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Abstract: In this paper, we use the concept of quantum (or q-) calculus and define a q-analogous
of a fractional differential operator and discuss some of its applications. We consider this operator
to define new subclasses of uniformly q-starlike and q-convex functions associated with a new
generalized conic domain, Λβ,q,γ. To begin establishing our key conclusions, we explore several novel
lemmas. Furthermore, we employ these lemmas to explore some important features of these two
classes, for example, inclusion relations, coefficient bounds, Fekete–Szego problem, and subordination
results. We also highlight many known and brand-new specific corollaries of our findings.
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1. Introduction and Motivation

Perhaps the most intriguing part of the complex function theory is the interaction
between geometry and analysis. Such connections between analytic structure and geometric
behavior are at the heart of the theory of univalent functions. The domains of these
functions characterize a wide variety of appealing geometric structures and canonical types.
As an example, the image of an open unit disk under a normalized analytic and univalent
function, ξ, contains a disk, |w| < δ. Moreover, the images of a few of the ranges of some of
them specify starlike, convex, close-to-convex, some in certain directions, some uniformly
convex (starlike), and so on. The ranges of these geometric functions are characteristic of
certain geometries. Additionally, this area of study is also known as geometric function
theory (GFT).

In GFT, researchers have shown particular interest in linear operators. What makes
this research so important is that we are looking at the characteristics of many classes of
functions under a certain linear operator at the same time. In 1915, Alexander [1] developed
the first integral operator, which he effectively used in his study of analytical functions.
This subfield of the analytic function theory of complex analysis, which includes derivative
and fractional derivative operators, is the subject of active investigation. Recent works
such as [2] demonstrate the relevance of differential and integral fractional operators to
the scientific community. Intriguing new results have emerged from studies of differential
and integral operators from a number of perspectives, including quantum (or q-) calculus,
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that have implications for other areas of physics and mathematics. Further investigation
may reveal that such operators have a role in providing solutions to partial differential
equations, given their significance in the study of differential equations via functional
analysis and operator theory. In his survey-cum-expository review work, Srivastava [3]
highlights the exciting operator applications that are emerging from such a methodology.

Many of these applications of the basic (or q-) calculus and the fractional basic (or q-)
calculus in GFT have inspired the present work, in which we introduce and analyze new
subclasses of uniformly q-starlike and q-convex functions associated with a new generalized
conic domain.

Let the set of all functions ξ be denoted by A and of the form

ξ(τ) = τ +
∞

∑
n=2

anτn. (1)

These are normalized analytic functions in the unit disk E = {τ : |τ| < 1}. Let us
denote by S the collection of all functions in A that are univalent in E ( see [4]) .

For any two analytic functions, ξ and g, in E. We state as ξ(τ) is subordinate to g(τ),
denoted by ξ(τ) ≺ g(τ) if there exists a Schwartz function w(τ) with w(0) = 0 and
|w(τ)| < 1, such that ξ(τ) = g(w(τ)). More importantly, if g(τ) is univalent in E, then ([4])

ξ(τ) ≺ g(τ)⇔ ξ(0) = g(0) and ξ(E) ⊂ g(E).

For the analytic functions ξ and g, where

ξ(τ) =
∞

∑
n=0

anτn and g(τ) =
∞

∑
n=0

bnτn, (τ ∈ E),

then (ξ ∗ g)(τ) convolution is defined as

(ξ ∗ g)(τ) =
∞

∑
n=0

anbnτn.

Let P stand for the famous class of functions p that are analytic in E, and have the
series form:

p(τ) = 1 +
∞

∑
n=1

cnτn,

such that

Re(p(τ)) > 0.

In relation to a point a in E, a domain E is starlike if and only if every line segment
connecting the point a to every other point in E entirely encircles the domain. Simply
said, starlike refers to a domain that is starlike in relation to its origin. A domain E is
convex if and only if it is starlike with regard to each and every point in E or if every line
segment connecting between two points in E lies fully inside E. If a function ξ maps E
onto a star-shaped (convex) domain, it is said to be a starlike (convex) function. All starlike
and convex function classes are abbreviated as S∗ and C, respectively. These classes are
distinguished analytically by the inequalities:

ξ ∈ S∗ ⇔ Re
(

τξ ′(τ)

ξ(τ)

)
> 0

and

ξ ∈ C ⇔ Re

(
1 +

τξ
′′
(τ)

ξ (́τ)

)
> 0.
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For 0 ≤ γ < 1, let C(γ) and S∗(γ) be the subclasses of S composed of convex and
starlike functions of order γ, respectively. Analytically we can write

Re

(
1 +

τξ
′′
(τ)

ξ (́τ)

)
> γ, τ ∈ E,

and

Re
(

τξ ′(τ)

ξ(τ)

)
> γ, τ ∈ E.

