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MR Image Denoising and Super-Resolution
Using Regularized Reverse Diffusion

Hyungjin Chung™, Eun Sun Lee

Abstract— Patient scans from MRI often suffer from
noise, which hampers the diagnostic capability of such
images. As a method to mitigate such artifacts, denoising is
largely studied both within the medical imaging community
and beyond the community as a general subject. However,
recent deep neural network-based approaches mostly rely
on the minimum mean squared error (MMSE) estimates,
which tend to produce a blurred output. Moreover, such
models suffer when deployed in real-world situations: out-
of-distribution data, and complex noise distributions that
deviate from the usual parametric noise models. In this
work, we propose a new denoising method based on
score-based reverse diffusion sampling, which overcomes
all the aforementioned drawbacks. Our network, trained only
with coronal knee scans, excels even on out-of-distribution
in vivo liver MRI data, contaminated with a complex mixture
of noise. Even more, we propose a method to enhance
the resolution of the denoised image with the same net-
work. With extensive experiments, we show that our method
establishes state-of-the-art performance while having desir-
able properties which prior MMSE denoisers did not have:
flexibly choosing the extent of denoising, and quantifying
uncertainty.

Index Terms— Diffusion model, stochastic contraction,
denoising, MRI.

I. INTRODUCTION

AGNETIC resonance imaging (MRI) is a widely used
noninvasive imaging modality that can produce high
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resolution patient scans which aid diagnosis. Nevertheless,
it is often the case where images are corrupted with complex
noise, which obstructs clinicians from pointing out the details.
Denoising is crucial in such cases, and for that matter, several
techniques [1], [2], [3], [4], [5], [6], [7] have been developed
over the years.

Before the widespread popularity of deep learning, denois-
ing methods such as spatial filtering [8], transform domain fil-
tering [9], non local means [10], etc. were studied extensively.
Nowadays, deep learning based methods are mainstream,
inaugurating state-of-the-art (SOTA) over traditional methods.
Denoising methods based on supervised training [11], [12]
were the first to be developed, but these are far from being
practical, since paired acquisition of clean and noisy images is
rarely possible. To circumvent this difficulty, several unsuper-
vised and self-supervised methods were proposed [13], [14],
[15]. Although these methods do not require paired images
for training, the performance degrades when the distribu-
tion of test data deviates from the training data, or when
the actual noise distribution differs from the parametric
model assumption (e.g. Gaussian noise). Furthermore, most
denoising methods resort to the minimum mean-squared-error
(MMSE) estimate, leading to outputs that are blurrier than the
noisy inputs [16]. This phenomenon was theoretically studied
in [17], where the authors showed that there is an inevitable
trade-off between distortion (i.e. Error from the ground truth),
and perception (i.e. distance between the true data distribution
and the distribution of the reconstructions); MMSE denoisers
will lead to outputs that minimize the distortion at the expense
of degraded perception, or to put it another way, blurred
image. The analysis made in [17] is mostly confined to natural
images, and theoretical analysis of perception in the medical
imaging field has not been rigorously conducted. Having said
that, one of the contributions of this paper is to reveal how
perception-oriented denoisers may be beneficial in terms of
diagnostic capacity in the field of medical imaging.

The downsides which MMSE denoisers cause are especially
relevant in the context of MRI denoising. While one can
simply consider thermal noise in the k-space acquisition as
Gaussian noise, in several cases the noise distribution is much
more complex. One example of this can be seen when the data
was acquired with high flip angle, reduced FOV scan. In such
cases, MMSE denoisers (e.g. [13]) either fail to produce
feasible reconstructions due to distribution shift, or produce
washed out results.

Recently, diffusion models [18], [19] have shown impressive
progress in image generation [18], [19], [20], outperforming
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Fig. 1. Overview of the proposed reverse diffusion denoising scheme.
Hijacking the reverse diffusion process leads to a strong denoiser. Our
model is trained on an open-source knee dataset [27], yet is scaled to
in vivo liver MRI scans.

even the best-in-class generative adversarial networks (GAN).
While diffusion models were first developed as generative
models, these are now also being adopted to inverse problems
including compressed sensing MRI [21], [22], [23], CT recon-
struction [23], super-resolution [24], [25], [26], and much
more. Two very appealing properties of diffusion models are as
follows: 1) One can acquire results from posterior sampling,
rather than a single MMSE estimate. 2) They are robust to
distribution shifts and tend to generalize even to heavily out-
of-distribution (OOD) test data [21].

Leveraging such intriguing properties, we propose to use a
score-based diffusion model [19] to solve the task of denois-
ing. More specifically, we propose to hijack the generative
process of diffusion models, not starting from pure Gaussian
noise, but starting from the distribution of the noisy images.
Mlustrated in Fig. 1, this amounts to using the last few
steps of the reverse diffusion, where the number of iterations
can be approximated by parameter estimation methods [28].
Furthermore, to control the denoising process, such that fine
structures are preserved, we propose two novel regularizers.
First, low-frequency constraint is introduced, which naturally
connects to the recent theory of stochastic contraction in
diffusion models [26]. Second, we propose to use the manifold
constraint [29], which allows us to leverage the best of both
worlds: MMSE denoiser, and iterative diffusion denoiser.

Going further, we propose a method to super-resolve the
denoised image with the same score function that was used
to denoise the images. This immediately leads to sharper
images which retain the high frequency information, which
has not been reported before with any of the widely used
self-supervised denoising methods.

The closest work to our proposed method is
Noise2Score [15], where the authors utilize the score
function to perform denoising in a single step by utilizing
Tweedie’s formula. Contrarily, our method iteratively refines
the noisy images by solving the reverse SDE with the
score function, thereby enabling fine-grained control, and
realistic results. Moreover, since our method is essentially
performing posterior sampling, we can obtain multiple
samples to quantify uncertainty, and to also obtain posterior
mean of the distribution, as pointed out in the earlier work of
CS-MRI [21].

