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1. Introduction and Preliminaries

Assume thatH is a family of analytic functions. For a natural j and a ∈ C and let

Hj
a :=

{
f ∈ H : f (ξ) = a + ξ + aj+1ξ j+1 + aj+2ξ j+2 + . . . , ξ ∈ E

}
(1)

be the subclass ofH. Furthermore, we deduce that

Hj
0 :=

{
f : f (ξ) = ξ + aj+1ξ j+1 + . . . ,

f (j+1)(0)
(j + 1)!

= aj+1 ξ ∈ E
}

. (2)

For j = 1, we observe that

H1
0 = A :=

{
f : f (ξ) = ξ + a2ξ2 + a3ξ3 + . . . , ξ ∈ E

}
(3)

and Ω = {s ∈ A : s(0) = 0}. The familyA is given by (3). For λ ∈ C, let φ( f , λ) = a3− λa2
2

be a quadratic functional. The problem related to this function involves the derivation of
sharp estimates for the functional absolute values φ(., λ) for certain types of functions over
the class A. Keogh and Merks [1] showed that

|φ( f , λ)| ≤
{max

(
1
3 , |1− λ|

)
, f ∈ C

max
(

1
2 , |1− λ|

)
, f ∈ S∗1

2

, (4)
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and these inequalities are best possible. In [2], it is shown that for the functions f such that
<e f (ξ)

ξ > 1
2 , ξ ∈ E, the following sharp result holds

|φ( f , λ)| ≤ max(1, |1− λ|).

Consider the mapping f ∈ A, defined by the limit given by

lim
t→0+

ξ − ut(ξ)

t
= f (ξ), t ≥ 0.

This mapping is called an infinitesimal generator of one-parameter family of a continuous
semi-group, if, for ξ ∈ E, the Cauchy problem,{

∂
∂t (u(ξ, t)) + f (u(ξ, t)) = 0,
u(ξ, t) = ξ, t = 0

(5)

has a unique solution u = u(ξ, t) ∈ E, t ≥ 0. In this case, the solution u = u(ξ, t) ∈ E, t ≥ 0
of (5) forms a semi-group of holomorphic or analytic self-mappings in E generated by f ;
for details, see [3–5]. The family of all generators, known as a semi-complete vector field
on E, is expressed by G. Another important form of the family G is studied by Berkson and
Porta [6] and can be restated below.

Theorem 1. For f ∈ A with f (ξ) 6= 0, f is a generator on E, if and only if ∃ a point τ ∈ E and a
function h ∈ A with <eh(ξ) ≥ 0 :

f (ξ) = h(ξ)(τ − ξ)(ξτ − 1), ξ ∈ E.

In particular, f ∈ A is a generator if and only if <e
(

f (ξ)
ξ

)
> 0. We express the family

of such a generator using G. The condition <e
(

f (ξ)
ξ

)
> 0 seems simple, but often it is

hard to verify. The condition <e( f ′(ξ)) > 0, provided by Noshiro and Warschawski [4,7],
independently implies that a function f ∈ A is univalent. It can be taken as sufficient for
f ∈ A to consider it a generator. All infinitesimal generators may not be univalent. Then,
<e( f ′(ξ)) > 0 cannot ensure that f ∈ G.

In recent years, many remarkable developments have been made in the study of the
generation theory of one parametric semi-group of analytic functions. This study not
only answers many diverse questions from different areas of mathematical analysis, but
also deals with significantly new developments in the initial and boundary value partial
differential equations, approximation theory and the theory of singular integrals. The
generation theory of semi-groups has been used in Markov stochastic processes and in the
theory of branching processes. This leads to its involvement in one-dimensional complex
analysis and is the main motivation of this work.

In this paper, our main task is to establish a connection between the Fekete–Szegö
quadratic functional and the class of infinitesimal generators G. For this purpose, we define
a class MF = { fs, s > 0}, of all f ∈ A, such that φ( f , λ) satisfies the sharp estimates
sup f∈MF |φ( f , λ)| = max(s, |1− λ|). Moreover, in the case of an invertible function f ∈ A,
we have

sup
f∈MF

∣∣∣φ( f−1, λ
)∣∣∣ = sup

f∈MF
|φ( f , λ)|.

Definition 1. A filtration of G is a family MF = {℘s : s ∈ [c, d],℘s ⊆ G}, where
c, d ∈ [−∞,+∞] and c < d : ℘s ⊆ ℘t , whenever c ≤ s ≤ t ≤ d. Furthermore, a filtra-
tion is strict if ℘s ⊂ ℘t , s < t.

We are focused on building a relationship between the family G of infinitesimal
generators and the Fekete–Szegö functional φ( f , λ). Here, we establish a more generalized
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mechanism for f ∈ A to be in the family G. Our task is to establish a connection between the
family of infinitesimal generators G and the Fekete–Szegö functional φ( f , λ) by determining
a filtration {℘s, s > 0} such that sup f∈MF |φ( f , λ)| = max(s, |1− λ|). Here, we assume a
more generalized condition for f ∈ A to be in G by:

Definition 2. Assume that h(ξ) = f (ξ)
ξ is strongly starlike of order α = 1

µ , such that

∣∣∣arg
(

ξ−1 f (ξ)
)∣∣∣ ≤ π

2µ
, 0 <

1
µ
≤ 1, ξ ∈ E.

A function f ∈ A is in G if and only if <e
(

f (ξ)
ξ

)µ
> 0 and −1 ≤ µ ≤ 1.

By using Definition 2, we now develop some new filtration families by using a nonlin-
ear differential operator

℘
µ
α,β( f )(ξ) = α

(
f (ξ)

ξ

)µ

+ (βµ + Λ)w(ξ) + Λ
ξµw′(ξ)

1− µ + µw(ξ)
, (6)

where w(ξ) =
ξ f ′(ξ)

f (ξ) , α, β ∈ R, Λ = 1− α− β, −1 ≤ µ ≤ 1 and ξ ∈ E, and we establish
sharp bounds on the modulus of φ( f , λ) over these filtration classes.

For the sake of completeness, we are required to obtain the following important results
from Geometric Function Theory.

2. Preliminaries

Let Ψ : C3 ×E→ C and let h ∈ S in E. If p is analytic in E and satisfies the nonlinear
second order differential subordination

Ψ
(

p(ξ), ξ p′(ξ), ξ2 p′′(ξ); ξ
)
≺ h(ξ), (7)

then p is called a solution of (7). The function q ∈ S is called a dominant of the solu-
tions of (7), or simply a dominant, if p(ξ) ≺ q(ξ) for all p satisfying (7). A dominant
q : q(ξ) ≺ q̃(ξ) for all dominants q of (7) is said to be the best dominant of (7).