It has been widely accepted that for a convex (starlike) function ξ, its image under
E and any circles within E centered at the origin are convex (starlike) arcs. Nevertheless,
argumentation is needed to determine whether the characteristic generally applies to circles
with the center at any other point, let us say ζ. Goodman [5] provided the answer to
this issue by defining uniformly convex and starlike functions. After much deliberation,
Ronning [6] and Ma and Minda [7] proposed the one variable characterization of these
functions, defining them as follows:

The set of uniformly starlike functions, denoted by ST, includes the function ξ ∈A if
and only if

Re
(

τξ ′(τ)

ξ(τ)

)
>

∣∣∣∣τξ ′(τ)

ξ(τ)
− 1
∣∣∣∣.

The class of uniformly convex functions, denoted by UCV, includes the function ξ ∈A
if and only if

Re

(
1 +

τξ
′′
(τ)

ξ ′(τ)

)
>

∣∣∣∣∣τξ
′′
(τ)

ξ ′(τ)

∣∣∣∣∣.
Later in [8], Kanas and Wisniowska investigated the classes β − ST and β −UCV

defined as

ξ(τ) ∈ β− ST ⇔ ξ(τ) ∈ A and Re
(

τξ ′(τ)

ξ(τ)

)
> β

∣∣∣∣τξ ′(τ)

ξ(τ)
− 1
∣∣∣∣, τ ∈ E

and

ξ(τ) ∈ β−UCV ⇔ ξ(τ) ∈ A and 1 + Re
(

τξ ′′(τ)

ξ ′(τ)

)
> β

∣∣∣∣τξ ′′(τ)

ξ ′(τ)

∣∣∣∣, τ ∈ E.

Note that ξ(τ) ∈ β−UCV ⇔ τξ ′(τ) ∈ β− ST.
To map the intersection of E and any disk center ζ, |ζ| ≤ β onto a convex domain,

it was proven mathematically in [8] that the class β −UCV, for β ≥ 0, is a subclass of
univalent functions. Thus, the concept of β-uniform convexity extends the definition of
convexity and ζ is the origin and β = 0; then β−UCV = C (see [4]), and for β = 1, then
β−UCV = UCV. This class was first described by Goodman [5] and has been extensively
investigated by Ronning [9] and Ma and Minda [7]. It should be pointed out that the
β−UCV class really began much earlier in [10] with some extra criteria but without the
geometric meaning.

In the previous section, we said that Kanas and Wisniowska (see [8]) proposed and
analyzed the class β-UCV and subsequently the corresponding class β-ST. These classes
in the conic domain Λβ, (β ≥ 0) were then defined by Kanas and Wisniowska (see [8]) as
follows:

Λβ =

{
s + it : s > β

√
(s− 1)2 + t2

}
,

or
Λβ = {w : Re w > |w− 1|}.
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Remark 1. For β = 0, this domain is the right half plane; for 0 < β < 1, it is a hyperbola; for
β = 1, it is a parabola; and for β > 1, it is an ellipse.

For these conic regions, the functions pβ(τ) (see [8]) play the role of extremal functions.
In [11], Al-Oboudi et al. used the idea of conic domain Λβ,γ and defined new sub-

classes of starlike and convex functions where

Λβ,γ =

{
s + it : s > β

√
(s− 1)2 + t2 + γ

}
,

or
Λβ,γ = {w : Re w > |w− 1|+ γ}.

From elementary computations, ∂Λβ,γ represents the conic sections symmetric about
the real axis.

The following functions serve as extremal functions in various conic domains:

pβ,γ(τ) =



1+(1−2γ)τ
1−τ , β = 0,

1 + 2(1−γ)
π2

(
log 1+

√
τ

1−
√

τ

)2
, β = 1,

1−γ
1−β2 cos

{( 2
π arccos β

)
i log 1+

√
τ

1−
√

τ

}
− β2−γ

1−β2 , 0 < β < 1,

(1−γ)
β2−1 sin( π

2K(t) )

u(τ)√
t∫

0

1√
1− x2

√
1− t2x2

.dx +
β2 − γ

β2 − 1
, β > 1.



(2)

where

u(τ) =
τ −
√

t
1−
√

tτ
, t ∈ (0, 1),

t is chosen such that K(t) is Legendre’s complete elliptic integral of the first kind, while

K
′
(t) is a complementary integral of K(t), β = cosh πK

′
(t)

4K(t) .
For β = 0, we have

p0,γ(τ) = 1 + 2(1− γ)τ + 2(1− γ)τ + · · · .