Il. BACKGROUND

A. Diffusion Models: A Bird-Eye View

Diffusion models, original introduced in Shol-Dickstein
et al. [30] and extended in a seminal work [18], first defines a

forward process where the data structure is gradually destroyed
(i.e. corrupted with noise). The reverse diffusion process
defines the generative process, in which the data is gradually
synthesized (i.e. denoised) starting from completely unstruc-
tured noise. Notably, one can frain a neural network that learns
this reverse process defined as a Markov chain, such that the
trained neural network can be used as an iterative denoiser.
By constructing such forward-reverse diffusion process, one
can model an arbitrary target distribution, which is achieved
by converting a tractable prior distribution (e.g. isotropic
Gaussian) by iterative diffusion steps. We illustrate the typical
forward-reverse diffusion steps in Fig. 1.

One can view the networks that govern the iterative
reverse diffusion process as (Stein) score functions [31] (i.e.
V. log p(x)), the vector field that guides the process to higher
density modes when Markov chain Monte Carlo (MCMC)
sampling is performed. Furthermore, when analyzed from
a continuous time scale, it was shown that the diffusion
processes are in fact instantiations of stochastic differential
equations (SDE) [19]. Hence, sampling from the modeled data
distribution amounts to numerically solving the reverse SDE
with the trained score function.

It should also be noted that the reverse diffusion process
is versatile enough that one can modify the sampling strat-
egy to sample from the conditional distribution given some
measurement y, by imposing some simple measurement con-
straints [19], [26]. This would in turn amount to sampling
from the conditional (posterior) distribution. Naturally, one can
leverage such methods to solve inverse problems in an unsu-
pervised fashion, with proper modifications to the inference
procedure. We formalize the high-level intuition and propose
a novel solver tailored for MRI denoising in the following
sections.

B. Score-Based Diffusion Model

We consider the usual construction of diffusion process
indexed with time ¢t € [0, 1], which is given by {x(t)}tlzo,
with x(r) € RP. Here, x(0) ~ po, where py = pgaw, and
p1 approximates isotropic Gaussian distribution. In  other
words, the data distribution is transformed to a tractable
Gaussian as ¢ +— 1. To formally represent this, we first
introduce the following forward SDE

dx = f(x,t)dt + g(t)dw, (1)

where f is a linear drift coefficient, g is a scalar diffusion coef-
ficient, and w is a standard D-dimensional Wiener process.
In our case, we define f, g to be

_ _ [dla2(1)]
f=0, g= 7 (2)

t
o (t) = Omin ((’L) . 3)

Omin

with

This choice is called variance exploding SDE (VE-SDE) [19],
and is widely used due to its impressive sample quality.
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By Anderson’s theorem [32], we subsequently have the
following reverse SDE

dx = [f(x,1) — g(t)* Vx log p:(x)dt + g(r)dw
e e’

score function

2 2
_ A0l o log p,(x)dr+,/7d[” Dz @
dt —— dt

score function

where the differential dr indicate time running backwards, and
w is again a standard D-dimensional Wiener process running
backwards in time.

Here, we see that the reverse SDE involves the score
function (i.e. gradient of the log probability). To estimate
the score function, denoising score matching [33] objective is
used, which sidesteps the difficulties, and makes the training
easily scalable to higher dimensions [31]. More specifically,
we train a time-conditional neural network sy (x, ) with the
following objective:

Ir})in Ei~v,1) [l(l)Ex(O)Ex(mx(O)
x [Isox(0),1) = Vi log porx x| ] (5)

where U (0, 1) denotes the uniform distribution in the interval
[0, 1]. Here, we use the fact that the perturbation kernel
Vi log pos(x(¢)|x(0)) is always Gaussian when f is chosen
to be affine, which is trivially true in our case. Hence, the
derivative with respect to x can be computed analytically,
which makes the training procedure simple and scalable.

Once the network is optimized via (5), one can plug in the
trained score function to numerically solve (4). This can be
done by e.g. Euler-Maruyama discretization [19], or higher
order methods [34]. On the other hand, one can use predictor-
corrector (PC) samplers [19], which alternate between numer-
ical SDE solver and Langevin dynamics [35].

C. Come-Closer-Diffuse-Faster (CCDF) [26]

A downside of diffusion models is that they are very slow.
This is because one needs to start sampling from totally
random Gaussian noise, and thus few thousand passes through
the neural network is necessary to achieve optimal results.
Recently, Chung et al. [26] showed that such is not neces-
sarily the case when solving inverse problems with diffusion
models. Rather than starting from Gaussian noise, one can
forward diffuse the initial corrupted image (measurement),
and only use the last few steps of reverse diffusion iteration
to arrive at the final reconstruction, given that one uses a
proper non-expansive mapping as a data consistency imposing
step [36].

This intriguing behavior is originated from the key obser-
vation that the score-based reverse diffusion process itself is a
stochastic contraction mapping so that as long as the data con-
sistency imposing mapping is non-expansive, the alternating
applications of the reverse diffusion and data consistency term
results in a stochastic contraction to a fixed point [26]. This
theory is ideally suitable for the inverse problems, as the steps
which impose data fidelity can be easily cast as non-expansive

mapping [26]. In Section III, we discuss ways to regularize the
reverse diffusion process for our purpose by applying such
non-expansive mapping.

D. Noise2Score

Having access to estimated score also endows us with other
capabilities. Suppose that we have the noising process as

y=x+w, w~NQO,7rID), (6)

where y € RP is the noisy measurement, x € R? is the latent
clean image, and w € R” represents the noise vector sampled
from A. Here, N (0, #2I) denotes zero-mean Gaussian with
variance 772. From this model, in order to estimate the clean
image x from the noisy image y, Tweedie’s formula states
that the posterior mean of x given y is [37]

Elx|y] = y + #*Vylog p(). (7)

In another word, we can find the minimum mean square error
(MMSE) estimator, given the correct score function of y.
It was shown by the authors of [37] that one can apply similar
procedures to the general noise distributions that follow the
exponential family (e.g. Poisson, Gamma).