Lemma 1. Let β, τ ∈ C and β 6= 0. Let h1 ∈ A and <e[βh1(ξ) + τ] > 0. Then, the solution h of

h(ξ) +
ξh′(ξ)

βh(ξ) + τ
= h1(ξ)

satisfies <e[βh(ξ) + τ] > 0 : h(0) = c.

For the details of Lemma 1, see [8].

Lemma 2. Let τ ∈ R, f ∈ A and Ω ⊂ C. Then, <e f (ξ) > τ, ξ ∈ E if and only if the functional
s is defined by

s(ξ) =
f (0)− f (ξ)

2τ − f (0)− f (ξ)
∈ A. (8)

Lemma 3. Suppose h : h(0) = 1, Ω ⊂ C and Ψ : C3 ×E→ C satisfy

Ψ(iρ, σ, u + iv; ξ) /∈ Ω, (ξ ∈ E),

for ρ, σ, u, σ ∈ R, σ ≤ − 1+ρ2

2 and σ + u ≤ 0. If, for the functional Ψ, we have

Ψ
(

h, ξh′, ξ2h′′
)
(ξ) ∈ Ω (ξ ∈ E),
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then <eh(ξ) > 0, ξ ∈ E.

For the proof of the both Lemmas 2 and 3, we refer to [9].

Lemma 4. If w ∈ A and w(ξ) =
∞
∑

j=1
bjξ

j, then |b2| ≤ 1− |b1|2and
∣∣b2 − sb2

1

∣∣ ≤ max(1, |s|) for

s ∈ C.

A detailed proof of Lemma 4 can be found in [1].

Lemma 5. Let f ∈ A : | f (ξ)| < 1. If | f (ξ)| attains its highest value at ξ0, then

ξ0 f ′(ξ0)

f (ξ0)
= m, m ≥ 1.

For detailed information of Lemma 5, see [10].

3. A Function as an Infinitesimal Generator

In the first Theorem, we drive some sufficient conditions on ℘
µ
α,β( f ) which ensure that

f is a generator.

Theorem 2. For α, β, µ ∈ R and −1 ≤ µ ≤ 1, consider that

∆1 =
{

s = x + iy : µβ− α + 1 ≥ x; (x− 1− βµ)2 − α2 ≥ y2; α ≥ 0
}

,

and
∆2 =

{
s = x + iy : x > µβ− α + 1; y2 ≤ (x− 1− βµ)2 − α2; α < 0

}
.

For the image domain ∆ ⊂ C such that

∆ =

{
Cr ∆1, α ≥ 0
Cr ∆2, α < 0

, (9)

if, for f ∈ A and ℘
µ
α,β( f ) ⊆ ∆, then f ∈ G.

Proof. For the mapping f ∈ A and h(ξ) =
(

f (ξ)
ξ

)µ
, we see that

µ
ξ f ′(ξ)

f (ξ)
= µ +

ξh′(ξ)
h(ξ)

and
µξ
(

ξ f ′(ξ)
f (ξ)

)′
1 + µ

(
ξ f ′(ξ)

f (ξ) − 1
) +

ξ f ′(ξ)
f (ξ)

=

(
ξ2h′(ξ)

)′
(ξh(ξ))′

+ 1.

Thus, for Λ = 1− α− β, we find that

℘
µ
α,β( f )(ξ) = µβ + Λ + αh(ξ) +

βξh′(ξ)
h(ξ)

+ Λ

(
ξ2h′(ξ)

)′
(ξh(ξ))′

= 1− α + β(µ− 1) + αh(ξ) +
βξh′(ξ)

h(ξ)
+ Λ

(
ξ2h′(ξ)

)′
(ξh(ξ))′

.

By choosing r = h(ξ), s = ξh′(ξ) and t = ξ2h′′(ξ), we study the admissibility conditions
as:
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For Λ = 1− β− α, consider that

Ψ(r, s, t; ξ) = 1− α + β(µ− 1) + αr + β
s
r
+ Λ

2s + t
s + r

,

and

Ψ
(

h, ξh′, ξ2h′′; ξ
)
= 1− α + β(µ− 1) + αh(ξ) + β

ξh′(ξ)
h(ξ)

+ Λ

(
ξ2h′(ξ)

)′
(ξh(ξ))′

.

In view of Lemma 3, we prove that f ∈ G. To establish this inclusion, it is enough to prove
that h maps E onto the right half plane. For this, we need to show that

Ψ(iρ, σ, u + iσ; ξ) /∈ ∆, when ρ, σ, u, σ ∈ R, σ ≤ −1
2

(
1 + ρ2

)
, σ + u ≤ 0. (10)

For Λ = 1− α− β, we see that

X = <eΨ(iρ, σ, u + iσ; ξ) = 1− α + β(µ− 1) +
Λ

ρ2 + σ2 [(u + 2σ)σ + vρ],

and

Y = Im Ψ(iρ, σ, u + iσ; ξ) = Λ
vσ− (u + 2σ)ρ

ρ2 + σ2 − βσ

ρ
+ αρ.

This implies that
Y− αρ + βσ

ρ

X− 1 + α− β(µ− 1)
=

vσ− (u + 2σ)ρ

(u + 2σ)σ + vρ
,

or we can write that

Y− αρ + βσ
ρ

(X− 1 + α− βµ) + β
=

σ

ρ
−

(u + 2σ)
(
ρ2 + ασ2)

ρ(vρ + (u + 2σ)σ)
. (11)

Moreover, if we let κ = X− 1 + α− βµ and

Yσ,ρ,u =
(u + 2σ)

(
ρ2 + σ2)

(vρ + (u + 2σ)σ)
,

then (11) becomes

Y− αρ +
βσ

ρ
= (κ + β)

σ

ρ
− κ + β

ρ
Yσ,ρ,u,

or
Y = ρα + κ

σ

ρ
− κ + β

ρ
Yσ,ρ,u.

Therefore, we have

Y 6= ρ

[
α + κ

σ

ρ2

]
= Yσ,ρ,u(κ), where ρ ∈ R and σ ≤ −1

2

(
1 + ρ2

)
.

Condition (10) holds if every point of Ω = {s ∈ A : s(0) = 0} is found on the graph of
Yσ,ρ,u, for some σ and ρ. Next, we analyze the range of Yσ,ρ,u(κ).
Case I: For α ≥ 0, if we take κ > 0, then by letting

y = ρ

[
α + κ

σ

ρ2

]
, (12)
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we see that αρ2 − ρy + σκ = 0 implies that

ρ =
y±

√
y2 − 4ασκ

2α
. (13)

Furthermore, by using (12) for σ ≤ −(1+ρ2)
2 , we have

y = αρ− κ

(
1 + ρ2)

2ρ
, implies that ρ =

−y±
√

y2 − (κ − 2α)κ

2(κ − 2α)
.

