
Citation: Han, J.; Seo, Y.; Lee, S.; Kim,

S.; Son, Y. Design and Implementation

of Enabling SQL–Query Processing

for Ethereum-Based Blockchain

Systems. Electronics 2023, 12, 4317.

https://doi.org/10.3390/

electronics12204317

Academic Editor: Bahman Javadi

Received: 19 September 2023

Revised: 10 October 2023

Accepted: 16 October 2023

Published: 18 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Design and Implementation of Enabling SQL–Query
Processing for Ethereum-Based Blockchain Systems
Jongbeen Han 1 , Yunhyeong Seo 1 , Sangjin Lee 2 , Sunggon Kim 3 and Yongseok Son 2,*

1 Department of Computer Science and Engineering, Seoul National University,
Seoul 08826, Republic of Korea; stompesi@snu.ac.kr (J.H.); linas@snu.ac.kr (Y.S.)

2 Department of Computer Science and Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
3 Department of Computer Science and Engineering, Seoul National University of Science and Technology,

Seoul 01811, Republic of Korea; sunggonkim@seoultech.ac.kr
* Correspondence: sysganda@cau.ac.kr

Abstract: A blockchain is designed to establish consistent and reliable agreements in an untrusted
and decentralized environment. In addition, the blockchain enables transaction processing and the
creation of smart contracts. It empowers end users to execute contracts without any intermediate
entities. However, there are some issues when it comes to retrieving information, such as the state
and history of smart contracts and regular transactions in the blockchain. For example, in a smart
contract, user-defined data structures can be used to recall the state of the smart contract for a
range query, which can decrease the general performance. In addition, an external database can be
required to retrieve regular transactions for range queries, which increases management costs. To
achieve this, we propose a new scheme that enables SQL query operations to retrieve a smart contract
and regular transaction information within the blockchain system. To achieve this, we combine
an embedded relational database with an Ethereum-based blockchain system to provide the SQL
query. It enables range queries on smart contracts without requiring user-defined data structures and
decreases management costs for regular transactions without any external database. We implement
the proposed blockchain system on quorum, which is an Ethereum-based blockchain system. Also,
we evaluate the proposed system using a synthetic benchmark. The performance of retrieving smart
contract data is improved by up to approximately 22×, with low memory usage compared with the
existing system. Moreover, the proposed system demonstrates a similar search performance to the
existing system, even when considering external databases in regular transactions.

Keywords: blockchain; SQL query; Ethereum; SQLite

1. Introduction

A blockchain is a distributed ledger and data management technology known for data
integrity [1–3]. The blockchain has become famous for its ability to distribute data, such as
state and transaction information, to each node, supporting the Byzantine fault tolerance
(BFT), and enabling P2P cryptocurrency transfers and contracts without any intermediate
entities. In particular, a smart contract, which is the only function that blockchain provides,
can be consistently executed in a network of mutually distrusting nodes without a trusted
third party. Blockchain is now widely used because of the benefits of these features.
Applications include IoT applications, [4], energy markets [5], the domain name service
using blockchain [6], etc.

There is a need for various blockchain data analytics to optimize the performance
of blockchain systems and predict the flow of the cryptocurrency market. We focus on
Ethereum [2,7], which is a popular permissionless blockchain that had more than 10 TB of
data as of September 2022 [8]. Ethereum-based blockchain systems have some challenges in
managing all the data, despite their many benefits. Ethereum stores these data in the form
of a trie structure. States generated by transactions are stored in the state trie by Ethereum.

Electronics 2023, 12, 4317. https://doi.org/10.3390/electronics12204317 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12204317
https://doi.org/10.3390/electronics12204317
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-8838-9943
https://orcid.org/0009-0005-5349-1135
https://orcid.org/0000-0002-0891-5286
https://orcid.org/0000-0002-2295-3385
https://doi.org/10.3390/electronics12204317
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12204317?type=check_update&version=1


Electronics 2023, 12, 4317 2 of 18

Also, transactions are stored in the transaction trie [7,9]. Nodes within the system verify
whether they are valid or not via the state and transaction trie. Throughout this process, all
the data, such as the state value of the smart contract, are stored in LevelDB.

LevelDB is a type of key–value store known for its great performance in sequential
reads and writes. However, LevelDB (i.e., key–value database) does not support SQL
query operations, such as range queries. Furthermore, LevelDB provides low retrieval
performance when handling large amounts of data. Therefore, to handle these issues,
existing systems use user-defined data structures for smart contracts and external relational
databases for regular transactions to retrieve a range of data [8,10]. However, user-defined
data structures in a smart contract can decrease the overall performance. Also, an external
database can increase the management cost in the blockchain system.

Previous studies [8,11,12] have proposed new select query operations aimed at enhanc-
ing search performance in Ethereum-based blockchain systems. Etherscan [8] introduced
the select query operation that retrieves blockchain information, such as transactions,
tokens, addresses, and prices, using an external database system. Pratama et al. [11]
have enabled users and developers to easily access blockchain data by adding three main
query functions (retrieval query, aggregate query, and ranking query). The Graph [12]
provides services for querying blockchain data by continually scanning all of the events that
Ethereum contains. Our study aligns with these studies [8,11,12] in terms of investigating
the search performance issues within a blockchain system. In contrast, we concentrate on
retrieving a range of data from both smart contracts and regular transactions using an em-
bedded relational database within a blockchain system to improve the search performance
and reduce management costs.

To achieve a higher search performance, we combine an embedded relational database
with an Ethereum-based blockchain system. It enables range queries for smart contracts
and regular transactions without any external database or user-defined data structures. To
achieve this, we propose two managers, i.e., register and query managers. The register
manager manages smart contracts and regular transactions required by users for retrieving
the range of data. The manager registers the smart contracts and regular transactions into
the embedded relational database to perform SELECT query operations and eliminates the
smart contracts and regular transactions that are no longer needed. The query manager
classifies queries into different categories, such as single, range, and conditional queries, to
search for states within smart contracts and regular transactions. By doing so, we enable
each blockchain node to use each embedded relational database (i.e., SQLite [13]) instead
of using a user-defined data structure and an external database within a blockchain system,
as seen in previous studies [8,14]. We implemented the proposed scheme based on quorum,
which is an Ethereum-based blockchain system, and evaluated the proposed system via a
synthetic benchmark. The experimental results show that the proposed system can improve
the search performance of smart contract data, with up to a 22× increase compared to the
existing system, while maintaining low low memory usage. In addition, our system shows
a similar search performance to the existing system that employs an external database for
regular transactions.

In previous work [15], we focused on serving SQL query operations for smart contracts
to enhance the performance of retrieving smart contract information. In this article, we
extend our scheme to provide SQL query operations for regular transactions.

Our contributions to this work are as follows:

• We analyze the performance of existing blockchain systems with select operations.
• We propose a scheme that enables SQL query processing to decrease the management

overhead and increase search performance on a blockchain.
• We show that the proposed system improves the search performance of smart con-

tract data.
• We show that our scheme reduces the management costs for regular transactions

without any external database.



Electronics 2023, 12, 4317 3 of 18

The rest of this article is organized as follows: Section 2 discusses the background and
motivation. Section 3 presents the design and implementation of our proposed system.
Section 4 shows the evaluation results. Section 5 discusses the varied applications of
our model, acknowledging limitations, and addressing future improvements. Section 6
discusses the related work. Section 7 concludes this article.

2. Background and Motivation
2.1. Regular Transactions in Ethereum-Based Blockchain Systems

Regular transactions in the Ethereum-based blockchain system are cryptographically
signed instructions from accounts. An account will initiate a transaction to update the state
of the account in the Ethereum network. Thus, a regular transaction involves transferring
Ethereum-based assets from one wallet address to another wallet address. For example,
if Bob sends Alice 1 ETH, Bob’s account must be debited and Alice’s must be credited.
This state-changing action takes place within a transaction [16]. The submitted regular
transaction includes the following information: recipient, signature, the amount of ETH to
transfer from the sender to the recipient, data, gas limit, the maximum amount of gas, etc.