I11. MAIN CONTRIBUTIONS
A. Score Function as Denoiser

Consider a noisy image x (¢), defined by the forward diffu-
sion process, which essentially samples from p(x(#)|x(0)):

x(1) = x(0) + w, w ~ N0, o)1), (8)

where o () is defined in Eq. (3). We see that this is identical
to (6) when 5 = o (t). Moreover, suppose that sy is expressive
enough and trained to optimality such that sg« = Vy, p;, i.e.
—x(0)]? —x(0
S0+ (0(1). 1) = Vi, (= EQZEQIE) — 0240
Subsequently, using Tweedie’s formula in (7) gives us

Elx(0)[x(1)] = x(t) + o (t)so+(x (1), 1)

=x(1)+0@)? (—M) =x(0). (9)
o (1)
With (9), we again confirm that it is possible to use the
estimated score function trained under the score-SDE frame-
work [19] to estimate the denoised image of x(¢). The only
requirements are that the noise variance o (¢) lies within the
bound of the noise schedule for training and that we can
correctly estimate o (¢). In this case, Eq. (9) provides us with
a method to denoise x(¢) in a single step.

However, the single-step denoising via Noise2Score often
produces blurred results, which is undesirable since this may
raise the difficulty of clinical decision-making. The situation
gets severer as the degree of noise scale increases. Indeed, this
is a problem not only for denoising with the score function,
but also for most of the recent self-supervised denoisers [13],
[14], [37], [38] relying on a single-step estimate.

This suggests that fine-grained control and posterior sam-
pling of the denoising estimate would be beneficial for obtain-
ing sharp and high-fidelity denoised images. Fortunately, given
the generative reverse SDE in (4), we can deal with the
difficulty, which we explore in the following section.
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B. Reverse Diffusion as Denoiser

Recall that the reverse SDE in (4) can be numerically
solved (integrated) by methods such as Euler-Maruyama dis-
cretization. Specifically, we discretize the time index ¢ into N
intervals uniformly. In this case, our noise schedule of o (¢) in
(3) and the discretized sample become

i—1

Omax \ V1
O = Omin (—) o Xi=xOl o

Omin

(10)

In the case of solving reverse SDE for VE-SDE, this
amounts to iteratively applying

P P
Solver(x;t1,2) = Xiy1 + (6, — 07)s9(xit1,0i11)

+\/O-i2+1 —0',-21, (11)

as shown in Algorithm 1. Namely, Euler-Maruyama discretiza-
tion [39] can be seen analagous to the classic Euler integration
in the context of ordinary differential equations (ODE), where
one simply applies the first order approximation to the non-
linear equation. Applying (11) will produce x;, which will
become the next starting point for applying Solver(x;, z).

Here, we have written down a single Euler-Maruyama
step [39] for simplicity, but application of other solvers is
straightforward. The solver in Algorithm 1 can be thought of
as generating a sample path [39], given some initial random
noise sample xy ~ p;(x). By doing so, one would be able
to achieve a sample from po(x), given that the score function
was properly trained.

Algorithm 1 Numerical Solving of (4)
Require: {o;};
1 xy ~ N0, O—r%laxl)
2:fori=N—-1:0do
z~N(,I)
x; < Solver(x;y1,2)
: end for
return x

[95]

SAN AN

On the contrary, let us define a noisy image x ' := x(¢'),
where N’ := Nt/, and ¢’ € [0, 1]. In this case, we can consider
that the given noisy image is a sample from p, (x). When we
know the noise level oyye of x(¢'), we can specify the value
of ' by ' = 6! (0ue). Then, we can generate a sample path
starting from the initial value x(¢"), which would amount to
iterating the solver for N’ steps, rather than N.

Although in the easier case when we know a priori the
amount of noise, we can simply choose ¢’ such that o (¢')
matches the known noise variance, in most practical situations,
this is not possible and one should resort to some surrogate
method to estimate the noise parameters. For that matter,
we propose to use a non-parametric estimation method based
on eigenvalue analysis of the covariance matrix [28], which
we denote in Algorithm 2 with E. Note that this is simply a
design choice, and one can use other estimators as well [40],
[41], [42].

One should note that the noise distribution may deviate
from the Gaussian distribution. For the case of single-step

estimation as in Noise2Score [15], one should be more careful
about how to use the score function and Tweedie’s formula to
denoise a given image. In contrast, as the proposed method
solves the reverse SDE, a single discrete denoising step
amounts to denoising with score function, and then adding
additive Gaussian noise (i.e. diffusion term). With the iterative
application of such a procedure, the noise distribution becomes
closer and closer to the Gaussian distribution by design.
Coupling this with the inherent generalization capacity of
diffusion models [21], we can expect that the proposed method
will generalize to other noise distributions as well. We back
up our argument with a simulation study on denoising Rician
noise in section. V-A.

Algorithm 2 Reverse Diffusion Denoiser
Require: {o;};, xy', E, a
I: 0oyt = E(xp)
ot = G_I(Uest)
N =at'N
fori =N —1:0do
z~N(©,1)
x; < Solver(x;41,2)
end for
: return x

> Noise level estimation

won

® R

Another hyper-parameter to endow further flexibility is a
in Algorithm 2. According to the circumstances, a clinician
might either have to apply denoising aggressively such that
one can maximally reduce the noise level, or apply it mildly
so that one can best preserve the original details. Hence, one
can decide on the value a, or simply apply Algorithm 2
with different values of o multiple times, to choose the best-
performing value. We discuss this interesting aspect of the
proposed method further in Section V-C.

C. Low Frequency (LF) Regularizer

Ideally, one may use Algorithm 2 and achieve denoised
results. However, due to the inherent stochasticity, simply
applying Algorithm 2 may result in altered structure. Espe-
cially in medical imaging, this could lead to catastrophic
outcome. In order to prevent such outcome, we propose a low
frequency regularization scheme.