For β = 1, ([9,12]), we obtain

p1,γ(τ) = 1 + (1− γ)τ +
16

3π2 (1− γ)τ + · · · .

For 0 < β < 1, (see [7]), we obtain

pβ,γ(τ) = 1 +
(1− γ)

1− β2

∞

∑
n=1

[
2n

∑
l=1

2l(B
l )(

2n−1
2n−l)

]
τ,

where B = 2
π arccos β. Finally, for β > 1, we have

pβ,γ(τ) = 1 +
π2(1− γ)

4 2
√

t(β2 − 1)K2(t)(1 + t)
(3)

×
{

τ +
4K2(t)(t2 + 6t + 1)− π2

24 2
√

tK2(t)(1 + t)
+ . . .

}
.
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For details, see [7,9,12]. From (3), we have

Pβ,γ(τ) = 1 + Q1τ + Q2τ + · · · , (4)

where

Q1 =
π2(1− γ)

4 2
√

t(β2 − 1)K2(t)(1 + t)
, (5)

Q2 =
π2(1− γ)

4 2
√

t(β2 − 1)K2(t)(1 + t)
× 4K2(t)(t2 + 6t + 1)− π2

24 2
√

tK2(t)(1 + t)
. (6)

The motivation and use of the q calculus may be seen in the fact that it is used to study
many families of analytic functions with wide-ranging applications in mathematics and
related subjects. The quantum (or q-) calculus is also extensively employed in the context
of approximation theory, especially for a number of operators, such as the convergence of
operators to functions in the real and complex domains. Jackson (see [13]) was the first
scholar to define the q-analogue of the classical derivative and integral and explain some of
its applications. The q-beta function was subsequently used by Aral and Gupta to create the
q-Baskakov–Durrmeyer operator (see [14]), and the q-Picard and q-Gauss–Weierstrass sin-
gular integral operators were investigated in [15]. In addition, a Ruscheweyh q-differential
operator was initially presented by Kanas and Raducanu (see [16]), and its applications for
multivalent functions were studied by Arif et al. (see [17]). In the meanwhile, [18] explored
q-calculus via the lens of convolution. In recent years, several researchers have defined and
explored several q-analogous differential operators for analytic, multivalent, and meromor-
phic functions, and discussed applications of these operators in various contexts; for more
information, see [3,19,20].

Now, for your convenience, we provided the most basic definitions of quantum
(or q-) calculus.

Definition 1. For γ, q ∈ C, the q-shifted factorial (γ, q)j is defined by

(γ, q)j =
j−1

∏
j=0

(
1− γqj

)
, (j ∈ N = {1, 2, 3 . . .}). (7)

If γ 6= q−m, (m ∈ N0 = N∪ {0}), then it can be written as

(γ, q)∞ =
∞

∏
j=0

(
1− γqj

)
, (γ ∈ C and |q| < 1), (8)

when γ 6= 0 and q ≥ 1, (γ, q)∞ diverges. Therefore, whenever we use (γ, q)∞, then |q| < 1 will
be assumed.

Definition 2. Below is a precise expression for (γ, q)j in (7) in terms of the q-gamma function:

Γq(γ) =
(1− q)1−α(q, q)∞

(qa, q)∞
, (0 < q < 1),

or

(qγ, q)j =

(
1− qj)zq(γ + j)

zq(γ)
, (j ∈ N),

and q-factorial [j]q! defined by

[j]q! =
i

∏
j=1

[i], (i ∈ N). (9)
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Definition 3 ([21]). For q ∈ (0, 1), we have the following definition of the q-number:

[x]q =


1−qx

1−q , (t ∈ C),
i−1
∑

n=0
qi = 1 + q+ q2 + · · ·+ qi−1 (x = i ∈ N)

. (10)

Definition 4. For q ∈ (0, 1), we have the following definition of [n]q!:

[n]q! =


1 (n = 0),

i
∏

n=1
[n]q (i ∈ N)

. (11)

Definition 5. The notation [x]n,q, x ∈ C for the q-generalized Pochhammer is given by

[x]n,q =
(q, q)n

(1− q)n
=

{
1, (n = 0),

[x]q[x + 1]q[x + 2]q · · · [x + n− 1]q, (n ∈ N)

}
.

Additionally, the q-gamma function can be characterized as

Γq(x + 1) = [x]qΓq(x) and Γq(1) = 1.