2.2. Smart Contracts in Ethereum-Based Blockchain Systems

Due to its popularity and greater generality compared to other blockchain systems,
this paper focuses on an Ethereum-based blockchain system [17]. A smart contract is a
important program within the Ethereum blockchain system; it was initially proposed by
Vitalik Buterin [2]. Smart contracts are carried out correctly on the blockchain system due
to the consensus protocol [18]. In addition, a smart contract can encode any set of rules
represented in its programming language (e.g., solidity). A smart contract, for example, may
make transfers and apply various types of business logic, including financial instruments,
insurance, real estate, and medical applications, among other things, on the blockchain.

2.3. Key–Value Store

An Ethereum blockchain system maintains three tries (i.e., world state trie, transaction
trie, and transaction receipt trie) [7,19]. The Ethereum blockchain system’s world state
trie includes the user and smart contract states; the transaction trie records transactions
that alter states of users and smart contracts; and the transaction receipt trie keeps the
results of completed transactions. These three tries are stored in a key–value database
that is designed for storing, retrieving, and managing data (i.e., LevelDB [20]). The key–
value store performs well in sequential reads and writes and offers quick read and write
operations for each key. However, the key–value store can be slow when performing
operations on multiple keys because it lacks range query operations without the relational
data model.

2.4. Motivation

By using smart contracts, users can implement a wide range of business logic, such as
distributed applications (DApps), on the blockchain.

Smart contracts frequently require the ability to obtain data in a range (such as pur-
chase history and sales history). For example, OpenSea, famous for its NFT market, shows
that 121 million people visit the site every month [21]. However, as shown in Figure 1,
there are only 974,220 transactions per month. In other words, the frequency of checking
details in each wallet is higher than the frequency of transactions. However, a key–value
store in the blockchain is challenging since it does not provide range query processing. In
this instance, a smart contract can often retrieve the range of data in one of the following
two ways:

• Using a user-defined data structure. One method for retrieving the range and condi-
tional data of a smart contract involves a user-defined data structure, which can be
used in the smart contract. For example, when a user requests states within a range,
the blockchain system retrieves the requested states, saves the results in the data



Electronics 2023, 12, 4317 4 of 18

structure (e.g., an array or map), and gives it to the user. Even though this method can
provide a range of data, it can decrease the overall performance. The reason is that
it requires the Ethereum virtual machine (EVM) to be loaded, and it runs the smart
contract by reading states from the database one by one instead of using a range query.

• Using an external relational database. To retrieve the range and conditional data of
smart contracts and regular transactions, we can use an external database within a
blockchain system. To serve transaction history, DApps usually collect all transactional
data occurring on the blockchain, with a specific focus on transactions taking place
through the DApp’s smart contract. After that, the collected transaction event history
is stored in an external database. Finally, when a user queries a transaction on the
DApp, the DApp then retrieves the relevant data from the external database and
provides the results to the user. The external database enables range query processing,
resulting in higher search performance. However, this method can require additional
management in the blockchain system. For instance, we should manually carry out
many tasks when a blockchain node connects to an external database system (e.g.,
setting database APIs, constructing a database, and making tables). However, in our
proposal, each node within a blockchain system has an embedded database system to
automatically carry out these processes. By doing this, the user may quickly connect
to the database system and leverage the embedded database system’s range query
processing.

In regard to services provided after moving to an external database in this way, there
is a possibility that the Oracle problem may occur in the situation in which data are
transferred [22]. In other words, the Oracle problem refers to the inability of confirming the
correctness of the data collected by oracles, which can lead to malfunctions and deliberate
tampering. And more than one provider is needed to provide these services.

0

5000

10000

15000

20000

25000

30000

35000

40000

M
ay

 1
9

M
ay

 2
0

M
ay

 2
1

M
ay

 2
2

M
ay

 2
3

M
ay

 2
4

M
ay

 2
5

M
ay

 2
6

M
ay

 2
7

M
ay

 2
8

M
ay

 2
9

M
ay

 3
0

M
ay

 3
1

Ju
n 

1

Ju
n 

2

Ju
n 

3

Ju
n 

4

Ju
n 

5

Ju
n 

6

Ju
n 

7

Ju
n 

8

Ju
n 

9

Ju
n 

10

Ju
n 

11

Ju
n 

12

Ju
n 

13

Ju
n 

14

Ju
n 

15

Ju
n 

16

Ju
n 

17

Tr
an

sa
ct

io
n 

co
un

t

Date

Opensea transactions

Figure 1. OpenSea transaction statistics, May–June 2023.

There are multiple challenges associated with providing services that rely on blockchain
data being transferred to external databases. Firstly, it is critically important for the service
provider to maintain data consistency between the blockchain and the external database.
Each new transaction that occurs on the blockchain requires immediate updates to the
external database, which can introduce significant technical complexities. Secondly, the
use of external databases, which are inherently centralized systems, introduces significant
security concerns. It means that there is a possibility that the Oracle problem [22] may
occur in the situation in which data are transferred. Lastly, the fundamental design of
blockchain technology promotes data that are public and accessible to all. However, this
principle could be compromised when using an external database. In such a case, the com-
pany operating the database assumes full ownership, which could limit data accessibility.
This poses a potential contradiction to the inherent decentralization ethos of blockchain



Electronics 2023, 12, 4317 5 of 18

technology. To solve this problem, we would like to introduce the integration of SQL within
the blockchain to facilitate efficient range queries. This integration not only preserves the
authenticity and integrity of data but also obviates the necessity for external databases,
mitigating the Oracle problem and associated management complexities.

3. Design and Implementation

To improve the performance of search operations and reduce management costs, our
goal is to enable to retrieval of the range of data and conditional data in the blockchain
system. To achieve this, we combine an embedded database system into the blockchain
system that allows SQL query operations for data ranges within the blockchain. This
eliminates the need for constructing and managing an external database and an additional
user-defined data structure.

Figure 2 shows the existing system (with an external database) system and the pro-
posed scheme with an embedded database system integrated into the blockchain system.
The key difference is whether the database is integrated with the application or operates
solely outside the application [23]. As shown in Figure 2a, to maintain an external database,
it has to operate as an additional application, which incurs additional overhead. In con-
trast, as shown in Figure 2b, the proposed embedded database is integrated as part of an
application and stores the data of the users without additional management of a separate
database server [24]. Also, when using the external database for retrieving regular transac-
tion information, the blockchain system has to rely on a third entity (e.g., a DBMS server).
Meanwhile, when using the embedded database, the blockchain system does not need to
rely on a third entity.

External DB
(Mysql, MongoDB, etc.) 

Ethereum-based 
blockchain node

Database

Key-value DB
(LevelDB)

Ethereum-based 
blockchain node

Database

Key-value DB
(LevelDB)

Ethereum-based 
blockchain node

Database

Key-value DB
(LevelDB)

Ethereum-based blockchain nodeEthereum-based blockchain nodeEthereum-based blockchain node

Database

Embedded DB
(SQLite)

Key-value DB
(LevelDB)

(a)

External DB
(Mysql, MongoDB, etc.) 

Ethereum-based 
blockchain node

Database

Key-value DB
(LevelDB)

Ethereum-based 
blockchain node

Database

Key-value DB
(LevelDB)

Ethereum-based 
blockchain node

Database

Key-value DB
(LevelDB)

Ethereum-based blockchain nodeEthereum-based blockchain nodeEthereum-based blockchain node

Database

Embedded DB
(SQLite)

Key-value DB
(LevelDB)

(b)

Figure 2. Classification of the database on an Ethereum-based blockchain node. (a) External database
system; (b) embedded database system.