Specifically, we focus on the fact that noise components are
mostly focused on the high frequency part of the k-space of
the given image. Hence, it would be reasonable to keep the low
frequency component intact, and focus mainly on correcting
the high frequency component. Formally, the regularization
step can be written as

Xiy] = /1F_1PQFxN/ + (1 = A)x;, (12)

where F € RP*P denotes the discrete Fourier transform
matrix, Po € RP*P is a diagonal sub-sampling matrix with
ones at the low frequency region Q, and 4 € [0,1] is a
hyper-parameter which puts emphasis on the regularization.
Note that (12) can be written as

xi—1 =T(x;) = Ax; + b,
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Current estimate

Noisy image

| Lowfrequency
regularization

Fig. 2. lllustration of low frequency regularization.

where A = (1 — A)I and b = AF~'PqFxy:. Hence, T is
nonexpansive since we have |A|| = ||(1—A4)I|| < 1. Therefore,
we can see that (12) not only regularizes the structure to be
unaltered, but it also accelerates the contraction to a feasible
solution, as proved in [26].

An illustration of the regularization is depicted in Fig. 2.
Essentially, the low frequency part from the initial noisy image
x v is softly injected at every iteration in order to keep the
important structure intact.

D. Manifold Constraint Regularization

Recall that Noise2Score could acquire the MMSE esti-
mate through a single call of score function as discussed in
Section III-A, which we refer to as X¢. Another regularization
that one can impose is to constrain the denoising path such
that we minimize the deviation from the MMSE estimate so
that we can obtain the following correction for the gradient
descent:

. 2
X0 = Xit1+075150(Xit1,0i41)

1
X;

13)

= x} — 7 Ve, 1] = %oll3, (14)

where y is some step size, and x| is the previous sampling
from the reverse diffusion. By such regularization, we can
combine the robustness of a one-step MMSE denoiser, and the
detail-preserving property of an iterative diffusion denoiser.
Moreover, it was shown in [29] that such regularization
imposes the generative path to stay closer to the data manifold,
and hence referred to as manifold constraint gradient (MCG)
regularization.

E. Post-Hoc Super-Resolution

It is often the case that an image that we wish to see not only
is corrupted with noise, but also has low resolution. In such
cases, it would be ideal if we could apply super-resolution to
the denoised image, since now the noise component would not
be amplified. Unfortunately, conventional denoisers are devoid
of such ability. In contrast, it has been studied that a single
score function can be used to solve multiple inverse problems,
when the right consistency term is applied [26].

Algorithm 3 Regularized Reverse Diffusion Denoiser + SR
Require: {5;};, xy', E,M,a,y

1: Gest = E(xn/)

2: ' =0 Noesr)

>Noise level estimation

3: N =at'N
4:fori =N —1:0do
5: z~N(,1)

6: x} < Solver(x;y1, z)

7: X0 < x4 + ai%rISg(xi+1,ai+1) Denoiser
8: x! << x; —y Ve, llx; = Xoll
9: Xi <—/1F’1PQFxN/+(1—/1)x;’
10: end for

11: z ~N(0, 1)

12: Xy < x0+omz

13: for j =M —1:0do

14: z~N(,1I)

15: X; < Solver(¥;11,z) SR
16: xj = — @)% +x0

17: end for

18: return X

Here, we show that we can design a super-resolution
algorithm that is applied once the denoising is complete.
Specifically, we define a blur kernel Ap which is defined by
successive applications of the downsampling filter by a factor
D, and upsampling filter by a factor D. This can be represented
as a matrix multiplication: Px’ := hp * x’, where x’ denotes
intermediate estimate from the reverse diffusion. Then, we use
the following data consistency iteration:

% =T (&) = — P)x; + xo, (15)

where &/ is the current estimate from the diffusion, and x is
the denoised image from the denoising step. As shown in [26],
we can see that T in (15) is non-expansive for the normalized
filter hp. Therefore, one can alternately apply the reverse
diffusion and data consistency in a recursive manner to achieve
a fixed point through stochastic contraction:

o/ s 2 2 2 2 2
X; =Xi41+ (O'i+1 —07)s9(Xit1,0i+1) + VOiy1 — 0%

% = (I — P)%; + xo.

Summing everything up, we arrive at Algorithm 3, which
we call R2D2+.! Note that we have initialized the SR process
with a forward diffusion. i.e.

iy = x0+ouz. (16)

Hence, rather than starting from random Gaussian noise as
in [24], one can start from X, and use a small number of
iterations to achieve reconstruction, as introduced as CCDF
strategy in [26]. Accordingly, both the denoising and the SR
steps of R2D2+ require a few tens of iterations, as opposed
to other diffusion models which require a few thousand steps
of iterations [18], [19], [24].

IShort for Regularized Reverse Diffusion Denoiser + SR.
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IV. METHODS
A. Experimental Data

We train our score function on the open-sourced
fastMRI [27] knee datset.? Specifically, we train the network
as advised in [21], using 320 x 320 sized fully-sampled single
coil MRI magnitude images. Since the data is a simulated
single-coil measurement, the ground truth images itself are
contaminated with various sources of noise. However, this is
not a problem, since it was shown that one can also train
a score function with noisy images [15]. We conduct two
experiments with our trained score function - simulation study,
and in vivo study.

For the case of denoising simulation study, we test two
different noise distributions - Gaussian noise, and Rician
noise [43]. Gaussian noise was simulated by adding noise to
the magnitude image, whereas Rician noise was simulated by
adding the same level of noise to the real, and the imaginary
part of the image, and then taking the absolute value. While
thermal noise is presented in the measurement domain (i.e.
k—space), it is standard practice to simulate noise in the image
domain, as Gaussian noise remains Gaussian after inverse
Fourier transform [2], [6], [44], and in the magnitude domain
it becomes Rician noise. Accordingly, we did simulate Rician
noise exactly the same way by adding noise in the image
domain. Also note that we have included Gaussian denoising,
as adding noise directly to the image domain is common
practice and this is the case that best matches our theory.
We additionally perform a simulation study where the forward
model consists of downsampling 320 x 320 — 128 x 128
(x2.5) operator and additive Gaussian noise (¢ = 13.0), and
the objective is to both denoise and super-resolve the images.