Taking y2 − (κ − 2α)κ ≥ 0, we have y ≥
√
(κ − 2α)κ, where (κ − 2α)κ is taken to be

positive. Also,

∣∣Yσ,ρ,u(κ)
∣∣ = ∣∣∣∣α− κ

1
2ρ2

(
1 + ρ2

)∣∣∣∣|ρ| ≥
[

α− κ

(
1 + ρ2)

2ρ2

]
|ρ|

≥
√
(κ − 2α)κ =

√
(X− 1− βµ)2 − α2.

Hence Yσ,ρ,u(X) =
√
(X− 1− βµ)2 − α2 holds for all reals. For y ∈ R, we can select a ρ

given by (13), so that (12) holds.
Case II: For κ ≤ 0, we have∣∣Yσ,ρ,u(κ)

∣∣ ≥ √(κ − 2α)κ =

√
(κ − α)2 − α2 =

√
(X− 1− βµ)2 − α2,

where we minimize
(

α− κ
(1+ρ2)

2ρ2

)
|ρ| in respect to ρ. Thus, for α ≥ 0 and κ ≤ 0,

∣∣Yσ,ρ,u(X)
∣∣2

assumes all values greater than or equal to (κ − 2α)κ = (−1 + X− βµ)2 − α2. Therefore, if
κ ≤ 0, then X ≤ 1− α + βµ, and in this case the range of ℘µ

α,β is

C\∆1 =
{

s = x + iy : x ≤ 1− α + βµ; y2 ≥ (x− 1− βµ)2 − α2; α ≥ 0
}

.

Case III: Again, for κ ≤ 0, we have

∣∣Yσ,ρ,u(κ)
∣∣ = −[α− κ

1 + ρ2

2ρ2

]
|ρ| ≥ |ρ|

(
κ

1 + ρ2

2ρ2 − α

)
≥
√
(κ − 2α)κ

= (−1 + X− βµ)2 − α2.

For α < 0, κ ≥ 0, we observe that X > 1− α + βµ and y2 ≥ (x− 1− βµ)2 − α2, and, in this
case, the range for ℘µ

α,β is

C\∆2 =
{

s = x + iy : x > 1− α + βµ; y2 ≥ (x− 1− βµ)2 − α2; α < 0
}

.

Thus, for α < 0, the union of graphs of Yσ,ρ,u(κ) lies in the set C\∆2; ∀ ρ ∈ R and
σ ≤ − 1

2
(
1 + ρ2).

Combining the above cases, as well as applying Lemma 3, we complete the proof of
the above Theorem.

Remark 1. From the geometry of the regions ∆1 and ∆2 along with f ∈ A, −1 ≤ µ ≤ 1, α, β ∈ R
and ξ ∈ E, if α ≥ 0; α+β

2 ≥ 1− α + βµ : β ≥ 2−3α
1−2µ , then we obtain the results listed below.

Corollary 1. Let α, β ∈ R, f ∈ A, α, β ∈ R, −1 ≤ µ ≤ 1 and ξ ∈ E. If either α ≥ 0; β < α and

<e℘µ
α,β( f )(ξ) > βµ− α + 1,
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or α < 0; β > α and
<e℘µ

α,β( f )(ξ) < βµ− α + 1,

then f ∈ G.

4. Maximization of the Fekete-Szegö Functional

We define a new classMFµ
α,β in connection with the nonlinear operator ℘µ

α,β( f ).

Definition 3. For f ∈ A, we have f ∈ MFµ
α,β, that is

<e℘µ
α,β( f )(ξ) >

α + β

2
,

where β ≥ 2−3α
1−2µ or

<e℘µ
α,β( f )(ξ) >

1− α(1 + µ)

(1− 2µ)
.

Thus, we note that
For µ = 1 and α + β ≥ 2, we haveMFµ

α,β = ∅.

For α = 1, β = 0 and −1 ≤ µ ≤ 1, we haveMFµ
1,0 = G.

For α = 0 and −1 ≤ µ ≤ 1, we haveMFµ
α,β =M1−β of order β

2 , where β ≥ 2
1−2µ .

Remark 2. For α ≥ 0,−1 ≤ µ ≤ 1 and β ≤ 2−3α
1−2µ , we have α+β

2 ≥ 1− α+ βµ andMFµ
α,β ⊂ G.

In the next Theorem, we work out the conditions of α, β and µ, so that for φ(., λ), we
obtain |φ( f , λ)| ≤ max(s, |1− λ|).

Theorem 3. Let f ∈ A, α, β ∈ R, −1 ≤ µ ≤ 1 and ξ ∈ E satisfy

α− (2µ− 3)β < 2, (−3µ− 2)α− (2µ + 1)β < 2(2µ + 1),

and
λ0 = (α + 2β)µ + 2(1− α− β)(2µ + 1),

such that β = 2(µ+1)
4+3µ−6µ2 . If we denote the level set of function

ϕ
(

µ
α,β

)
=

2 + (2µ− 3)β− α

(α + 2β)µ + 2(1− α− β)(2µ + 1)
> 0,

then |φ( f , λ)| ≤ max
(

ϕ
(

µ
α,β

)
|1− λ|

)
for λ ∈ C, over the familyMFµ

α,β.

Proof. Let f ∈ A be in the familyMFµ
α,β. Then, ℘µ

α,β( f )(ξ) is obtained by using

α

(
f (ξ)

ξ

)µ

= α + αµa2ξ + α

[
µa3 +

µ(µ− 1)
2

a2
2

]
ξ2 + ...,

βµ
ξ f ′(ξ)

f (ξ)
= βµ + βµa2ξ + βµ

(
2a3 − a2

2

)
ξ2 + ...,

and

µξ
(

ξ f ′(ξ)
f (ξ)

)′
µ

ξ f ′(ξ)
f (ξ) − µ + 1

+
ξ f ′(ξ)

f (ξ)
= 1 + (1 + µ)a2ξ +

[
(1 + 2µ)2a3 − (µ + 1)2a2

2

]
ξ2 + ...
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in (6), as seen below

℘
µ
α,β( f )(ξ) = 1− (1− µ)β + (µ + Λ)a2ξ +

[
λ0a3 − λ1a2

2

]
ξ2 + ..., (14)

where
Λ = 1− α− β, λ0 = (−3µ− 2)α− (2µ + 1)(β + 2)

and

λ1 =

(
1− 3α

2
− β

)
µ2 −

(
3
2

α + β− 2
)

µ + Λ.

Now, consider that

s(ξ) =
℘

µ
α,β( f )(ξ)− ℘

µ
α,β( f )(0)

−2�+℘
µ
α,β( f )(0) + ℘

µ
α,β( f )(ξ)

.