As an embedded database provides these benefits, we selected the embedded database
and integrated it into the blockchain node. Therefore, through the embedded database,
our scheme can enable a decentralized architecture of the blockchain system and allow
SQL query operations for users to retrieve range and conditional data. For the embed-
ded database, we utilize SQLite, which is a popular relational database system and is
widely used as an embedded database for existing systems. SQLite is an open-source and
lightweight database management system (DBMS). It manages data into a single file and
operates in an embedded manner without maintaining a separate database server. So, via
SQLite, we integrate a database system into a client application [13].

In addition to the embedded database, we also maintain the user data in an existing
key–value database to utilize the advantage of the key–value database. For example, when
a key–value database finds a block or a transaction and performs the validation of the
transaction or block, it provides better performance in searching. Thus, by maintaining
the existing key–value database, our system can provide the same level of consistency in
existing blockchain systems.



Electronics 2023, 12, 4317 6 of 18

3.1. Design

Figure 3 shows the system overview (architecture) of the existing and proposed
systems. In the existing system, as presented in Figure 3a, when the application starts and
transmits the service interface layer to the blockchain system, it obtains the transaction
from the application layer. Then, it is sent from the service interface layer to the transaction
layer. After that, the transaction layer classifies if the transaction type is a smart contract
transaction or a regular transaction. If the type of received transaction is a smart contract,
the smart contract transaction is processed on the Ethereum virtual machine (EVM) by
the smart contract manager. After processing the transaction, it is then validated by the
smart contract manager. If the transaction is valid, it is stored in mempool as a pending
transaction.

Ethereum-based blockchain

Transaction Layer

Application Layer

Service Interface Layer

Smart Contract Manager

Transaction Manager

Block Layer

Embedded Database

Key-value DB
(LevelDB)

Ethereum-based blockchain

Transaction Layer

Application Layer

Service Interface Layer

Query Manager

Smart Contract Manager

Transaction Manager

Register Manager

Block Layer

External Database

Relational DB
(SQLite)

Key-value DB
(LevelDB)

External Database

Relational DB
(Mysql, SQLite, etc.)

JSON-RPC API Lib
(e.g. web3.py, web3.js)

Is this
"SELECT"

query?

getDataQuery result

SQL query

quorum
(based on go-ethereum)

Query
result

(No)
Error

(Yes)
SQL query

LevelDB SQLiteLevelDB SQLite

Transaction data

JSON-RPC API Lib
(e.g. web3.py, web3.js)

Is this
registered

transaction?

Register or
transaction result

State,
Transaction data,

Receipt

quorum
(based on go-ethereum)

(Yes)
Transaction data

registerContractAddress,
registerWalletAddress,
sendTransaction,
sendRawTransaction

(a)

Ethereum-based blockchain

Transaction Layer

Application Layer

Service Interface Layer

Smart Contract Manager

Transaction Manager

Block Layer

Embedded Database

Key-value DB
(LevelDB)

Ethereum-based blockchain

Transaction Layer

Application Layer

Service Interface Layer

Query Manager

Smart Contract Manager

Transaction Manager

Register Manager

Block Layer

External Database

Relational DB
(SQLite)

Key-value DB
(LevelDB)

External Database

Relational DB
(Mysql, SQLite, etc.)

JSON-RPC API Lib
(e.g. web3.py, web3.js)

Is this
"SELECT"

query?

getDataQuery result

SQL query

quorum
(based on go-ethereum)

Query
result

(No)
Error

(Yes)
SQL query

LevelDB SQLiteLevelDB SQLite

Transaction data

JSON-RPC API Lib
(e.g. web3.py, web3.js)

Is this
registered

transaction?

Register or
transaction result

State,
Transaction data,

Receipt

quorum
(based on go-ethereum)

(Yes)
Transaction data

registerContractAddress,
registerWalletAddress,
sendTransaction,
sendRawTransaction

(b)

Figure 3. System overview. (a) Existing system; (b) proposed system.

On the other hand, if a transaction is a regular transaction, the transaction manager
verifies the regular transaction by checking the sender’s balance recorded in the transaction.
If the transaction is verified as a valid transaction, the transaction manager writes the
transaction as a pending transaction in a transaction pool (mempool). Thus, the transaction
pool will maintain only the valid and pending transactions.

When a block has to be generated, the block layer generates a new block, which
includes the pending transactions from the transaction pool. The pending transactions
include both types of transactions (regular and smart contracts) in the mempool. To gen-
erate a new block, the pending transactions that will be included in the new block are
performed and the states of the transactions are updated based on the results of executing
the transactions. Finally, the block and its transactions are written to the storage using a
key–value database (i.e., LevelDB). Because the blockchain constructs a database as a key–
value database, it is impossible to search for conditions or ranges in the existing blockchain.
Therefore, a separate database has been established for retrieving the range and conditions
of blockchain data (e.g., smart contracts and regular transactions).

In the proposed system, as shown in Figure 3b, we propose an additional register man-
ager and a query manager, which are used to modify the block layer. The managers handle
both smart contract transactions and regular transactions in the proposed scheme. The
register manager registers the smart contracts and wallet addresses for regular transactions.



Electronics 2023, 12, 4317 7 of 18

These registered transactions are required to read the range of data from the application and
service interface layers. Then, similar to the existing system, the transaction manager and
the smart contract manager perform the transactions, validate the transaction results, and
store the transactions in mempool. When a new block needs to be generated, the block layer
generates a block using pending transactions from mempool, which can be of smart contracts
and regular transactions. However, in addition to generating the block, our proposed block
layer identifies if the pending transaction is part of the smart contracts or wallet addresses
that are previously registered by the register manager. If that is the case, the block layer
additionally stores the associated transaction to the embedded relational database (e.g.,
SQLite). By storing these transactions in the relational database, the query manager can
perform SQL queries when a user requests the retrieval of range and conditional data from
smart contracts and regular transactions.

3.1.1. Register Manager

To reduce the overhead of managing transactions in the embedded database, we only
register the smart contracts and wallet addresses that are requested rather than all the
transactions. This allows our scheme to track the transactions that are stored in the relational
database (i.e., SQLite), which are also associated with the registered smart contract and
wallet address.

To enable this, we propose the register manager in the proposed scheme as shown
in Figure 3b. In terms of smart contracts, we support APIs such as registerContract-
Address, which registers a smart contract requested in the register manager.In addition,
when the smart contract register request is received by the register manager with the
registerContractAddress API call, the address of the requested smart contract is stored in
SQLite. Then, the address is used to identify each smart contract. Also, in terms of regular
transactions, we create APIs in the register manager, such as registerWalletAddress,
which registers the wallet address. Similar to a smart contract address, the wallet address
is stored in SQLite, which is used to identify each wallet.

After the registration, as shown in Figure 3b, the results of transactions from the regis-
tered smart contract and wallet address are stored in SQLite by the block layer. Through
this registration process, the result of the transaction can be retrieved using an embedded
database, enabling the range and conditions during the retrieval. We will further explain
the process of storing the results of smart contracts and regular transactions in SQLite in
Section 3.1.3. Meanwhile, if the result of the transaction is no longer needed by the user,
the corresponding smart contract and wallet address can be removed using API calls, such
as removeContractAddress and removeWalletAddress. After the execution of APIs, the
smart contract and wallet address are no longer tracked, reducing management overhead.

