
input images. UNIT [5] assumes two different image domains
can be mapped to a shared latent space, and it’s loss consists
of VAE loss and GAN loss. However, UNIT only can solve the
one-to-one mapping. To apply the UNIT to the one-to-many
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mapping problem,MUNIT [6] assumes that one image domain
can be decomposed into a content space and a style space, and
two image domains share a content space and each style spaces
are domain-specific. References [10], [23], [24], and [25]
used the concept of attention with GAN [24] to the image-to-
image translation problem. Especially, AttentionGan [25] is
solving image-to-image translation problems with a scheme
very similar to ours. AttentionGan generates attention masks
and content masks for the input image. They fuse the attention
mask, content mask, and input to translate. Our work also
generates a mask that is similar to the content masks of
AttentionGan. But we do not use the attention masks, since
attention masks highly limit the area that can be changed in
the input image. Instead, we regularize the area with a simple
loss. With this regularization for the areas of the generated
masks, we can solve the one-to-many mapping. In summary,
our proposed method adds generated masks to input images
and can be applied to supervised learning and unsupervised
learning as well. By employing a simple regularization loss
for the generated masks, we achieve one-to-many mapping,
allowing the model to control the size and extent of the
translated regions effectively.

III. METHOD
A. NETWORK
In this section, we present two training schemes for our image-
to-image translation method. To clarify, we first introduce the
notations used in our approach:x represents an image in the
first domain. y represents an image in the second domain.
mx , my are the generated masks for x and y, respectively.
Gyx , Gxy refer to the generators responsible for generating mx
and my, respectively. Similarly, Dx , Dy are the discriminators
used to discriminate images x and y, respectively. The first
training scheme, as shown in Fig. 2, is trained in a supervised-
manner. It involves one generator G which consists of an
encoder and a decoder. The generator G generates a mask for
the input image. We add the generated mask and the input
image for translation: ŷ = mX

⊕
x. For Fig. 2, we only use

L1 loss between ŷ and the ground truth y. With our simple
additional mask, we can translate the input image to the
other domain. However, this supervised scheme cannot handle
one-to-many mapping and often results in blurry translated
output. Moreover, this supervised approach requires a large
number of ground truth images for effective optimization.
To overcome this problem, we propose an unsupervised
network. Our unsupervised method involves two generators
and two discriminators, using the cycle-consistency loss for
the optimization. Fig. 3 illustrates our proposed network
structure(excluding the cycle-consistency part for simplicity)
for translating the first image domain to the second image
domain. The generatorGx consists of an encoder and a decoder.
It generates a mask mx ∈ [−1, 1]. To translate the input
image x ∈ X to the second domain image ŷ ∈ Y , we add
x and mx pixel-wisely: ŷ = x + mx . To make the translated
image ŷ appear realistic, we treat ŷ as a fake image, and y

as a real image for the discriminator of the second domain.
The translation from the second domain to the first domain
follows a similar process as illustrated in Fig. 3. To ensure
the generated masks effectively change the input images, the
output range of the masks should be within [−1, 1]. If some
pixels of the generated mask have a zero value, it implies
that those parts of the input image do not need to be changed.
We employ the structure from [13] for the encoder and the
decoder, and we use the PatchGan discriminator to retain
high-frequency information. For the patchGan discriminator,
we used instance normalization [21].

B. LOSS FUNCTION
Equation (1) shows our loss for the optimization of the
discriminator and the generator. We used the LSGAN
scheme [18] between the discriminator’s output and the
target’s label, for a stably good performance. Experimentally,
the cross-entropy loss for the GAN was not working well.
To overcome the aforementioned limitations of the supervised
learning Fig. 2, we need to devise another loss function for
the unsupervised scheme. For one-to-many mapping and
to contain the original content, we used cycle-consistency
loss [13] which is widely used in image-to-image translation
problems. When we say the generated ŷ = GYX (x) + x and
generated x̂ = GXY (y) + y, our cycle-consistency loss is
represented as (2).