For the in vivo study, the data for testing was collected from
Chungang University Medical center, with the Siemens Skyra
scanner. The testing data consists of 28 3-D volumes, acquired
via high flip angle CAIPIRINHA [45],3 with reduced FOV and
thin slice thickness (1.5 mm) to capture small lesions. Specific
parameters for the dataset are listed in TABLE 1.

B. Details of Implementation

We train our score function sy based on VE-SDE cost [19],
formally written as

moin Ei~v(e,1))Ex 0)~poEx (1)~ N (x(0),02(0) 1)

x(1) — x(0)
o2(1)

sg(x(t),1) — (17)

2
)
with 2 = ¢2(r), such that one achieves the maximum like-
lihood training objective of [46]. To avoid numerical issues
from the unbounded values of score [37], we set € = 107>,
In the function o (7), used in the diffusion function of the
VE-SDE, we need to specify omin and omax. Following the
parameters of [21], we set opin = 0.01, omax = 378. We use
a batch size of 2, and train the network using Adam [47]

x [i(t)

2https://fastmri.org/
3Controlled Aliasing In Parallel Imaging Results In Higher Acceleration.

TABLE |
SPECIFICATIONS FOR THE LIVER MRI TEST DATASET

Parameter | value

Scanner Siemens 3T Skyra scanner
Contrast T1W fast suppressed (FS)
Sequence Gradient Echo (GRE)
Time of Repetition(TR) [ms] 6.42

Time of Echo (TE) [ms] 2.46

Echo Train Length (ETL) 2

Matrix size 256 x 256
Resolution [mm?] 1.0 x 1.0 x 1.5

optimizer with a linear warm-up schedule. Specifically, we lin-
early increase the learning rate for the first 5000 steps of
optimization, reaching 2e-4 at the end of warmup. Learning
rate remains static after the warmup. Exponential moving
average of 0.9999 is applied to the parameters, and the
training took about 3 weeks with 2xRTX 2080Ti GPUs.
We use ncsnpp [19] as the neural network architecture
for modeling sg, which conditions the network on ¢ with
Fourier features [48]. For the numerical SDE solver, we use
the predictor-corrector (PC) sampler proposed in [19]. The
parameter for LF regularization is set to 4 = 0.05. We set
o = 0.1 for the simulation study, and o« = 0.2 for the
in-vivo study unless specified otherwise. Static step size of
y = 1.0 is set for the manifold constraint. We use the official
implementation of [28], with the default parameter (patch size
of 8) for the estimation of noise variance.

C. Comparison Methods

We compare the proposed method with the state-of-the-art
(SOTA) methods. First, to compare against a representative
non-deep learning method, we take random sampling non-local
means (SNLM) [49], and Block Matching & 3D filtering
(BM3D). In order to denoise an image, both SNLM and BM3D
require the level of noise variance, which we estimate using
the same method that was used for the noise estimation of the
proposed method [28].

For deep learning methods, we first compare with
self-supervised learning approaches, such as Noise2Noise
(N2N) [13], Neighbor2Neighbor (Nei2Nei) [38], and
Noise2Score (N2Score) [15]. In order to train both N2N
and Nei2Nei methods, we use random Gaussian noise of
scale uniformly ranging from ¢ = 5.0 to ¢ = 50.0, with the
default settings as advised in the original works. For N2Score,
we only need a pre-trained score function, and we use the
same score function that was used for the proposed method.
We include the comparison with stochastic image denoising
(SID) [50] by using the same score function as ours and
using the sampling process as introduced in [50]. We also
compare against RicianNet [51], which is a fully supervised
method trained to denoise Rician noise specifically.

Note that for the denoising + SR simulation study and
the in-vivo study, we perform a post-hoc super-resolution
method as proposed in Section III-E. In our efforts to conduct
experiments as fair as possible, we trained the state-of-the-
art SR model SwinIR [52] on the fastMRI dataset to perform
x2.5 SR, and applied it to all other methods except for the
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Fig. 3. Denoising results of the simulation study on fastMRI knee dataset. (a) Input noisy image, (b) SNLM [49], (c) RicianNet [51], (d) N2N [13],
(e) proposed method, and (f) ground-truth. Yellow boxes show results that are magnified. First two rows: Gaussian noise o = 13.0, Next two rows:

Rician noise 0 = 13.0.

proposed method. For the experiments involving denoising +
SR simulation study data and the in-vivo data, we hence report
on results after the SR is applied unless specified otherwise.

D. Quantitative Evaluation and Statistical Analysis

In order to thoroughly evaluate the performance of the var-
ious methods, for the simulation study where we have access
to ground truth data, we use 4 different metrics: peak-signal-
to-noise-ratio (PSNR); structural similarity (SSIM); learned
perceptual image patch similarity (LPIPS); and mean average
precision (mAP) on the downstream pathology detection task
as performed in [21] with the yolov5 model pretrained on
fastMRI+ [53] dataset. Note that PSNR/SSIM are distortion
metrics, measuring the exact pixel-wise deviation, whereas
LPIPS/mAP are perception metrics, which focuses more on
the semantic relevance [17].

For quantifying resolution in the simulation study, we used
the local perturbation response (LPR) [54] metric. In essence,
LPR measures how faithfully the perturbation made in the

images are recovered after the reconstruction. Mathematically,
LPR = G(A(x + p)) — G(A(x)), (18)

where G is the reconstruction operator, 4 is the forward opera-
tor (i.e. in our case down-sampling followed by additive noise),

and p refers to the image domain perturbation. We design
simple perturbations designed to not throw of the perturbed
data off the original data manifold. Namely, we choose two
different types of perturbations that consists of different sizes.
The first type consists of a medium-sized circular disk near the
center of each image, as illustrated in the 3-4th row of Fig. 4.
The second type consists of a small-sized randomly placed
circular disks that are spread out near the center of the image,
as illustrated in the 5-6® row of Fig. 4, in order to focus on
measuring more of the high-frequency response. In order to
quantify, we compute the PSNR of the LPR, which we denote
as PSNR-LPR.