3.1.2. Query Manager

The query manager handles an SQL query, which can be used to retrieve smart
contracts and regular transactions by using the embedded relational database system (i.e.,
SQLite). To enable this, we support APIs such as getData, which enables the retrieval of the
smart contract and its data. After receiving the retrieval request through getData, the query
manager proceeds to fetch data from both the smart contract and regular transaction stored
in SQLite. Also, to prevent the unauthorized modification of data stored in the database,
only the SELECT query is executed. Other queries that modify the data (i.e., INSERT, UPDATE,
and DELETE) are filtered and ignored to prevent modifying the data from outside. Thus,
with the proposed database, the query manager can handle range or conditional query
operations by calling getData. If there are unregistered smart contracts or wallet addresses,
the query is ignored and the query manager does not perform SQL operations.

3.1.3. Block Layer

In the proposed system, the modified block layer stores blocks—with smart contracts
and regular transactions—to the original key–value database (i.e., LevelDB) and the pro-



Electronics 2023, 12, 4317 8 of 18

posed relational database (i.e., SQLite). This is to support original blockchain operations
through a key–value database while supporting range and conditional retrievals through
the database. To achieve this, the proposed block layer performs a two-level check op-
eration. Initially, the block layer determines the type of each transaction, distinguishing
between a smart contract transaction and a regular transaction. For smart contract transac-
tions, the block layer checks its association with the already registered smart contracts—a
task managed by the register manager.

On the other hand, if the transaction is a regular transaction, the block layer checks the
association with the wallet address that was registered previously by the register manager.
If the transaction has been registered through the register manager, the block layer proceeds
to store the transaction in both LevelDB and SQLite. However, if it has not been regis-
tered, the transaction data are exclusively stored in LevelDB, as the key–value database
is responsible for preserving the integrity of the Ethereum-based blockchain functional-
ity, while the embedded relational database is utilized for retrieving the range of data
within the smart contract. In regard to the remove request via removeContractAddress
or removeWalletAddress from the register manager, it deletes all data associated with the
smart contract or wallet address from SQLite.

3.2. Implementation

As shown in Figure 4, we modified the quorum to implement our scheme. We chose
quorum as it is a widely used Ethereum-based distributed ledger protocol and supports
the privacy of transactions and contracts. In addition, it supports new consensus algo-
rithms, such as raft and Istanbul BFT, for private blockchains. To modify the applications,
we utilize the web3.py python library. web3.py and web3.js are libraries that enable in-
teractions with Ethereum-based blockchain nodes, whether they are local or remote, by
making JSON-RPC calls and utilizing either an HTTP or IPC (inter-process communication)
connection. Furthermore, we employ an SQLite3 library based on the Go programming
language (golang). This SQLite3 library functions as a driver that conforms to the integrated
database/sql interface within golang.

Ethereum-based blockchain

Transaction Layer

Application Layer

Service Interface Layer

Smart Contract Manager

Transaction Manager

Block Layer

Embedded Database

Key-value DB
(LevelDB)

Ethereum-based blockchain

Transaction Layer

Application Layer

Service Interface Layer

Query Manager

Smart Contract Manager

Transaction Manager

Register Manager

Block Layer

External Database

Relational DB
(SQLite)

Key-value DB
(LevelDB)

External Database

Relational DB
(Mysql, SQLite, etc.)

JSON-RPC API Lib
(e.g. web3.py, web3.js)

Is this
"SELECT"

query?

getDataQuery result

SQL query

quorum
(based on go-ethereum)

Query
result

(No)
Error

(Yes)
SQL query

LevelDB SQLiteLevelDB SQLite

Transaction data

JSON-RPC API Lib
(e.g. web3.py, web3.js)

Is this
registered

transaction?

Register or
transaction result

State,
Transaction data,

Receipt

quorum
(based on go-ethereum)

(Yes)
Transaction data

registerContractAddress,
registerWalletAddress,
sendTransaction,
sendRawTransaction

(a)

Ethereum-based blockchain

Transaction Layer

Application Layer

Service Interface Layer

Smart Contract Manager

Transaction Manager

Block Layer

Embedded Database

Key-value DB
(LevelDB)

Ethereum-based blockchain

Transaction Layer

Application Layer

Service Interface Layer

Query Manager

Smart Contract Manager

Transaction Manager

Register Manager

Block Layer

External Database

Relational DB
(SQLite)

Key-value DB
(LevelDB)

External Database

Relational DB
(Mysql, SQLite, etc.)

JSON-RPC API Lib
(e.g. web3.py, web3.js)

Is this
"SELECT"

query?

getDataQuery result

SQL query

quorum
(based on go-ethereum)

Query
result

(No)
Error

(Yes)
SQL query

LevelDB SQLiteLevelDB SQLite

Transaction data

JSON-RPC API Lib
(e.g. web3.py, web3.js)

Is this
registered

transaction?

Register or
transaction result

State,
Transaction data,

Receipt

quorum
(based on go-ethereum)

(Yes)
Transaction data

registerContractAddress,
registerWalletAddress,
sendTransaction,
sendRawTransaction

(b)

Figure 4. Process overview. (a) Register & Store process; (b) Query process.

As shown in Figure 4a, to retrieve range and conditional data in smart contracts and
regular transactions, a user initiates the registration of a smart contract address by utilizing
registerContractAddress. Upon receiving this request, the register manager proceeds to



Electronics 2023, 12, 4317 9 of 18

establish a dedicated table within SQLite that aligns with the smart contract’s structure for
storing transaction outcomes. Once the table creation is successfully completed, the register
manager proceeds to record the smart contract address within the SQLite database. In
addition, to retrieve range and conditional data in a regular transaction, a user requests the
registration of a wallet address via registerWalletAddress. At that time, unlike a smart
contract, the register manager stores the wallet address at the pre-defined table in SQLite
without creating a table.

After registering the smart contract, the smart contract and regular transactions initi-
ated by sendTransaction and sendRawTransaction from a user are received and processed
via quorum. When the block and its transactions are stored by the block layer, the block
layer checks whether each transaction in a block should be stored in SQLite for the range
query, according to their registration via checkIsTrackedContract. If the block layer stores
transaction data in SQLite, the block layer stores the transaction data in both SQLite and
LevelDB; otherwise, the block layer only stores the transaction data in LevelDB. For exam-
ple, in smart contract transactions, the block layer stores the transaction data of the smart
contract performed through EVM in SQLite via insertValue(smart_contract_address,
params). In regular transactions, the block layer stores regular transaction data in SQLite
via the transfer (source address, destination address, amount).

Figure 4b shows the query processing procedure in the proposed system. When
retrieving a range of data in the smart contract, JSON-RPC, such as getData(SQL_select-
_query), is utilized. In that case, as presented in the figure, only the SELECT query is
performed in SQLite, and other SQL queries, such as INSERT, UPDATE, and DELETE, are
eliminated via a regular expression. If the SQL query syntax is incorrect or if there are any
other issues with the queries, the query manager returns an error message. Otherwise, the
query manager provides the data results corresponding to the syntax.

3.3. Usage

Figure 5 shows how to retrieve regular transactions in the blockchain. To retrieve the
transaction information over a specific period, a user can initiate a query using user A’s
wallet address and the period. After that, the blockchain returns the result of the query
request. The result is the transaction information related to user A in the period. For
example, user A sends 0.1 ETH to user C, user A receives 0.2 ETH from user B, and user A
sends 0.1 ETH to user D. In addition, user A can retrieve transactions with a specific user.
To achieve this, user A enters their own address and another user’s (user B) address. After
that, the blockchain returns the result of the query request. The result is the transaction
information related to user A and user B. For example, user A sends 0.1 ETH to user B,
user A sends 0.2 ETH to user B, and user A sends 0.1 ETH to user B. In this case, the query
manager checks whether the query types are related to regular transactions. After that,
the query manager looks up the regular transaction table in SQLite, checks the search
conditions, and responds to the query.