By using (14), we see that

s(ξ) =
(Λ + µ)a2ξ

2 + µ1β− α
+

[(
λ0 + λ1a2

2
)
a3

2 + µ1β− α
+

(Λ + µ)2a2
2

[2 + µ1β− α]2

]
ξ2 + ...,

where µ1 = 2µ− 3. If we take s(ξ) =
∞
∑

j=1
bjξ

j and µ1 = 2µ− 3, then we note that

s(ξ) =
(Λ + µ)a2ξ

2 + µ1β− α
+

[(
λ0 + λ1a2

2
)
a3

2 + µ1β− α
+

(Λ + µ)2a2
2

[2 + µ1β− α]2

]
ξ2 +

∞
∑

j=3
bjξ

j.

On comparison, we have

b1 =
(Λ + µ)

2 + µ1β− α
a2 = τ0a2,

b2 =
λ0

2 + µ1β− α

[
a3 −

λ1[α− 2− µ1β]− (Λ + µ)2

[2 + µ1β− α]λ0
a2

2

]
= τ1

[
a3 − τ2a2

2

]
,

where µ1 = 2µ − 3, τ0 = (1−α−β+µ)
2+µ1β−α , τ1 = λ0

2+µ1β−α , τ2 = λ1(α−2−µ1β)−(1−α−β+µ)2

(2+µ1β−α)λ0
and

τ3 = τ1τ2. Thus, with the help of Lemma 4, we obtain the following relation∣∣∣b2 − sb2
1

∣∣∣ = ∣∣∣τ1

[
a3 − τ2a2

2

]
− sτ2

0 a2
2

∣∣∣ = ∣∣∣τ1a3 −
(

τ3 + sτ2
0

)
a2

2

∣∣∣,
or we see that ∣∣∣b2 − sb2

1

∣∣∣ = |τ1|
∣∣∣∣∣a3 −

(
τ3 + sτ2

0
)

τ1
a2

2

∣∣∣∣∣.
If we denote λ = 1

τ1

(
τ3 + sτ2

0
)
, then we write

∣∣∣a3 − λa2
2

∣∣∣ = 1
|τ1|

∣∣∣b2 − sb2
1

∣∣∣,
or ∣∣∣a3 − λa2

2

∣∣∣ = |τ|∣∣∣b2 − sb2
1

∣∣∣, where |τ| = 1
|τ1|

and the level set of functions is obtained from

ϕ
(

µ
α,β

)
=

[
λ0

(2 + (2µ− 3)β− α)

]−1
=

(2 + (2µ− 3)β− α)

(−3µ− 2)α− (2µ + 1)(β + 2)
.
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On setting

α = 2 + (2µ− 3)β and (−3µ− 2)α− (2µ + 1)(β + 2) = 0,

we obtain

β =
2(µ + 1)

4 + 3µ− 6µ2 .

Hence, the level sets are rays starting from the points
(

2 + 2(µ+1)(2µ−3)
4+3µ−6µ2 , 2(µ+1)

4+3µ−6µ2

)
and

lying under the lines α− (2µ− 3)β = 2 and (−3µ− 2)α− (2µ + 1)β = 2(2µ + 1).

5. Filtration Problems for Some Related Classes

In this section, we take α = 0 and consider the classMFµ
0,β, consisting of functions

f ∈ A, that satisfy the inequality

<e
{
(1− β + βµ)w(ξ) +

(1− β)µξw′(ξ)
µ(w(ξ)− 1) + 1

}
>

β

2
,

or we see that

<e
{
{1 + β(µ− 1)}w(ξ) +

(1− β)µξw′(ξ)
µ(w(ξ)− 1) + 1

}
>

β

2
, (15)

where w(ξ) =
ξ f ′(ξ)

f (ξ) . This can also be rewritten as:

MFµ
0,β =

{
f ∈ A : 2<e℘µ

0,β( f )(ξ) > β for β ≥ 2
1− 2µ

}
.

Theorem 4. For β 6= 1, we have

f ∈ MFµ
0,β ⇐⇒

[
1− µ + µ

ξ f ′(ξ)
f (ξ)

]1−β

[ f (ξ)]1+βµ−β ∈ S∗.

Proof. From (15), we note that

g(ξ) = [1− µ + µw(ξ)]1−β[ f (ξ)]1+βµ−β,

or we see that

ξg′(ξ)
g(ξ)

= {1− β + βµ}w(ξ) + (1− β)µ
ξw′(ξ)

1− µ + µw(ξ)
.

where w(ξ) =
ξ f ′(ξ)

f (ξ) . Thus, we obtain the desired conclusion.

We also assume α = 0 and µ = 1 to consider the classMF 1
0,β, consisting of functions

f ∈ A, satisfying

MF 1
0,β =

{
f ∈ A : <e

{
(1− β)

(ξ f ′(ξ))′

f ′(ξ)
+ β

ξ f ′(ξ)
f (ξ)

}
>

β

2

}
.

The function in this class is equivalent to the (1− β)-convex function of order β
2 , first

seen in [11] and then investigated by others. For more details, see [12–15]. Moreover, we
obtain the following result, as shown by Elin, see [9].
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Corollary 2. For β < 2 and β 6= 1, we have

f ∈ MF 1
0,β ⇐⇒ g(ξ) = ξ

[
f ′(ξ)

] 2−2β
2−β

[
f (ξ)

ξ

] 2β
2−β

∈ S∗,

where

f (ξ) =

 1
1− β

∫ ξ

0
s

β
1−β

(
g(s)

s

) 2−β
2−2β

ds

1−β

.

Theorem 5. Let 0 ≤ β ≤ 1, −1 ≤ µ ≤ 1 and f ∈ MFµ
0,β, such that,

<e℘µ
0,β( f )(ξ) = <e

{
{1 + β(µ− 1)}w(ξ) +

µ(1− β)ξw′(ξ)
µ(w(ξ)− 1) + 1

}
>

β

2
,

where w(ξ) =
ξ f ′(ξ)

f (ξ) . Then, <e ξ f ′(ξ)
f (ξ) > 1

2 , ξ ∈ E, that is, f ∈ S∗1
2
.

Proof. Here, we use Lemma 2, which implies that <e ξ f ′(ξ)
f (ξ) > 1

2 , if and only if the function
s is defined by (8), such that

s(ξ) = 1− 1
w(ξ)

, w(ξ) =
ξ f ′(ξ)

f (ξ)
,

which, on differentiation, leads to the following.

1
1− s(ξ)

= w(ξ), and 1− w(ξ) +
ξ f ′′(ξ)

f ′(ξ)
=

ξs′(ξ)
1− s(ξ)

. (16)

Here, we make use of Jack’s Lemma 5 to achieve our task. We assume, on the contrary, that
s is not an analytic self-mapping of E. Then, for ξ0 ∈ E : |s(ξ)| < 1 for all |ξ| < |ξ0| and
|s(ξ0)| = 1. By Lemma 5, we have

ξ0s′(ξ0)

s(ξ0)
= m ≥ 1.