The primary objective of the proposed method is to increase
the signal-to-noise ratio while also boosting the resolution
of the images. Hence, for the in vivo study, where we
do not have ground truth images to compute full refer-
ence image quality metrics, we use two standard metrics:
signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR).
Specifically, we calculate the metrics with the following
equation:

u(xsy)
c(xp))’

_ u(lxps) — xpp)))

SNR =
c(xppy)

NR

19)

where x 5], x| refers to the circular masked region of interest
(ROI) where the signal is dominant, and the circular masked
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Gaussian/ o =13.0
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Fig. 4. Denoising+SR results of the simulation study on fastMRI knee dataset. (a) Input noisy image, (b) SNLM [49], (c) RicianNet [51], (d) N2N [13],
(e) proposed method, and (f) ground-truth. Yellow boxes show results that are magnified. Third, fourth row: Results of quantifying the LPR metric
(medium size); fifth, sixth row: LPR metric (small size). SR is applied via pre-trained SwinIR [52] model.

ROI where the background resides, respectively. Moreover, u
refers to the mean value, and ¢ indicates the signal standard
deviation.

When calculating the SNR, we manually selected 8 distinct
regions per volume, corresponding to the 8 different liver
segments [55]. Circular disk with the radius of 10 mm was
chosen to mask out the ROIs. For the calculation of CNR,
we focused on 2 different regions per volume, in which we
select two major vessels in the left liver, and the right liver,
respectively. The selection of the regions was performed by a
board-certified radiologist.

V. RESULTS

A. Simuation Study

We show the representative results of the simulation study
in Fig. 3, and the quantitative results in Table II. The pro-
posed method outperforms all other methods in terms of
the perceptual metrics: LPIPS, and mAP. As the penultimate
goal of medical imaging is to provide an accurate diagnosis,
high values of mAP indicate that our method is able to
serve as a “good” denoiser, that boosts diagnosability. The
metrics are consistent with the qualitative results shown in
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TABLE Il
QUANTITATIVE EVALUATION OF DENOISING ON FASTMRI KNEE
VALIDATION DATA. BOLD: BEST, UNDER: SECOND BEST

Gaussian (o = 13.0) Rician (o = 13.0)

Method PSNR 1 SSIM 1 LPIPS | mAP ¥  PSNR 1 SSIM 1 LPIPS | mAP 1
Proposed 3174 0872 0.182 0316 3113 0.908 0218 0314
SNLM [49] 30.82 0.852 0304 0292 2998 0.871 0306 0.254
BM3D [56] 3035 0.860 0318  0.280 3101 0.896 0322 0.263
N2Score [15] 30.08 0.852 0333  0.245 2841 0801 0333 0252
SID [50] 3001 0856 0327 0250 2906 0792 0319 0.249
RicianNet [51] 29.73  0.846 0361  0.202 3131 0907 0221 0219
N2N [13] 3199  0.889 0.193  0.309 2578 0.675 0401 0.186
TABLE Il

QUANTITATIVE EVALUATION OF DENOISING+SR TASK ON FASTMRI
KNEE VALIDATION DATA. BOLD: BEST, UNDER: SECOND BEST

Gaussian (o = 13.0)

Method PSNR 1 SSIM 1 LPIPS | PSNR-LPR 1
Proposed 3046 0.846 0.205 2441
SNLM [49] 2763 0.622 0.359 19.03
BM3D [56] 27.38 0.639 0331  19.97
N2Score [15] 29.61 0.686 0.301  21.56
SID [50] 2751 0610 0329 1995
RicianNet [51] 29.73  0.750 0.318  21.83
N2N [13] 29.87 0.778 0.297 21.75

Fig. 3, where we see that our method produces sharp and
high-fidelity reconstructions while effectively removing the
overall noise, regardless of the noise type or contrast. One
thing to note is that the distortion metrics (i.e. PSNR, SSIM)
of the proposed method often fall short against the SOTA
methods in some cases (e.g. N2N has higher metrics in the
Gaussian noise case). This is expected since MMSE denoisers
are optimized specifically to minimize distortion, whereas the
proposed method better matches the distribution. Moreover,
one widely known issue of generative model-based methods
is the hallucinatory pseudo-lesions, which is especially a
big problem in medical imaging. Nonetheless, thanks to the
well-controlled regularization of the proposed method, we do
not observe such artifacts and see that our method provides
faithful reconstructions that are close to ground truth. Namely,
a board-certified radiologist with 15 years of experience was
unable to spot pseudo-lesions across the whole dataset.

We perform an additional simulation study for
denoising+SR, depicted in Fig. 4, with quantitative
metrics shown in Table III. Here, we more clearly see
the performance gap between the proposed method and the
comparison methods. R2D2 performs accurate denoising +
SR that closely mimics the ground truth. In contrast, the
results of the comparison methods tend to be far blurrier, and
often omitting important details. The further discrepancy is
again mostly due to the inferior denoising performance. The
denoised result is quite different from the training dataset
of the SwinIR model. Subsequently, SwinIR underperforms
on such out-of-distribution data, hence largening the gap.
The superiority of the proposed method can also be seen
in the LPR shown in the 3-6 row of Fig. 4, where we
see that the computed residual with the proposed method

Fig. 5. Denoising results using various methods on different liver
conditions. (a) N2N [13], (b) N2Score [15], (c) proposed method, and
(d) input noisy image. Yellow boxes show results that are magnified. First
row: early liver cirrhosis with hepatocellular carcinoma (HCC), second
row: normal liver, third row: advanced liver cirrhosis.

closely matches the original perturbation. R2D2 is also the
best-performing method in terms of PSNR-LPR, as can be
seen in Table III.

B. In Vivo Study

Denoising results are summarized in Fig. 5, with the quan-
titative metrics in Table I'V. In Fig. 5, we see that our method
is the only method to effectively remove the noise while
sharpening the image, regardless of the given condition of
the liver. This is also consistent with the metrics given in
Table IV, where our method is the highest scoring method
both in terms of SNR and CNR. This can be deciphered in two
aspects - 1) R2D2+ is the only method that explicitly enhances
the resolution with the same network that was used to denoise
the image. 2) Posterior sampling does not produce blurry
output, as opposed to MMSE estimates.