On the other hand, in an existing system (with an external database), it is necessary
to build a separate database by synchronizing data information from the blockchain. The
reason is that the database used in the blockchain is a key–value store; therefore, it is hard
to retrieve conditions or ranges of data. So, it receives blockchain data at the time the
block is generated and stores the data in a separate database, such as MySQL. Afterward,
the method of retrieving general transactions is similar to the proposed system, i.e., one
initiates a query to a separate service using an external database and then receives the
results accordingly.



Electronics 2023, 12, 4317 10 of 18

ResultQueryUser-A

Where (condition) 
• User-A (from)
• User-B (to)

Where (condition & range)
• User-A
• 2022-01-03 ~ 2022-03-04

2021-08-08 / A send 0.1 eth to B
2022-03-15 / A send 0.2 eth to B
2022-05-03 / A send 0.1 eth to B…
2022-01-08 / A send 0.1 eth to C
2022-02-17 / A receive 0.2 eth from B
2022-02-20 / A send 0.1 eth to D…

Query ResultUser-A

Figure 5. Retrieval of regular transactions in the blockchain.

4. Evaluation
4.1. Experimental Setup

To evaluate the proposed scheme, we utilize five machines, each with a 32-core CPU.
Each has two Intel Xeon E5-2683 processors, 64 GiB DRAM, and operates on the Ubuntu
16.04.5 LTS distribution with Linux kernel 4.4.0. In terms of language, we utilize golang
1.10.7, python 3.7, and jmeter [25]. In terms of benchmark, we use a synthetic benchmark.
The smart contract scenario in the synthetic benchmark represents an energy usage storage
application where a user records electric energy consumption every 15 min, with the data
storage spanning a total duration of one year.

We devised a smart contract for the evaluation. It consists of a variable and an array of
user-defined data structures for each user. The variable stores a timestamp that records the
most recent update made by a user, while the array holds the actual energy consumption
data. The range to be retrieved in the smart contract is calculated as follows:

startIndex = MNE − (LSTS − STS)/c − 1

endIndex = MNE − (LSTS − ETS)/c − 1

return array[startIndex : endIndex]

(1)

MNE represents the maximum number of entities in the smart contract during one
year, which is 35,040 in our evaluation scenario. STS and ETS represent the start and end
timestamps provided by a user, specifying the range of data to be retrieved, respectively. c
is a constant that denotes the duration of the storage cycle in seconds. We set c as 900 s
to convert 15 min to seconds. Using this smart contract, we evaluate the existing and
proposed systems in terms of INSERT and SELECT performances.

In regular transactions, the regular transaction scenario of the benchmark involves
sending and receiving cryptocurrency between users. As it is a basic function of the
blockchain, we exploit the internal function without writing a separate contract. In addition,
to compare the existing system (with an external database), we built the blockchain explorer,
which stores synchronized data of blocks and transactions from the blockchain with the
external database. As the external database, we use MySQL since MySQL is typically used
in blockchain as an external database. In our test, we use JMeter v5.4.1 to make requests to
a database with 50 threads. The client’s environment from which the requests are sent is a
MacBook Pro 2019 with a 2.3 GHz 8-core Intel Core i9, 32 GB 2667 MHz DDR4. We run
each experiment with 10 measurements and report the average.



Electronics 2023, 12, 4317 11 of 18

4.2. Performance Results
4.2.1. SELECT Performance

Figure 6a presents the SELECT performances of existing and proposed systems in smart
contracts. For experimental parameters, we set the number of threads as 1 and the number
of entities as 10,000, 20,000, 30,000, and 35,040. Thus, the performance results according to
the number of entities are shown. As shown in the figure, the proposed system improves
the performance by up to 16.9×, 16.5×, 15.8×, and 15.7×, compared with the existing
system, where the number of entities is 10,000, 20,000, 30,000, and 35,040, respectively. The
proposed system provides range query operations, while the existing system has to retrieve
the data one by one without range queries. Therefore, it shows better performance than
the existing system. The execution times of the existing and proposed systems increase as
the number of entities increases. This is because, as the number of entities grows, both the
data retrieval time and the data volume increase. Moreover, these findings indicate that
the execution time of the current system escalates quickly, while the execution time of the
proposed system experiences a more gradual increase as the number of entities increases.

0
0.5

1
1.5

2
2.5

3
3.5

4

10,000 20,000 30,000 35,040

Se
co

nd
s

The number of entities

Existing system Proposed system

(a)

0

0.4

0.8

1.2

1.6

2

10,000 20,000 30,000 35,040

Se
co

nd
s

The number of entities

Existing system with external database Proposed system

(b)

0

100

200

300

400

500

600

10,000 20,000 30,000 35,040

Se
co

nd
s

The number of entities

Existing system Proposed system

(c)

0
10
20
30
40
50
60
70
80
90

10,000 20,000 30,000 35,040

Se
co

nd
s

The number of entities

Existing system Existing system with external database Proposed system

(d)

Figure 6. Performance results with different entity numbers. (a) Execution times of select operations
in smart contracts; (b) execution times of select operations in regular transactions; (c) throughput of
insert operations in smart contracts; (d) throughput of insert operations in regular transactions.

Figure 6b presents the SELECT performance comparison between the existing system
with the external database and the proposed system in regular transactions. For experi-
mental parameters, like a smart contract experiment, we set the number of threads to 1
and the number of entities as 10,000, 20,000, 30,000, and 35,040. As shown in the figure,
the proposed system improves the performance by up to 2.40×, 2.16×, 1.90×, and 2.12×
compared to the existing system (with an external database), where the number of entities
is 10,000, 20,000, 30,000, and 35,040, respectively. This is because our proposed scheme
combines SQLite for regular transactions, which is faster and simpler than the existing
system with MySQL.



Electronics 2023, 12, 4317 12 of 18

4.2.2. Insert Performance

Figure 6c presents the INSERT performances of existing and proposed systems. The
experimental parameters used in the INSERT evaluation are the same as those used in
the SELECT evaluation. The execution time of the proposed system increases by up to
1.013×, 0.994×, 0.992×, and 0.993× compared with the existing system, where the number
of entities is 10,000, 20,000, 30,000, and 35,040, respectively. This result shows a minor
overhead. In terms of throughput, the proposed system provides 73.3, 71.4, 71.9, and
72.3 entities/s, and the existing system provides 72.3, 71.8, 72.4, and 72.7 entities/s when
the number of entities is 10,000, 20,000, 30,000, and 35,040, respectively. These results
demonstrate that the throughput of the INSERT operations of the proposed system is almost
the same as that of the existing system, although we support additional embedded relational
databases (i.e., SQLite) for fast retrieval.

Figure 6d presents the INSERT performance of the existing system with the external
database and the proposed system. The experimental parameters used in the INSERT
evaluation are the same as those used in the SELECT evaluation. The proposed system
increases the execution time by up to 1.090×, 1.095×, 1.093×, and 1.081× compared with
the existing system, where the number of entities is 10,000, 20,000, 30,000, and 35,040,
respectively. This is because the proposed system stores additional data at the SQLite
in the blockchain. Meanwhile, the proposed system decreases the execution time by up
to 1.84×, 1.82×, 1.91×, and 2.00× compared with the existing system (with an external
database), where the number of entities is 10,000, 20,000, 30,000, and 35,040, respectively.
This is because the existing system (with an external database) stores additional data at
the external database outside the blockchain. The external database requires additional
synchronizing operations with the blockchain. However, the proposed system stores the
data in the embedded database (SQLite) inside the blockchain without synchronizing the
operations. Therefore, the result demonstrates that the proposed scheme shows a better
performance than the existing system with an external database.

Note that all the experimental results by regular transactions in Figure 6d show better
performance than those by the smart contract in Figure 6c. Because the smart contract
transaction should be executed by the smart contract function by the Ethereum virtual
machine (EVM), it takes a longer time than a regular transaction.