Llsgan = Ex∼pdata(x)(Dx(x) − 1)2

+ Ey∼pdata(y)(Dx(GXY (y) + y))2

+ Ex∼pdata(x)(Dy(y) − 1)2

+ Ey∼pdata(y)(Dy(GYX (x) + x))2 (1)

Lcycle = Ex∼pdata(x)∥GXY (ŷ) + ŷ−x∥1
+ Ey∼pdata(y)∥GYX (x̂) + x̂−y∥1 (2)

But we did not use identity preserving loss (3) in [13] since
our translated scheme consists of an additional process which
is the sum of input and generated mask: GYX (x) + x and
GXY (y) + y. If we use identity preserving loss (3), the mask
generator creates masks with all values consisting of zero
which induces the work of not changing any part of the input
images.

Lidt = Ex∼pdata(x)∥|GYX (x) + x−x|∥1
+ Ey∼pdata(y)∥|GXY (y) + y−y|∥1 (3)

And to control the size of the region to be changed, we used
the L1 norm of the generated masks.

Lregularization = Ex∼pdata(x)∥|GYX (x)|∥1
+ Ey∼pdata(y)∥|GXY (y)|∥1 (4)

Our total loss consists of (1), (2), and (4).

Ltotal =λg×Llsgan+λc×Lcycle+λr×Lregularization (5)

λc controls the cycle consistency and λr controls the degrees
of the regularization. The shape of the masks highly correlated
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FIGURE 2. Illustration of our supervised network architecture. The Generator G consists of encoder and decoder. G generates
a m that will be added to the input image x and it becomes ŷ that is translated to the other domain. The loss for supervised
network is calculated with L1 loss between ŷ and ground truth y .

FIGURE 3. Illustration of our proposed network architecture for the first domain. The Generator G consists of encoder and
decoder. G generates a mx that will be added to the input image x and it becomes ŷ that is translated to the second
domain. Dy gives fake label to the ŷ and gives real label to the second domain input image y .

to the λr . The larger λr , the smaller the size of the changing
area which leads to a greater tendency to preserve the original.
Conversely, when the λr is smaller, the degree of similarity
between the translated image and the original diminishes.
In the experiment section, we show the results according to
the λr .

IV. EXPERIMENT
A. DATA
To show our method works well for the unsupervised image-
to-image translation, we evaluate our method on some
datasets: horse2zebra [13], maps [13], apple2orange [13],
summer2winger [13], dog2cat and some synthetic circle and
square images that we generate. For test, we split the train
data into 8 to 2 ratios.

B. EXPERIMENTAL RESULTS
For the experiment, we used Adam optimizer [26] with a fixed
learning rate of 0.0002 and the general value for β1 = 0.5 and
β2 = 0.999. And all of our experiments are done with fixed
values 0.5 for λg and 10 for λc in (5) since these two values

have shown appropriate results. Similar to [13], random crop
and left-right flip data augmentations are used. We also used
the image replay buffer [13] with a probability of 50 percent.

1) ACCORDING TO THE REGULARIZATION PARAMETER
First, we compare the results of our method according to
the degree of the regularization parameter. We control the
λr in (5) to show the influence of our generated masks.
In this experiment, we did not use the discriminator of
PatchGan [4]. Instead, we rescaled the input image to
64 × 64 and used the same discriminator structure as [27].
This decision was made to focus solely on the main features
that can differentiate two different image domains. It involves
disregarding high-frequency information because reducing
the image size achieves a similar effect to deblurring the
image [36], [37]. The discriminator calculates whether the
input images are real or fake based on the entire smaller
images, using only low-frequency information about the
objects. The batch size is 32. We evaluated our method
using apple2orange [13], and a synthetic image dataset
that we created for this experiment. Fig. 1 presents the
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FIGURE 4. Image translation results of the synthetic images circle to
square. (a) original circle image. (b) generated mask when λc = 0.01.
(c) generated mask when λc = 1. (d) generated mask when λc = 10.
(e) translated to square image when λc = 0.01. (f) translated to square
image when λc = 1. (g) translated to square image when λc = 10.