Using notation s(ξ0) = a + ib, for some a, b ∈ R : a2 + b2 = 1, we have

<e
{

1
1− s(ξ0)

}
=

1− a
1− 2a + (a2 + b2)

=
1
2

.

Hence, for 0 ≤ β ≤ 1 and −1 ≤ µ ≤ 1, (16) yields

<e℘µ
0,β( f )(ξ0)

= <e

1
2
{1 + β(µ− 1)}+ m(1− β)µs(ξ0)(

1− 1
2 µ
)
(1− s(ξ0))

2
− β

2


=

1 + β(µ− 1)
2

− (1− β)µ

2− µ
− β

2
≤ 0,

which contradicts our assumption. This completes the desired proof of the Theorem.

For α = 0 and µ = 1, we obtain the following corollary, as seen in [9,13].
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Corollary 3. If 0 ≤ β ≤ 1, µ = 1 and f ∈ MF 1
0,β, that is,

<e℘1
0,β(ξ0) = <e

{
β

ξ f ′(ξ)
f (ξ)

+ (1− β)
(ξ f ′(ξ))′

f ′(ξ)

}
>

β

2
,

then we have the assertion <e ξ f ′(ξ)
f (ξ) > 1

2 , that is, f ∈ S∗
(

1
2

)
.

Theorem 6. For β < β1 ≤ 1, we haveMFµ
0,β ⊆MF

µ
0,β1

.

Proof. Let f ∈ MFµ
0,β. Then,

<e℘µ
0,β( f )(ξ) >

β

2
: β ≥ 2

1− 2µ
, − 1 ≤ µ ≤ 1

implies that there exists s(ξ) ∈ Ω = {s ∈ A : s(0) = 0}, such that

℘
µ
0,β( f )(ξ) =

(1− β)µξw′(ξ)
1− µ + µw(ξ)

+ (1− β + βµ)w(ξ);
(

w(ξ) =
ξ f ′(ξ)

f (ξ)

)
=

1− (1− µ)β

1− s(ξ)
+

(1− β)µs(ξ)
[1− s(ξ)][(1− µ)(1− s(ξ)) + µ]

=
1

1− s(ξ)
[1− β(1− µ)][(1− µ)(1− s(ξ)) + µ] + (1− β)µs(ξ)

µ + (1− µ)(1− s(ξ))
.

Furthermore, by letting, A = 1 + βµ− β, B = 1− µ and C = µ− βµ, we note that

℘
µ
0,β( f )(ξ)− 1

2
β =

1
1− s(ξ)

A[B(1− s(ξ)) + µ] + Cs(ξ)
µ + B(1− s(ξ))

− 1
2

β

or we can write

℘
µ
0,β( f )(ξ) =

2A(B + µ)− β(B + µ) + [β(µ + 2B)− 2(AB− C)]s(ξ)− βBs2(ξ)

2(B + µ) + 2Bs2(ξ)− 2(2B + µ)s(ξ)
+

1
2

β.

By using (8), we note that

sβ(ξ) = −
℘

µ
0,β( f )(0)− ℘

µ
0,β( f )(ξ)

℘
µ
0,β( f )(ξ)− 2�+℘

µ
0,β( f )(0)

.

That is,

sβ(ξ) =
1− ℘

µ
0,β( f )(ξ)− (1− µ)β

−℘µ
0,β( f )(ξ)− 1 + β + (1− µ)β

. (17)

Similarly for β1, we consider that

sβ1(ξ) =
℘

µ
0,β1

( f )(ξ) + (1− µ)β1 − 1

1− β1 − (1− µ)β1 + ℘
µ
0,β1

( f )(ξ)
,

which is analytic in the disk or neighbourhood E and zero at origin. We rewrite (17) as[
sβ(ξ)

][
1− β− (1− µ)β + ℘

µ
0,β1

( f )(ξ)
]
= ℘

µ
0,β1

( f )(ξ)− 1 + β(1− µ). (18)

Similarly, we see that[
sβ1(ξ)

][
1− β1 + (µ− 1)β1 + ℘

µ
0,β1

( f )(ξ)
]
= ℘

µ
0,β1

( f )(ξ)− 1− (µ− 1)β1. (19)
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Furthermore, we define the function

℘
µ

0, 1
2
( f )(ξ) =

1
2 µξ

(
ξ f ′(ξ)

f (ξ)

)′
1− µ + µ

ξ f ′(ξ)
f (ξ)

− 1 + β(1− µ),

or

h(ξ) = µ
ξ
(

ξ f ′(ξ)
f (ξ)

)′
1− µ + µ

ξ f ′(ξ)
f (ξ)

+ (1 + µ)
ξ f ′(ξ)

f (ξ)
,

where h(ξ) = 2℘µ

0, 1
2
( f )(ξ). Then, (18) implies that

(β− 1)
[
1− sβ(ξ)

]
h(ξ)

= {(µ− 1)β− 1}+ (1− 2β)µ
[
1− sβ(ξ)

] ξ f ′(ξ)
f (ξ)

− {(µ− 2)β + 1}sβ(ξ). (20)

We solve (20) to obtain the value of h(ξ) as

h(ξ) =
1

(1− β)
[
1− sβ(ξ)

] + 1− 2β

1− β
µ

ξ f ′(ξ)
f (ξ)

+
sβ(ξ)

1− sβ(ξ)
+

β

1− β
(1− µ). (21)

Furthermore, Equation (19) leads to

(1− β1)h(ξ) = (1− 2β1)µ
ξ f ′(ξ)

f (ξ)
+

1
1− sβ1(ξ)

+
(1− β1)sβ1(ξ)

1− sβ1(ξ)
+ (1− µ)β1. (22)

From (21) and (22), we see that

1
(1− β)

[
1− sβ(ξ)

] +{ β1

1− β1
− β

1− β

}
µ

ξ f ′(ξ)
f (ξ)

+
sβ(ξ)

1− sβ(ξ)
− β

(
µ− 1
1− β

)
=

1− µ

1− β1
β1 +

sβ1(ξ)

1− sβ1(ξ)
+

1
(1− β1)

[
1− sβ1(ξ)

] . (23)

On the contrary, we may assume that sβ1(ξ) will not be a self-mapping of E. Therefore, ∃
ξ0 ∈ E :

∣∣sβ1(ξ)
∣∣ < 1 for |ξ| < |ξ0| and

∣∣sβ1(ξ0)
∣∣ = 1. Substitute ξ = ξ0 in (23) to have

sβ(ξ)

1− sβ(ξ)
=
−1
2

,
1

1− sβ(ξ)
=

1
2

,

and{
β1

1− β1
− β

1− β

}
µ<e

ξ0 f ′(ξ0)

f (ξ0)
+<e

1
(1− β)

[
1− sβ(ξ0)

] +<e
sβ(ξ0)

1− sβ(ξ0)
− β

µ− 1
1− β

= <e
1

(1− β1)
[
1− sβ1(ξ0)

] +<e
sβ1(ξ0)

1− sβ1(ξ0)
− β1

(
µ− 1
1− β1

)
.