4.3. Impact on the Number of Threads

Figure 7a,b present the performance in SELECT operations with different thread num-
bers. As shown in the figure, in all systems, the execution time increases as the number
of threads increases. In terms of the smart contract, the proposed system improves the
performance by up to 21.1×, 22×, 18.7×, 17.4×, 18.4×, and 15× compared with the existing
system, where the number of threads is 1, 2, 4, 8, 16, and 32, respectively. In particular, in
the existing system, the execution time experiences a sharp increase when the number of
threads exceeds 16. Additionally, the execution time of the existing system is noticeably
higher, reaching approximately 8 seconds more than that of the proposed system.

In terms of regular transactions, the proposed system improves the performance by up
to 2.12×, 2.31×, 4.02×, 5.46×, 4.87×, and 5.34× compared with the existing system (with
an external database), where the number of threads is 1, 2, 4, 8, 16, and 32, respectively. In
particular, in the existing system (with an external database), the execution time increases
rapidly when the number of threads is beyond 16. The execution time of the existing system
with the external database is higher by up to about 21 s compared with that of the proposed
system.



Electronics 2023, 12, 4317 13 of 18

0
1
2
3
4
5
6
7
8
9

1 2 4 8 16 32

Se
co

nd
s

The number of threads

Existing system Proposed system

(a)

0

5

10

15

20

25

30

1 2 4 8 16 32

Se
co

nd
s

The number of threads

Existing system with external database Proposed system

(b)

Figure 7. Execution times of select operations with different numbers of threads. (a) Execution times
of select operations in smart contracts; (b) execution times of insert operations in regular transactions.

4.4. Measuring Resource Usage

To measure resource usage for one node when performing SELECT operations, we
set the number of entities as 35,040 (one year) and measure the resource usage from the
program start to the termination. Also, we set the 35,040 regular transactions to be the same
as the smart contract. Figures 8 and 9 show the CPU and memory usage according to the
number of threads and the number of entities in the smart contract and regular transaction.
As shown in Figure 8a,b, the CPU and memory usage is almost the same when the number
of entities increases and the number of threads is only one. This is because the number of
entities used in our evaluation does not significantly affect memory usage.

0

100

200

300

400

500

600

10,000 20,000 30,000 35,040

Se
co

nd
s

The number of entities

Existing system Proposed system

0

7

14

21

28

35

10,000 20,000 30,000 35,040

C
PU

 u
se

ag
e 

(%
)

The number of entities

Existing system Proposed system

(a)

0

500

1000

1500

2000

2500

10,000 20,000 30,000 35,040

M
em

or
y 

us
ag

e 
(M

B
)

The number of entities

Existing system Proposed system

(b)

0

7

14

21

28

35

1 2 4 8 16 32

C
PU

 u
se

ag
e 

(%
)

The number of threads

Existing system Proposed system

(c)

0

500

1000

1500

2000

2500

1 2 4 8 16 32

M
em

or
y 

us
ag

e 
(M

B
)

The number of threads

Existing system Proposed system

(d)

Figure 8. Resource usage in the smart contract. (a) CPU usage with different entity numbers;
(b) memory usage with different entity numbers; (c) CPU usage with different thread numbers;
(d) memory usage with different thread numbers.

As shown in Figure 8c,d the CPU and memory usage increase as the number of threads
increases. In this evaluation, multiple threads concurrently handle entities, leading to a
simultaneous increase in the required resources. As the number of threads increases, the
demanded memory in the current system expands by as much as 2.6 times when compared



Electronics 2023, 12, 4317 14 of 18

to the proposed system. The results show that, in the proposed system, EVM uses more
memory than SQLite. The reason is that more EVMs are required to support user-defined
data structures when more threads are added to the existing system.

In regular transactions, like smart contracts, as shown in Figure 9a,b, the CPU usage in
the proposed system is higher than that of the existing system (with an external database),
where the number of entities increases. Even if the CPU usage in the proposed system is
higher, the CPU usage of the proposed system is average (about 2%), and it shows that
the CPU usage itself is still low. Also, the memory usage in both systems is similar even
if the number of entities increases. Figure 9c shows that the CPU usage increases as the
number of threads increases in the proposed system. Meanwhile, the existing system (with
an external database) does not increase CPU usage. Since the existing system (with an
external database) is a more complex architecture (e.g., locking mechanism) compared to
SQLite, the CPU usage is almost the same, even if the number of threads increases. Finally,
Figure 9d shows that both systems slightly increase memory usage according to the number
of threads.

0

0.4

0.8

1.2

1.6

2

10,000 20,000 30,000 35,040

Se
co

nd
s

The number of entities

Existing system with external database Proposed system

0
0.4
0.8
1.2
1.6

2
2.4
2.8

10,000 20,000 30,000 35,040

C
PU

 u
se

ag
e 

(%
)

The number of entities

Existing system with external database Proposed system

(a)

0

1000

2000

3000

4000

5000

10,000 20,000 30,000 35,040

M
em

or
y 

us
ag

e 
(M

B
)

The number of entities

Existing system with external database Proposed system

(b)

0
1
2
3
4
5
6
7
8
9

1 2 4 8 16 32

C
PU

 u
se

ag
e 

(%
)

The number of threads

Existing system with external database Proposed system

(c)

0
1000
2000
3000
4000
5000
6000

1 2 4 8 16 32

M
em

or
y 

us
ag

e 
(M

B
)

The number of threads

Existing system with external database Proposed system

(d)

Figure 9. Resource usage in a regular transaction. (a) CPU usage with different entity numbers;
(b) memory usage with different entity numbers; (c) CPU usage with different thread numbers;
(d) memory usage with different thread numbers.

4.5. Comparative Analysis

To provide a more comprehensive perspective on the advantages and efficiencies of
our proposed embedded relational database within the blockchain, we present a detailed
comparison table (Table 1). This table contrasts the features and performance metrics
of our system with traditional blockchain databases and those using external databases.
This comparative analysis aims to elucidate the distinct enhancements and innovations
introduced in our proposed system.

This comparison underscores the elevated performance, enhanced security, and in-
creased query versatility of our proposed system. While traditional blockchain databases
offer high security, they often lack performance and scalability. Blockchain systems utiliz-
ing external databases enhance query versatility but can compromise security and data
integrity. Our proposed system amalgamates the strengths of both models, ensuring op-



Electronics 2023, 12, 4317 15 of 18

timal performance, robust security, and extensive query capabilities while mitigating the
complexities and vulnerabilities associated with external databases.

Table 1. Comparative analysis of different blockchain database systems.

Features/Metrics Traditional Blockchain DB Blockchain with External DB Proposed System

Performance Moderate High High

Scalability Limited Moderate Enhanced

Security High Variable (depends on external DB security) Very High

Complexity Low High (due to management of external DB) Moderate

Cost Efficiency High Low (due to additional DB maintenance costs) High

Query Versatility Limited High Very High

Data Integrity High Moderate (risk of discrepancies between blockchain
and external DB) Very High

Real-Time Processing Moderate High High

5. Discussion

In this section, we conduct a comprehensive discussion and present the multifaceted
applications. The benefits spanning various industries underscore the robustness and
versatility of our proposed model. Also, we list the limitations and potential challenges of
the current system through the integration of an embedded relational database within a
blockchain system and talk about future work to solve them.