From Table IV, we do observe that self-supervised learning-
based methods (i.e., N2N, N2Score) have much better perfor-
mance than BM3D/SNLM. Nevertheless, the metrics lack far
behind R2D2+, especially in terms of CNR. This can also be
visually inspected in Fig. 5 (b-d). While we can see relatively
clearly that denoising has taken place as opposed to the
noisy input, the denoised output tend to be washed out, with
unclear boundaries and vessel structures. We note that Nei2Nei
performs even worse than BM3D, which we conjecture to

Authorized licensed use limited to: Chung-ang Univ. Downloaded on November 22,2023 at 00:46:10 UTC from IEEE Xplore. Restrictions apply.



CHUNG et al.: MR IMAGE DENOISING AND SUPER-RESOLUTION USING REGULARIZED REVERSE DIFFUSION 931

TABLE IV
QUANTITATIVE EVALUATION OF SNR AND CNR WITH DIFFERENT
METHODS (MEAN + STD.) COMPUTED OVER 1312 TEST IMAGE
SLICES. FOR ALL METHODS EXCEPT R2D2+, SR Is
APPLIED VIA PRE-TRAINED SWINIR [52] MODEL

SNR CNR

Input 15.28 4+ 5.47 | 14.46 £ 4.95
SNLM [49] 16.49 + 5.38 | 13.79 £+ 6.21
BM3D [56] 16.38 £ 6.18 | 12.03 £ 7.95
N2N [13] 19.38 4+ 8.69 | 15.09 £ 1.31
SID [50] 19.01 & 7.98 | 13.06 + 8.21
N2Score [15] | 19.28 £ 8.60 | 14.99 +£ 8.72
Nei2Nei [38] | 16.11 £ 5.57 | 12.08 £+ 7.97
R2D2+ 21.28 + 8.35 | 16.08 £ 7.21

be stemming from its poor generalization capability. While
SID [50] also uses an iterative denoising procedure with
the same score function as ours, R2D2+ shows superior
performance due to the advanced regularization techniques.

C. Flexibility and Uncertainty

As was discussed earlier, we can flexibly adjust the parame-
ter a so that we can get just the right amount of denoising that
we want. An illustration of such control is shown in Fig. 6,
where we vary the value of a from 0.2 to 1.0.

In the first sample, it is clearly seen that we are able to
achieve better results with higher values of «. With a lower
factor, the noise is insufficiently removed. This is the case
where noise is distributed in a holistic manner, as can be seen
in the input image.

On the other hand, in the second sample, we see that with
a high value of «, the texture and the important details of the
liver are washed out, and hence it would be better to keep
the denoising factor o at a low level. Notice that pulsation
artifact [57] is apparent in the central region of the input
image. In such cases, the periphery of the image is rather
clean, whereas the central region of the image is contaminated
with very high scale of noise. Hence, it can be seen that
the distribution of noise is far from Gaussian, leading to an
over-estimation of the noise variance. Therefore, lower values
of a may be needed. In any case, being able to control the
amount of denoising is a prominent feature of our proposed
method, and would be of great importance in clinical settings.

Another important feature of the proposed method is the
ability to quantify uncertainty. Denoising is an inverse prob-
lem, and hence there can be many feasible solutions. In order
to embrace this fact, prior works have proposed several ways
to estimate the uncertainty. For instance, [58] leveraged MC
dropout [59]. Other works tried to estimate the variance
directly [60]. In contrast, with the proposed method, we can
simply sample multiple posterior samples, and directly com-
pute the statistics from these samples. In order to show such
property of R2D2+, we took 5 different posterior samples
given the noisy image, and computed the mean and the
standard deviation of the samples. The results are shown in
the uncertainty maps of Fig. 6. The first sample does not
depict any excessive variance in specific regions, and hence
we can be fairly confident with the resulting denoised image.

Fig. 6. lllustration of flexibility and uncertainty estimating property of
the proposed method for the two patient data. (Red box, Blue box) In
the second, input noisy image and uncertainty map (standard deviation
of the posterior mean) are shown. The first and the third row illustrates
denoised results with varying values of a. The arrows indicate regions
of high uncertainty, and the white box with dotted line points out region
with concentrated noise. White boxes with the dotted line indicate the
values of o used to compute the posterior mean. Uncertainty maps were
computed using the optimal o values indicated with the white dotted box.

Contrarily, we do observe some regions of higher variance in
the second sample (marked with arrows), which may indicate
that a clinician should be conservative on decision making
based on the denoised samples.

Recall that our method involves numerically solving for the
reverse SDE, and each discretization step involves addition of
randomly sampled gaussian noise (z). Consequently, the more
iterations we use (higher values of ), the more variation that
it will lead to. In Fig. 7, we illustrate such effect, where we
see that the uncertainty indeed increases for larger values of a.
Thus, when the objective is to minimize the variation in the
solutions of the inverse problem, one should conservatively
choose the value of a.

VI. DISCUSSION AND RELATED WORKS
A. Impact of Regularization

First, we perform an ablation study on the two regularization
schemes that we propose - MCG, and LF regularizer in
Table V. We test the performance of denoising gaussian
(¢ = 13.0) noise on the simulation dataset, by removing
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(a) Groynd truth (c) Posterior

mean

a =005 (d)Uncertainty

(

(b) Noisy
(Gaussian, o = 20.0)

Fig. 7. Change of uncertainty with varying a values (5 posterior samples
each). (a) Ground truth, (b) noisy image, (c) posterior mean, (d) standard
deviation (uncertainty).

TABLE V
ABLATION STUDY ON THE TWO REGULARIZATION
SCHEMES - MCG, LF

Configuration | PSNR | SSIM
MCG o, LFo | 31.74 | 0.872
MCG o, LF x | 31.26 | 0.864
MCG x, LFo | 31.33 | 0.867
MCG x, LF x | 29.61 | 0.848

each component. We achieve the highest metrics when we
use both methods, and observe slightly degraded performance
when using only one of the methods. When removing both
components, we can see that the performance drops by a large
margin, showing the efficacy of the proposed regularizations.