Or, we see that{
β1

1− β1
− β

1− β

}
µ<e

ξ0 f ′(ξ0)

f (ξ0)
+

1
2− 2β

− 1
2
− β

µ− 1
1− β

>
1

2− 2β1
− 1

2
+

1− µ

1− β1
β1.

By using Theorem 5, we obtain
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{
β1

1− β1
− β

1− β

}
µ<e

ξ0 f ′(ξ0)

f (ξ0)
+

1
2− 2β

− µ− 1
1− β

β

>
1
2

{
β1

1− β1
− β

1− β

}
µ +

1
2− 2β

− µ− 1
1− β

β =
1

2(1− β1)
− µ− 1

1− β1
β1.

This leads to a contradiction to our assumption. Therefore, it is obvious that the family{
MFµ

0,β, 1 ≤ µ ≤ 1
}

is a filtration.

Corollary 4. If µ = 1, then for β < β1 ≤ 1, we haveMF 1
0,β ⊆MF 1

0,β1
, where

℘
µ
0,β( f )(ξ) =

1
2

β−
(

1
2

β− 1
)

1 + s(ξ)
1− s(ξ)

.

For the reference of the above inequality, see [9].

6. Interpolation to Fekete-Szegö Functional

In the next Theorem, we work out the interpolation result to estimate the Fekete–Szegö
functional φ( f , λ), given by (4).

Theorem 7. If the family
{
MFµ

0,β, − 1 ≤ µ ≤ 1
}

is a filtration of G such thatMFµ
0,β ⊂ G is

satisfied, then
sup

f∈MFµ
0,β

|φ( f , λ)| ≤ max
(
µ0,β, |1− λ|

)
, for λ ∈ C,

over the familyMFµ
0,β, where µ0,β = 2+(2µ−3)β

2βµ+2(1−β)(2µ+1) .

Proof. In Theorem 6, we already proved that the family
{
MFµ

0,β,−1 ≤ µ ≤ 1
}

is a filtra-
tion of G. Moreover, applying Theorem 3 for α = 0 gives the desired result.

As a special case, if we take α = 0, µ = 1 and β ∈ R, we obtain the following corollary,
as seen in [9].

Corollary 5. The family
{
MF 1

0,β

}
is a filtration of G and satisfiesMF 1

0,β ⊂ S∗
(

1
2

)
. Also,

sup
f∈MF1

0,β

|φ( f , λ)| ≤ max
(
µ0,β, |1− λ|

)
,

where λ ∈ C and µ0,β = 2−β
6−4β . In view of (4), the supremum is obtained; whenever β = 0 and

β = 1, this estimate is sharp for β ∈ (0, 1) such that there exist two functions, f1 and f2 ∈ MF 1
0,β,

so that

℘1
0,β( f1)(ξ) =

(
1− β

2

)
1 + ξ

1− ξ
+

β

2
,

and

℘1
0,β( f2)(ξ) =

(
1− β

2

)
1 + ξ2

1− ξ2 +
β

2

are constructed from (6) and satisfy the Briot–Bouquet differential equation. Hence, |φ( f1, λ)| ≤
|1− λ|, λ ∈ C and |φ( f2, λ)| ≤ 2−β

6−4β .
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7. Some Filtration Classes

Here, we investigate the case where β = −α+ 1 for α < 2. The classMFµ
α,1−α contains

functions given by

℘
µ
α,1−α( f )(ξ) = µ(1− α)

ξ f ′(ξ)
f (ξ)

+ α

(
f (ξ)

ξ

)µ

,

and

MFµ
α,1−α =

{
f ∈ A : <e℘µ

α,1−α( f )(ξ) >
1
2

}
.

For µ = 1, we obtain the known result of Marx-Strohhäcker given by

<e
(

ξ f ′(ξ)
f (ξ)

)
>

1
2
⇐⇒ <e

(
f (ξ)

ξ

)
>

1
2

,

and, hence, S∗
(

1
2

)
⊂MFµ

α,1−α for any α < 2.

Theorem 8. For f ∈ S∗
(

1
2

)
, <e

(
f (ξ)

ξ

)µ
> 1

2 and S∗
(

1
2

)
⊂ MFµ

α,1−α, −1 ≤ µ ≤ 1. The

sharpness occurs for the function ξ(1− ξn)
− 1

µ .

Proof. Assume that

h(ξ) = 2
[ f (ξ)]

ξµ

µ

− 1

and
1
µ

ξh′(ξ)
h(ξ) + 1

+ 1 =
ξ f ′(ξ)

f (ξ)
.

For s = ξh′(ξ), r = h(ξ), Ψ(r, s) = s
(r+1)µ + 1 : Ψ(iρ, σ) = σ

µ(ρ2+1) + 1, if ρ ∈ R and

σ ≤ −µ
(

ρ2+1
2

)
, then <e[Ψ(iρ, σ)] = <e

(
σ

(ρ2+1)µ + 1
)
≤ 0. Since f ∈ S∗

(
1
2

)
, we write

<e
[
Ψ
(
h, ξh′

)
(ξ)
]
> 0.

Therefore, <eh(ξ) > 1
2 , and this implies that <e

(
f (ξ)

ξ

)µ
> 1

2 .

Theorem 9. Let α < α1 ≤ 1. Then, we haveMFµ
α,1−α ⊆MF

µ
α1,1−α1

.

Proof. Suppose that f ∈ MFµ
α,1−α for −1 ≤ µ ≤ 1, ξ ∈ E. Then, <e℘µ

α,1−α( f )(ξ) > 1
2

proves the existence of a function sβ(ξ) so that we can write that

sβ(ξ) =
℘

µ
α,1−α( f )(ξ) + 2− µ + αµ− α

−1 + µ− αµ + α + ℘
µ
α,1−α( f )(ξ)

.