5.1. Impact on Applications

The proposed system can be used in several industries by combining the immutable
and transparent nature of the blockchain with the efficiency of SQL queries. We list the
benefits that can be achieved when the proposed system is applied in various industries.
In supply chain management, the ability to execute SQL query operations directly within
the blockchain ensures instant data retrieval, which is essential for real-time tracking and
verification. This feature mitigates the challenges of delayed data access and complexities
associated with tracking goods at each logistic point, directly addressing the Oracle problem
and ensuring data authenticity. Voting systems benefit from enhanced data integrity
and real-time accessibility. The dual storage mechanism of LevelDB and SQL within the
blockchain ensures that each vote is securely recorded and can be quickly retrieved and
verified. This diminishes the risk of vote tampering and ensures electoral transparency and
integrity. The healthcare sector experiences improved efficiency in records management.
The embedded SQL queries enable healthcare providers to access and share encrypted
patient data securely and in real time. This direct access to blockchain-stored data eliminates
the need for intermediary data retrieval layers, enhancing data security and access speed.
Financial services are streamlined, with our system ensuring that transaction data are not
only securely recorded in the blockchain but are also instantly accessible via SQL queries.
In particular, for cross-border transactions, this feature eliminates delays associated with
data retrieval, ensuring real-time transaction verification and enhancing financial security.

5.2. Limitations of the Proposed System

Despite the significant advancements achieved with our proposed method, we recog-
nize several limitations that warrant future exploration. One prominent constraint is the
overhead associated with storing data both in LevelDB and the embedded SQL database
within the blockchain. This dual storage mechanism, while enhancing query efficiency,
potentially increases the storage requirements and impacts the system’s overall perfor-
mance. Additionally, the current implementation is tailored for Ethereum-based blockchain



Electronics 2023, 12, 4317 16 of 18

systems. As the blockchain ecosystem is diverse and rapidly evolving, the adaptability of
our approach to other blockchain platforms remains an unexplored avenue.

5.3. Future Work

In future work, we will aim to systematically address the identified limitations. In
particular, the overhead associated with the dual storage mechanism is a primary concern.
To mitigate this, we are exploring the development of more efficient data indexing and
compression algorithms that would allow for rapid data retrieval and reduced storage
space, eliminating redundancy and enhancing the overall system’s efficiency. Ensuring fast
and efficient data retrieval and maintaining the integrity and security inherent in blockchain
technology will be the guiding principles.

Also, to tackle the limitations associated with the system’s specificity to the Ethereum
blockchain, we plan to extend the applicability of our approach to other blockchain plat-
forms. To achieve this, we will conduct a series of empirical studies, tests, and validations
to adapt and optimize our method to the unique architectural and operational nuances
of different blockchain ecosystems. Our focus will be on ensuring that the embedded
SQL database integration remains efficient, secure, and performative across the blockchain
environments. By doing this, we anticipate broadening the scope and usability of our
method, making it a universally applicable solution for enhanced data query operations
within diverse blockchain systems.

6. Related Work

In several academic fields, blockchain technology presents many challenges. For
example, there are studies aimed at enhancing the efficiency of the blockchain, including
the performance of retrieval procedures.

Systems using external databases. To increase retrieval performance, previous sys-
tems [8,26,27] have used external databases for making indirect queries within a blockchain
system. Etherscan [8], which is a search, API, and analytics platform for Ethereum, employs
an external database. It enables users to browse the Ethereum blockchain in search of
transactions, addresses, tokens, prices, and other Ethereum-related activity. Etherchain [26]
is an explorer for the Ethereum blockchain; it extends the native Ethereum API. It offers
basic statistical information, like the transaction count and block time. Additionally, it
enables users to investigate smart contract transactions, search transactions, and monitor
user account balances. Ethstats [27] is a visual interface used for monitoring the Ethereum
network’s health; it offers the most recent data on a block number, connected node infor-
mation, pending transactions, gas prices, etc. FlureeDB [28] and BigchainDB [29] provide
developing blockchain database solutions to support SQL-like queries. However, in those
systems (e.g., Etherchain [26], EtherScan [8], and Ethstats [27]), users cannot verify whether
the results of the external database and the blockchain data are identical since they use
external databases outside of the blockchain system. Also, external database systems have
significant maintenance costs to manage.

Embedded Blockchain systems. There are other ways to increase retrieval perfor-
mance; previous studies [11,14,30–32] have proposed new layers and new language for the
blockchain. To enhance the efficiency of select queries, EtherQL [14], for instance, adds
a querying layer to the Ethereum client. It offers a variety of queries, such as the top K
queries and range queries for transactions and blocks. VQL [31] provides efficient query
services by extracting transactions from the underlying blockchain system and adding a
middleware layer. EQL [32] proposes a query language that can retrieve information from
the blockchain written in the programming language (Smalltalk) [33]. Through this query
language, users can obtain block and transaction data. Pratama et al. [11] add three main
query functions (retrieval query, aggregate query, and aggregate query) so that users and
developers can easily access blockchain data.

For users or analysts who often generate transactions, these earlier systems and
studies enhance the performance of searching for information about Ethereum’s blocks,



Electronics 2023, 12, 4317 17 of 18

transactions, and accounts. Our study is in line with these studies in terms of investigating
the performances of select operations in the blockchain system. On the other hand, our
work focuses on obtaining the data from both smart contracts and transactions utilizing an
embedded relational database within a blockchain system that is based on Ethereum.

7. Conclusions

This article focuses on enabling SQL query operations within a blockchain system.
We combine an embedded relational database with an Ethereum-based blockchain system
to provide SQL queries. This enables range queries for smart contracts without any user-
defined data structures and decreases the management costs for regular transactions
without any external database. We implemented the proposed scheme on an Ethereum-
based blockchain system and evaluated the proposed system using a synthetic benchmark.
Our experimental results show that the proposed system—in smart contracts—can improve
performance by up to about 22x compared with the existing system. Also, our system
shows a similar search performance compared with the existing system, including an
external database in regular transactions.

We show a significant optimization of SQL query operations within a blockchain sys-
tem, particularly within the Ethereum-based blockchain. However, challenges remain for
further enhancement. The overhead associated with storing data in both LevelDB and SQL
is a primary concern. Therefore, in future work, a pivotal focus will be centered on reducing
this overhead. By addressing these challenges, we aim to advance the embedded relational
database within the blockchain, enhancing its efficiency, scalability, and performance in
blockchain systems.

Author Contributions: Methodology, J.H., S.L. and Y.S. (Yongseok Son); Software, Y.S. (Yunhyeong
Seo); Writing—original draft, S.K. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported in part by the National Research Foundation of Korea (NRF)
Grant funded by the Korean Government (MSIT) (No. 2021R1C1C1010861, 2022R1A4A5034130,
RS-2022-00166541), (Corresponding Author: Yongseok Son).

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Satoshi, N. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008. Available online: https://assets.pubpub.org/d8wct41f/31611

263538139.pdf (accessed on 18 September 2023).
2. Buterin, V. A Next-Generation Smart Contract and Decentralized Application Platform. 2014. Available online: https:

//finpedia.vn/wp-content/uploads/2022/02/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralize
d_application_platform-vitalik-buterin.pdf (accessed on 18 September 2023).

3. Yli-Huumo, J.; Ko, D.; Choi, S.; Park, S.; Smolander, K. Where is current research on blockchain technology?—A systematic
review. PLoS ONE 2016, 11, e0163477. [CrossRef] [PubMed]

4. Samaniego, M.; Deters, R. Blockchain as a Service for IoT. In Proceedings of the 2016 IEEE International Conference on Internet of
Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing
(CPSCom) and IEEE Smart Data (SmartData), Chengdu, China, 15–18 December 2016; pp. 433–436.

5. Mengelkamp, E.; Notheisen, B.; Beer, C.; Dauer, D.; Weinhardt, C. A blockchain-based smart grid: Towards sustainable local
energy markets. Comput. Sci.-Res. Dev. 2018, 33, 207–214. [CrossRef]

6. Ali, M.; Nelson, J.C.; Shea, R.; Freedman, M.J. Blockstack: A Global Naming and Storage System Secured by Blockchains. In
Proceedings of the USENIX Annual Technical Conference, Denver, CO, USA, 22–24 June 2016; pp. 181–194.