results obtained based on the degree of the regularization
parameter λr . To show the accurate role of the generated
masks, we normalize the masks to [0, 1] for the plot,
considering that the originally generated masks are in [−1, 1].
The λr controls the area of the generated mask with the
L1 norm. As shown in Fig. 1, when the λr is small, large
parts of the input image are translated, and the generated
masks have many non-zero values, as seen in (b) and (e)
of Fig. 1. On the contrary, when λr is large, the area of the
changing part decreases, as evident in (d) and (g) of Fig. 1. The
regions of the masks that aim to be changed are concentrated
into four corners of the circle when optimized well with a
sufficiently large value of x. For λr values slightly smaller
than the optimal λr , the model still attempts to change around
the four corner areas, but it also shows some deviation from
the appropriate λr value, as observed in (c) and (f) of Fig. 1.
However, if λr is too large, the generator generates unintended
masks. Fig. 5 illustrates such unintended results when λr is
set to 200. The translated output becomes square, but unlike
(d) in Fig. 1, the generated mask is not concentrated on the
corners of the circle. Note that there should be no edges of the
circles in (e),(f), and (g) of Fig. 1 if the model makes perfect
masks. However, as we mentioned above we rescale the input
synthetic images to 64 × 64 to only change the overall shape,
since in these synthetic images the low-frequency feature
means the shape.
Fig. 6 shows intuitive results according to the λr on

the apple2orange and horse2zebra datasets. As same as

FIGURE 5. Image translation results of the synthetic images circle to
square when λr is too large. (a) original circle image. (b) generated mask.
(c) translated to square image.

FIGURE 6. Image translation results of the apple2orange and horse2zebra.
The three rows above are the results of the apple2orange and the three
rows below are the results of the horse2zebra. (a) original input images.
(b) generated masks when λc = 0.01. (c) generated masks when λc = 0.1.
(d) generated masks when λc = 1. (e) translated images when λc = 0.01.
(f) translated images when λc = 0.1. (g) translated images when λc = 1.

synthetic dataset, we rescale the apple2orange dataset to
64 × 64. However, since we cannot get proper results when
using horse2zebra dataset, we use the high resolution of the
horse2zebra image by rescaling to 256 × 256 and we used
structures of [13] for the generator and [4] for the discriminator.
The top three rows depict the results for the apple2orange, and
the bottom three rows depict the results for the horse2zebra.
In the apple2orange dataset, the main distinguishing feature
between oranges and apples is their color, rather than the shape
and texture. Because of this color feature, the λr controls the
size of the regions that will be changed from red to yellow. The
generated masks (b), (c), and (d) are the results of λr 0.01, 0.1,
and 1, respectively. As λr increases, smaller regions in (a) are
changed from red to yellow, and the translated outputs (g)
have much smaller yellow regions than (e) and (f). The
biggest difference between horses and zebras is the presence
of stripes. With the results of the horse2zebra, we can see that
as the λr increases, the number of stripes of the translated
zebra increases. With Fig. 1 and Fig. 6, we can see that the
simple L1 loss for the regularization and the regularization
parameter λr can control the regions of the input images to
be changed. And if we assign proper value to λr , we can get
reasonable masks and translated outputs.

2) OTHER RESULTS
In this part, we show the results of horse2zebra, sum-
mer2winter, and dog2cat. For this experiment, we used
structures of [13] for the generator and [4] for the discriminator.
To get the high-frequency information which means the details
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FIGURE 7. Image translation results of horse2zebra and summer2winter.
The three rows above are the results about horse2zebra and the three rows
below are the results about summer2winter dataset. The first row and
fourth row are input images. The second row and the fifth row are the
generated masks. And the third row and sixth row are the translated
outputs.

of input images, we rescaled the input image to 256 × 256,
and we tried many values of λr to get proper results. In Fig. 7,
all the columns are the results with different λr values.
Fig. 7 shows the results of the horse2zebra and sum-

mer2winter datasets. The three rows above are the results
about horse2zebra and the three rows below are the results
of the maps dataset. The first row and fourth row are input
images. The second row and the fifth row are the generated
masks. And the third row and sixth row are the translated
outputs. The third row is the result of the summation of the
first row and the second row. And the sixth row is the result
of the summation of the fourth row and the fifth row. With the
three rows above, the masks only change the foreground which
is considered as horses when the λr is properly selected. With
the three rows below, we also can get the proper translated
maps solutions.