Then, from the above functional equation, we see that

sα(ξ)

[
(1− α)µ

ξ f ′(ξ)
f (ξ)

− 1 + µ− αµ + α + α

(
f (ξ)

ξ

)µ]
= α

(
f (ξ)

ξ

)µ

− 1− (1− µ)(1− α) + (1− α)µ
ξ f ′(ξ)

f (ξ)
. (24)

Furthermore, we see that

−2℘µ

− 1
2 , 1

2
( f )(ξ) = −h1(ξ) = −µ

ξ f ′(ξ)
f (ξ)

+

(
f (ξ)

ξ

)µ

. (25)
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By using (25) in (24), we observe that

{α + µ(1− α)} ( f (ξ))
ξµ

µ

− (1− α)µ

{
( f (ξ))

ξµ

µ

− ξ f ′(ξ)
f (ξ)

}
=

1− (1− α)µ1[1 + sα(ξ)]

1− sα(ξ)
,

or

h1(ξ) =
1− (1− α)µ1[1 + sα(ξ)]

[1− sα(ξ)](1− α)
−
{µ− αµ1}

(
f (ξ)

ξ

)µ

1− α
, (26)

where µ1 = 1− µ. Similarly, in the case of α1, we have

sα1(ξ)

[
α1

(
f (ξ)

ξ

)µ

+ (1− α1)µ
ξ f ′(ξ)

f (ξ)
− µ1(1− α1)

]
= α1

(
f (ξ)

ξ

)µ

+ (1− α1)µ
ξ f ′(ξ)

f (ξ)
+ µ1(1− α1)− 1

and

h1(ξ) =
1− (1− α1)µ1[1 + sα1(ξ)]

(1− α1)[1− sα1(ξ)]
−
{µ + α1µ1}

(
f (ξ)

ξ

)µ

1− α
, (27)

where µ1 = 1− µ. Equating (26) and (27), we observe that

1− (1− α)µ1[1 + sα(ξ)]

(1− α)[1− sα(ξ)]
−
{µ + αµ1}

(
f (ξ)

ξ

)µ

1− α

=
1− (1− α1)µ1[1 + sα1(ξ)]

(1− α1)[1− sα1(ξ)]
−
{µ + α1µ1}

(
f (ξ)

ξ

)µ

1− α1

or we write {
α1

1− α1
− α

1− α

}(
f (ξ)

ξ

)µ

+
1

(α− 1)[sα(ξ)− 1]
− µ1

1 + sα(ξ)

1− sα(ξ)

=

[
1

[1− sα1(ξ)](1− α1)
+ µ1

1 + sα1(ξ)

sα1(ξ)− 1

]
or, equivalently, we have{

α1

1− α1
− α

1− α

}(
f (ξ)

ξ

)µ

+
1

(1− α)[1− sα(ξ)]
− µ1

1− sα(ξ)
− µ1sα(ξ)

1− sα(ξ)

= −µ1

[
1

1− sα1(ξ)
+

sα1(ξ)

1− sα1(ξ)

]
+

1
(1− α1)[1− sα1(ξ)]

, (28)

where µ1 = 1− µ. It is clear that sα1(0) = 0 and we assume, on the contrary, that sα1(ξ)
is not a self-mapping of E. Then, there exists ξ0 ∈ E : |sα1(ξ)| < 1 ∀ |ξ| < |ξ0| while
|sα1(ξ0)| = 1. We substitute ξ = ξ0 in (28) to have{

α1

1− α1
− α

1− α

}
<e
(

f (ξ)
ξ

)µ

− (1− µ)<e
1 + sα(ξ)

1− sα(ξ)
+<e

1
(1− α)[1− sα(ξ)]

> −1
2

[
1 + α

1− α
− α1

1− α1

]
.

Now, applying Theorem 5, we see that

−<e
1

(1− α1)[1− sα1(ξ)]
−<e

[
(1− µ)sα1(ξ)

1− sα1(ξ)
+

1− µ

1− sα1(ξ)

]
>

1
2(1− α1)

.
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Hence, we find that

−1
2

[
1 + α

1− α
− α1

1− α1

]
>

1
2(1− α1)

or

−
{

α

1− α
− α1

1− α1

}
<e
(

f (ξ)
ξ

)µ

+
1

2(α− 1)
>

1
2(1− α1)

or

−
{

α(1− α1)− α1(1− α)

(1− α)(1− α1)

}
<e
(

f (ξ)
ξ

)µ

>
1
2

[
1− α + 1− α1

(1− α1)(1− α)

]
.

This gives that

<e
(

f (ξ)
ξ

)µ

<
1
2

[
α + α1 − 2

α− α1

]
.

This is clearly contradictory to our assumption. Thus, the proof of our Theorem
is completed.

These Theorems show that the class MFµ
α,1−α, with 1

2 ≤ α < 2, constructs a fil-
tration for generators along with sharp estimates over the bounds of the Fekete–Szegö
quadratic functional.

Theorem 10. Let f ∈ MFµ
α,1−α and 1

2 ≤ α < 2. Then, MFµ
α,1−α ⊂ G. Furthermore, for

1
2 ≤ α ≤ 1, each f ∈MFµ

α,1−α leads a semi-group {℘t, t ≥ 0} ⊂ A, which satisfies

|℘t(ξ)| ≤ e
1−2α

2α t|ξ|, α = 1,
1
2

and ξ ∈ E.

Furthermore, the family
{
MFµ

α,1−α

}
is a filtration of G such that

sup
f∈MFµ

α,1−α

|φ( f , λ)| ≤ max{µα,1−α, |1− λ|} for λ ∈ C.

Proof. Suppose that f /∈ G : <e
(

f (ξ)
ξ

)µ
> 0 and consider that s(ξ) is as defined by (8) with

τ = 0, such that

s(ξ) =
(w(ξ))µ − 1
(w(ξ))µ + 1

,

and (
f (ξ)

ξ

)µ

=
1 + s(ξ)
1− s(ξ)

, w(ξ) =
f (ξ)

ξ
.

Moreover,

µ
ξ f ′(ξ)

f (ξ)
=

ξs′(ξ)
1− s(ξ)

+
ξs′(ξ)

1 + s(ξ)
+ µ.

For some fixed ξ ∈ E, s(ξ) ∈ E⇐⇒<e
(

f (ξ)
ξ

)µ
> 0. In view of our supposition, there exists

a ξ0 ∈ E such that <e
(

f (ξ)
ξ

)µ
< 0 : |ξ| < |ξ0|while <e

(
f (ξ0)

ξ0

)µ
< 0 and, hence, |s(ξ0)| = 1.

Therefore, by Lemma 5, there is m ≥ 1, such that ξ0s′(ξ0) = ms(ξ0). A straightforward
calculation leads to

℘
µ
α,1−α( f )(ξ0) = (1− α)µ

ξ0 f ′(ξ0)

f (ξ0)
+ α

(
f (ξ0)

ξ0

)µ

= α
1 + s(ξ0)

1− s(ξ0)
+

(
ξ0s′(ξ0)

1 + s(ξ0)
+

ξ0s′(ξ0)

1− s(ξ0)
+ µ

)
(1− α)

= α
1 + s(ξ0)

1− s(ξ0)
+

(
ms(ξ0)

1 + s(ξ0)
+

ms(ξ0)

1− s(ξ0)
+ µ

)
(1− α). (29)
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Using s(ξ0) = a + ib, a, b ∈ R : a2 + b2 = 1, we have

<e
{

1
1− s(ξ0)

}
=

1− a
1− 2a + a2 + b2 =

1
2

,

<e
s(ξ0)

1− s(ξ0)
= <e

(a + ib)((1− a) + ib)
1− 2a + b2 + a2 =

a−
(
a2 + b2)

2(1− a)
= −1

2
,

<e
{

1
1 + s(ξ0)

}
= <e

{
(1 + a)− ib

1 + 2a + b2 + a2

}
=

(1 + a)
2(1 + a)

=
1
2

,

and, finally, we see that

<e
s(ξ0)

1 + s(ξ0)
= <e

(a + ib)((1 + a)− ib)
1 + 2a + b2 + a2 = <e

a + 1
2(1 + a)

=
1
2

.