7. Wood, G. Ethereum: A secure decentralised generalised transaction ledger. Ethereum Proj. Yellow Pap. 2014, 151, 1–32.
8. etherscan. 2018. Available online: https://etherscan.io (accessed on 18 September 2023).
9. Ethereum State Trie Architecture Explained. 2019. Available online: https://medium.com/@eiki1212/ethereum-state-trie-archi

tecture-explained-a30237009d4e (accessed on 18 September 2023).

https://assets.pubpub.org/d8wct41f/31611263538139.pdf
https://assets.pubpub.org/d8wct41f/31611263538139.pdf
https://finpedia.vn/wp-content/uploads/2022/02/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_platform-vitalik-buterin.pdf
https://finpedia.vn/wp-content/uploads/2022/02/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_platform-vitalik-buterin.pdf
https://finpedia.vn/wp-content/uploads/2022/02/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_platform-vitalik-buterin.pdf
http://doi.org/10.1371/journal.pone.0163477
http://www.ncbi.nlm.nih.gov/pubmed/27695049
http://dx.doi.org/10.1007/s00450-017-0360-9
https://etherscan.io
https://medium.com/@eiki1212/ethereum-state-trie-architecture-explained-a30237009d4e
https://medium.com/@eiki1212/ethereum-state-trie-architecture-explained-a30237009d4e


Electronics 2023, 12, 4317 18 of 18

10. Is It Possible to Access Storage History from a Contract in Solidity? 2016. Available online: https://ethereum.stackexchange.com
/questions/11545/is-it-possible-to-access-storage-history-from-a-contract-in-solidity (accessed on 18 September 2023).

11. Pratama, F.A.; Mutijarsa, K. Query support for data processing and analysis on ethereum blockchain. In Proceedings of the 2018
International Symposium on Electronics and Smart Devices (ISESD), Bandung, Indonesia, 23–24 October 2018; pp. 1–5.

12. The Graph. 2020. Available online: https://thegraph.com (accessed on 18 September 2023).
13. SQLite. 2018. Available online: https://www.sqlite.org/index.html (accessed on 18 September 2023).
14. Li, Y.; Zheng, K.; Yan, Y.; Liu, Q.; Zhou, X. EtherQL: A query layer for blockchain system. In Proceedings of the International

Conference on Database Systems for Advanced Applications, Suzhou, China, 27–30 March 2017; Springer: Cham, Switzerland,
2017; pp. 556–567.

15. Han, J.; Kim, H.; Eom, H.; Coignard, J.; Wu, K.; Son, Y. Enabling SQL-query processing for ethereum-based blockchain systems.
In Proceedings of the 9th International Conference on Web Intelligence, Mining and Semantics, Seoul, Republic of Korea, 26–28
June 2019; pp. 1–7.

16. TRANSACTIONS. 2022. Available online: https://ethereum.org/ko/developers/docs/transactions/ (accessed on 18 September
2023).

17. DPRating Crypto Rankings (Based on GitHub Activity) June 2018 Report: EOS, Cardano, TRON, and Ethereum Tied for First
Place. 2018. Available online: https://www.cryptoglobe.com/latest/2018/07/dprating-crypto-rankings-based-on-github-activi
ty-june-2018-edition/ (accessed on 18 September 2023).

18. Szabo, N. The Idea of Smart Contracts. Nick Szabo’S Pap. Concise Tutor. 1997, 6, 199.
19. Chishti, M.S.; Sufyan, F.; Banerjee, A. Decentralized On-Chain Data Access via Smart Contracts in Ethereum Blockchain. IEEE

Trans. Netw. Serv. Manag. 2021, 19, 174–187. [CrossRef]
20. LevelDB. 2019. Available online: https://github.com/google/leveldb (accessed on 18 September 2023).
21. OpenSea Statistics 2023: How Many Users Does OpenSea Have? 2023. Available online: https://thesmallbusinessblog.net/ope

nsea-statistics/ (accessed on 18 September 2023).
22. Caldarelli, G. Understanding the blockchain oracle problem: A call for action. Information 2020, 11, 509. [CrossRef]
23. What Is the Difference between Embedded Databaseand Ordinary Database Like MySql or Oracle. 2018. Available online:

https://goo.gl/oV9x7b (accessed on 18 September 2023).
24. Wikipedia: Embedded Database. 2018. Available online: https://en.wikipedia.org/wiki/Embedded_database (accessed on 18

September 2023).
25. Apache JMeter. 2022. Available online: https://jmeter.apache.org/ (accessed on 18 September 2023).
26. Etherchain. 2018. Available online: https://www.etherchain.org (accessed on 18 September 2023).
27. Ethstats. 2018. Available online: https://ethstats.net (accessed on 18 September 2023).
28. Platz, B.; Filipowski, A.; Doubleday, K. Flureedb: A Practical Decentralized Database. 2017.
29. McConaghy, T.; Marques, R.; Müller, A.; De Jonghe, D.; McConaghy, T.; McMullen, G.; Henderson, R.; Bellemare, S.; Granzotto, A.

Bigchaindb: A scalable blockchain database. White Pap. BigChainDB 2016, 53–72.
30. EthereumJ. 2018. Available online: https://github.com/ethereum/ethereumj (accessed on 18 September 2023).
31. Peng, Z.; Wu, H.; Xiao, B.; Guo, S. VQL: Providing query efficiency and data authenticity in blockchain systems. In Proceedings of

the 2019 IEEE 35th International Conference on Data Engineering Workshops (ICDEW), Macao, China, 8–12 April 2019; pp. 1–6.
32. Bragagnolo, S.; Rocha, H.; Denker, M.; Ducasse, S. Ethereum query language. In Proceedings of the 1st International Workshop

on Emerging Trends in Software Engineering for Blockchain, Gothenburg, Sweden, 27 May–3 June 2018; pp. 1–8.
33. Goldberg, A.; Robson, D. Smalltalk-80: The Language and Its Implementation; Addison-Wesley Longman Publishing Co., Inc.:

Reading, MA, USA, 1983.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://ethereum.stackexchange.com/questions/11545/is-it-possible-to-access-storage-history-from-a-contract-in-solidity
https://ethereum.stackexchange.com/questions/11545/is-it-possible-to-access-storage-history-from-a-contract-in-solidity
https://thegraph.com
https://www.sqlite.org/index.html
https://ethereum.org/ko/developers/docs/transactions/
https://www.cryptoglobe.com/latest/2018/07/dprating-crypto-rankings-based-on-github-activity-june-2018-edition/
https://www.cryptoglobe.com/latest/2018/07/dprating-crypto-rankings-based-on-github-activity-june-2018-edition/
http://dx.doi.org/10.1109/TNSM.2021.3120912
https://github.com/google/leveldb
https://thesmallbusinessblog.net/opensea-statistics/
https://thesmallbusinessblog.net/opensea-statistics/
http://dx.doi.org/10.3390/info11110509
https://goo.gl/oV9x7b
https://en.wikipedia.org/wiki/Embedded_database
https://jmeter.apache.org/
https://www.etherchain.org
https://ethstats.net
https://github.com/ethereum/ethereumj

	Introduction
	Background and Motivation
	Regular Transactions in Ethereum-Based Blockchain Systems
	Smart Contracts in Ethereum-Based Blockchain Systems
	Key–Value Store
	Motivation

	Design and Implementation
	Design
	Register Manager
	Query Manager
	Block Layer

	Implementation
	Usage

	Evaluation
	Experimental Setup
	Performance Results
	SELECT Performance
	Insert Performance

	Impact on the Number of Threads
	Measuring Resource Usage
	Comparative Analysis

	Discussion
	Impact on Applications
	Limitations of the Proposed System
	Future Work

	Related Work
	Conclusions
	References