3) COMPARE WITH OTHER WORKS
We conducted a comparison of our work with other existing
methods Unit [5], CycleGan [13], U-GAT-IT [29], and
DRIT [30] in Fig. 8, Fig. 9, and Fig. 10. Fig. 8, Fig. 9,
and Fig. 10 are the results about orange to apple, horse to
zebra, and winter to summer respectively. In Fig. 8, we can
observe that all methods perform well for the orange-to-apple
translation, as the primary distinguishing feature between

FIGURE 8. Different works for mapping orange to apple.

FIGURE 9. Different works for mapping horse to zebra.

oranges and apples is their color. However, some methods tend
to make errors when there are objects in the image other than
oranges. They have an error that changes the color of the object.
In Fig. 9, our method outperforms other approaches. Stripes,
which are not present in horses and exist only in zebras, exist
only in horse areas in our results, while in other works, stripes
appear even in places other than horse areas or are expressed
only in a very small part of horses. In addition, compared to
our results with little background change, background changes
occur very severely in the results of other works. Fig. 10 is
the result of the winter-to-summer translation. Due to the
composition of the summer-to-winter dataset, the biggest

FIGURE 10. Different works for mapping winter to summer.
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FIGURE 11. Failure results of maps dataset. The first row is the input, the
second row is the generated mask, and the third row is the translated
outputs.

FIGURE 12. Failure results of dog2cat. The first row is the input, the second
row is the generated mask, and the third row is the translated outputs.

difference between winter and summer is color (white for
winter and green for summer). Our works are well-performing
color translations from white to green. However as we can see
with the other works’ results, there are inappropriate changes
in colors such as purple, pink, and blue. In addition, blurry
effects could be observed from other works, and it can be seen
that the phenomenon is more prominent in Unit and CycleGan.

4) FAILURE CASE
Fig. 7 shows the successful results with our proposed
additional mask scheme. But we encountered many failure
cases. Fig. 11 and Fig. 12 show the failure case when we try
to translate the simple maps to complicate maps and try to
translate dog to cat respectively. With Fig. 11 and Fig. 12,
the additional mask scheme is not working well on complex
datasets since this scheme is too explicit. When we see Fig. 11,
the masks cannot make a detail of the buildings. They just
generate the shape of the buildings. Also, Fig. 12 shows that
the additional masks only change the shape of the dog: Lying

FIGURE 13. Image translation results of the dog2cat. (a) original dog
image. (b) generated mask when λr = 0.001. (c) generated mask when
λr = 1. (d) generated mask when λr = 100. (e) translated to cat image
when λr = 0.001. (f) translated to cat image when λr = 1. (g) translated to
cat image when λr = 100.

ears to sharp ears and make some stripes. The masks did not
generate high-frequency information such as nose, eyes, and
mouths.
Fig. 13 shows the results of the dog2cat dataset according

to the value of λr . These results also fail to get some high-
frequency information. However, we can notice that when
we assign different r , we can get different translated outputs.
This means that we can manage one-to-many image-to-image
translation problems with this simple regularization if we can
solve the loss of high-frequency information.

V. CONCLUSION
In this paper, we propose a simple scheme which generates
a mask that will be added to the input image for the image-
to-image translation problem. This additional mask scheme
can be trained in supervised-manner when we use L1 loss
between the translated output and the ground truth. Also, the
proposed method can be trained in unsupervised-manner if
we add cycle-consistency loss. Compared to previous works,
our work produced similar or more reasonable results despite
using a simpler network structure and simpler loss. In addition,
unlike previous works that could not adjust the size of the area
to be changed, our work can adjust it through the regularization
parameter. What we haven’t solved perfectly yet is that
with simple data which have not too much high-frequency
information, we can get properly translated output. On the
other hand, if the data consists of high-frequency information,
our additional scheme only acts to translate the shape features
of the input image rather than texture and specific information.
However, we can notice that if we control the regularization
parameter, we can get various translated images for one input.
Overcoming the limitation of our work could be valuable
research in the future. Also, we expect that combining our
scheme with the attention mechanism can adjust the specific
area of the input image to be translated. If the research on
this combination shows successful results, it will be able
to effectively work not only on the general image-to-image
translation but also on image-to-image translation through
segmentation based on CNN.
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