From (29), we note that

<e℘µ
α,1−α(ξ0) = <e

[
α

1 + s(ξ0)

1− s(ξ0)
+

(
ms(ξ0)

1 + s(ξ0)
+

ms(ξ0)

1− s(ξ0)
+ µ

)
(1− α)

]
= (1− α)mµ, m ≥ 1.

Since f ∈ MFµ
α,1−α and <e℘µ

α,1−α( f )(ξ0) = (1− α)µ, we conclude that α < 1
2 . Thus,

MFµ
α,1−α ⊂ G whenever α ≥ 1

2 (by (9)). For α = 1, we observe that

℘
µ
1,0( f )(ξ) =

(
f (ξ)

ξ

)µ

, − 1 ≤ µ ≤ 1

and, when α = 1
2 , we observe that

℘
µ
1
2 , 1

2
( f )(ξ) =

1
2

[(
f (ξ)

ξ

)µ

+ µ
ξ f ′(ξ)

f (ξ)

]
.

In both of these cases, f ∈ MFµ
α,(1−α)

leads to a semi-group {℘t : t ≥ 0} ⊂ A, which
satisfies the Cauchy problem given by (5). The mapping f ∈ A, defined by[

lim
t→0+

ξ − ℘t(ξ)

t

]µ

= f1(ξ) = ( f (ξ))µ, t ≥ 0

with ℘t(ξ) = exp(−at)ξ, a = 1−2α
2α ∈ C, such that[

lim
t→0+

ξ − exp(−at)ξ
t

]µ

= ξµ

[
lim

t→0+

1− exp(−at)
t

]µ

= aµξµ = ( f (ξ))µ, t ≥ 0,

is obviously an infinitesimal generator for some one-parameter family of semi-group, and
for every ξ ∈ E, the problem from (5) clearly possess a unique solution u = ut(ξ) ∈ E,
t ≥ 0 such that |℘t(ξ)| ≤ e

1−2α
2α t|ξ|, α = 1, 1

2 and ξ ∈ E. Therefore, we take α ∈
(

1
2 , 1
)

.
Suppose that

w(ξ) =

(
f (ξ)

ξ

)µ

−
(

1− 2α

2α

)µ

.

Then,
ξw′(ξ)

w(ξ) +
(

1−2α
2α

)µ + µ = µ
ξ f ′(ξ)

f (ξ)
.
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℘
µ
α,δ( f )(ξ) = α

(
f (ξ)

ξ

)µ

+ δµ
ξ f ′(ξ)

f (ξ)
; (δ = 1− α)

= αw(ξ) + α

(
δ− α

2α

)µ

+
ξw′(ξ)

w(ξ)
δµ + 1

δµ

(
δ−α
2α

)µ + δµ2

= αw(ξ) +
w′(ξ)

h(ξ)
δµ + 1

δµ

(
δ−α
2α

)µ + δµ2 + α

(
δ− α

2α

)µ

= αw(ξ) +
ξw′(ξ)

1
δµ w(ξ) + 1

δµ

(
δ−α
2α

)µ + δµ2 +

(
δ− α

2α

)µ

.

From the above calculations and for δ = 1− α, we see that

℘
µ
α,δ( f )(ξ)− δµ2 −

(
δ− α

2α

)µ

= αw(ξ) +
ξw′(ξ)

1
δµ w(ξ) + 1

δµ

(
δ−α
2α

)µ .

Hence, from Lemma 1, we see that the solution w(ξ) = h(ξ) of the above equation is

analytic in E and <eh(ξ) = <e
(

f (ξ)
ξ

)µ
> 1

2 > 0, ξ ∈ E. Therefore, in this case ℘
µ
α,1−α( f )(ξ)

also generates a semi-group and the family
{
MFµ

α,1−α

}
is a filtration of G. Moreover, we

let α ∈ R, f ∈ A, −1 ≤ µ ≤ 1 and ξ ∈ E such that

µα,1−α =
2 + (2µ− 3)(1− α)− α

(2− α)µ
> 0.

Then, sup f∈MFµ
α,1−α
|φ( f , λ)| ≤ max(µα,1−α, |1− λ|) for λ ∈ C, over the family

MFµ
α,1−α.

8. Open Problems

Recall that, by Theorem 3, |φ( f , λ)| ≤ max
(

ϕ
(

µ
α,β

)
|1− λ|

)
for λ ∈ C, over the family

MFµ
α,β, where the level set of function denoted by

ϕ
(

µ
α,β

)
=

2 + (2µ− 3)β− α

(α + 2β)µ + 2(1− α− β)(2µ + 1)
> 0,

where α, β ∈ R, −1 ≤ µ ≤ 1 and ξ ∈ E, satisfies

α− (2µ− 3)β < 2, (−3µ− 2)α− (2µ + 1)β < 2(2µ + 1)

and
λ0 = (α + 2β)µ + 2(1− α− β)(2µ + 1)

such that β = 2(µ+1)
4+3µ−6µ2 . Therefore, the following open problems are raised.

Q1: Is this estimate sharp for all α, β ∈ R and −1 ≤ µ ≤ 1, which satisfy

α− (2µ− 3)β < 2, (−3µ− 2)α− (2µ + 1)β < 2(2µ + 1)

and
λ0 = (α + 2β)µ + 2(1− α− β)(2µ + 1)

such that β = 2(µ+1)
4+3µ−6µ2 .

Q2: What values of α, β and µ provide the classMFµ
α,β in connection with the nonlinear

operator ℘µ
α,β( f ), consisting of univalent functions?
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(The only cases we know the affirmative answer for are α = 0, µ = 1 and β < 2.)

9. Conjecture

The filtrations constructed in Theorems 7 and 10 are strict by definition.

10. Conclusions

This research is avid to a systematic and comprehensive analysis of linearization
models for one-parameter continuous semi-groups, functional equations, different classes
of univalent functions and their applications to various problems of complex dynamics,
in order to establish a connection between the Fekete–Szegö functional and the class of
infinitesimal generators.
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