We show an example of the effect of low frequency
regularization in Fig. 8. In the first column (see yellow
arrow), we see that the vessel structure is altered when the
regularization is not performed. Contrarily, the structure is
conserved with the regularization present. Furthermore, in the
blue arrow of the first column of Fig. 8, we observe some
shaggy-looking structured artifact when we do not perform any
regularization. Again, this artifact is eliminated as we impose
our regularization. Consistent with the observation that was
made in the first column, we again see altered structure in
the second column, when regularization is not imposed. Thus,
we can safely conclude that the proposed regularization is able
to lead our reconstructions toward a conservative outcome,
thereby eliminating false positives/negatives.

Fig. 8. Ablation study on low-frequency regularization method.
(a) Without regularization, (b) with regularization, and (c) noisy image.
First row: The alteration of the tortuous vascular structure might be
misinterpreted as a round hepatic focal lesion by radiologists in clinical
practice. Blue arrows indicate the region where structured shaggy artifact
is present in the reconstruction without regularization. Second row:
clearer vessel structure can be seen in the yellow arrows. White dotted
lines indicate the results by the proposed method.

TABLE VI
PSNR VALUES BY VARYING THE LOwW FREQUENCY REGULARIZATION
PARAMETERS - A (COLUMN), AND BANDWIDTH (Row).
BoLD INDICATES OUR CHOICE

0.1 0.05 0.01 0.001 | 0.005

High | 31.31 | 31.56 | 30.09 | 29.66 | 30.00

Mid | 31.23 | 31.58 | 30.18 | 29.54 | 29.89

Low | 31.03 | 31.02 | 30.02 | 29.69 | 29.70
TABLE VI

QUANTITATIVE EVALUATION OF SNR AND CNR WITH/
WITHOUT RESOLUTION ENHANCEMENT SCHEME

SNR CNR
SRv | 21.28 +£8.35 | 16.08 £ 10.00
SR X | 22.53 4+ 9.06 11.24 + 7.32

In order to further investigate the effect of low frequency
regularization, we check the performance of the regularized
denoisers as a function of A, and bandwidth of the mask
Q with the simulation fastMRI dataset with Gaussian noise
(o = 13.0). We search over three different bandwidths: High
(5/8 cutoff), Mid (1/2 cutoff), and Low (3/8 cutoff), and also
search over different values of A. The results are reported in
Table VI, where we see that the performance peaks at around
A = 0.05, when using Mid bandwidth. Since we also observe
an increasing trend of PSNR values as we increase the A
value from O to 0.05, we again confirm that low-frequency
regularization plays a crucial role.

B. Ablation Study on Super-Resolution

In Fig. 9, we compare the reconstruction results with and
without using the post-hoc super-resolution method, with the
corresponding metrics reported in Table VII. From the figure
and the table, we see that the additional SR step greatly
enhances the resolution, and the CNR, at the expense of a
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Fig. 9.

Ablation study on the post-hoc super-resolution method.
(a) Without SR, (b) with SR, and (c) noisy image. White dotted lines
indicate the results by the proposed method.

slight decrease in SNR. Hence, we can safely conclude that
the proposed method has an overall positive effect on the
reconstruction.

C. Related Works

Denoising based on posterior sampling was discussed in two
of the recent workshop papers [50], [61]. Ohayon et al. [61]
trains a conditional GAN (cGAN), which is trained in a
retrospective supervised manner. At the inference stage, one
can sample multiple different latent vectors z, so that one
would be able to acquire multiple posterior samples given the
same noisy image. Kawar et al. [50] is the closest to our work,
in that the authors propose to use a score-based generative
model.* However, there are several contributions that our paper
makes over [50]. First, the prior work [50] uses un-regularized
denoising steps, whereas ours use regularized steps based on
the theory of stochastic contraction [26]. We have already
shown in Section VI-A the superiority in preserving the
content. Second, our method is fully unsupervised in that we
use heavily out-of-distribution open source data to train our
network, and validate our method on real-world in vivo data.
In opposition, [50] only tests their denoising method on well-
controlled in-distribution datasets. Finally, we utilize a more
advanced form of score matching and sampler, which was
verified to have a large gap against the previous work [19].

D. Limitations and Future Directions

The iterative solver for the proposed method is based on
first-order Euler discretization. Some of the recent works that
leverage higher-order solvers for the integration of reverse
SDE [34], [63] have shown promising improvements over the
first order baselines. Extending our method to higher-order
solvers may thus be a promising direction of research.

The mathematical foundation of diffusion models make
them suitable for Gaussian noise removal, but not to other
noise distributions. While our empirical observations show that
the proposed method well extends to other distributions, there
still exists model mismatch that has not been theoretically

4Based on NCSNv2 [62].

justified. The same holds for our low frequency regularization
scheme. Albeit being effective, the motivation remains heuris-
tic and further theoretical analysis on this method would be
beneficial.

While this work contains extensive performance analysis
both with the simulation study and in vivo study, the work
does not contain in-depth human-involved perceptual analysis.
It will be an interesting direction of future study to per-
form perceptual evaluation study conducted by radiologists,
to establish the validity of the proposed method in actual
clinical settings.

VIl. CONCLUSION

In this work, we proposed a denoising method for MRI,
based on reverse diffusion and non-expansive mapping regu-
larization. Along with it, we propose a method to super-resolve
the denoised image with the same neural network. Our method
achieves state-of-the-art both in terms of SNR and CNR,
outperforming comparison methods by a large margin. With
statistical analysis, we show that our method is the only
method that can boost SNR such that it is statistically relevant,
and at the same time boost the CNR. Furthermore, our method
is able to quantify uncertainty in the solutions to the given
inverse problem, while being flexible so that users can tweak
how such noise should be eliminated, according to their
needs. We believe that our research opens up an exciting new
direction of denoising for medical imaging.
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