Definition 6 ([13]). For ξ ∈A, the q-derivative operator (q-difference operator) can be written as

∂qξ(τ) =
ξ(qτ)− ξ(τ)

(q− 1)τ
, τ ∈ E. (12)

From (1) and (12), we have

∂qξ(τ) = 1 +
∞

∑
n=2

[n]qanτn−1.

For n ∈ N and τ ∈ E, we have

∂qτ = [n]qτn−1, ∂q

{
∞

∑
n=1

anτ

}
=

∞

∑
n=1

[n]qanτn−1.

We can observe that
lim
q→1−

∂qξ(τ) = ξ
′
(τ).

Let

ϕ(a, c; τ) =
∞

∑
n=0

(a)n

(c)n
τn, τ ∈ E; c 6= 0,−1,−2, · · · ,

Using the definition of the Pochhammer symbol in terms of Gamma functions by

(µ)q =
Γq(µ + n)

Γq(µ)
=

{
1 n = 0,

(µ)q(µ + 1)q · · · (µ + n− 1)q n ∈ N = {1, 2, · · · }

}
.

Note that for the derivative of negative order, it is the integral defined below:

Definition 7. For α > 0, the fractional q-integral operator (see [22]) defined by

Iα
q,τξ(τ) = I−α

q,τ ξ(τ) =
1

Γq(α)

τ∫
0

(τ − tq)α−1ξ(t)dq(t), (13)
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where the q-binomial function (τ − tq)α−1 is defined by

(τ − tq)α−1 = τα−1
1Φ0

(
q−v+1,−, q, tqα/τ

)
.

The representation of series 1Φ0 is given by

1Φ0(a,−, q, τ) = 1 +
∞

∑
j=1

(a, q)j

(q, q)j
τ, (|q| < 1, |τ| < 1).

The last equality is called q-binomial theorem (see [23]). For further details, see [3].

Note that the integral defined above is the derivative of negative order.

Definition 8. Let the smallest possible integer be m. Ðα
q is the extended fractional q-derivative of

order α, and it can be defined as

Ðα
qξ(τ) = Ðm

q

(
Ðm−α

q,τ ξ(τ)
)
. (14)

We find from (14) that

Ðα
qτ j =

Γq(j + 1)
Γq(j + 1− α)

τ, (0 ≤ α, j > −1).

Remark 2. The case of −∞ < α < 0, Ðα
q denotes a fractional q-integral of order α.

Remark 3. The case of 0 ≤ α < 2, Ðα
q denotes a fractional q-derivative of order α.

Definition 9. ([24]). Selvakumaran et al. defined the (α, q)-differintegral operator Λα
q : A → A

as

Λα
qξ(τ) =

Γq(2− α)

Γq(2)
τÐα

qξ(τ)

= τ +
∞

∑
j=2

Γq(2− α)Γq(j + 1)
Γq(2)Γq(j + 1− α)

ajτ
j, τ ∈ E, (15)

= ϕ(2, 2− α; τ) ∗ ξ(τ). (16)

where
α < 2, 0 < q < 1.

Remark 4. When q→ 1−, then we have the Owa and Srivastava operator defined in [25].

In this article, using the (α, q)-differintegral operator Λα
qξ and q-difference operator,

we now define the q-analogous of the linear multiplier fractional differential operator (Ðn,α
λ,q)

as follows:

Definition 10. The linear multiplier q-fractional differential operator Ðn,α
λ,q is defined as follows:

Ð0
qξ(τ) = ξ(τ),

Ð1,α
λ,qξ(τ) = (1− λ)Λαξ(τ) + λτ∂q(Λαξ(τ) = Ðα

λ,q(ξ(τ)), λ ≥ 0, 0 ≤ α < 1, (17)

Ð2,α
λ,qξ(τ) = Ðα

λ,q(Ð
1,α
λ,qξ(τ)),

...
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Ðn,α
λ,qξ(τ) = Ðα

λ,q(Ð
n−1,α
λ,q ξ(τ)), n ∈ N. (18)

From (1), (15), (17), and (18), we see that

Ðn,α
λ,qξ(τ) = τ +

∞

∑
n=2

Ψn,k,q(α, λ)anτn, n ∈ N0 = N ∪ {0}, (19)

where

Ψn,k,q(α, λ) =

[
Γq(n + 1)Γq(2− α)

Γq(2)Γq(n + 1− α)
(1 + λ([n]q − 1))

]k
. (20)

From (16) and (20), Ðn,α
λ,qξ(τ) can be written in terms of convolution as

Ðn,α
λ,qξ(τ) =

[(
ϕ(2, 2− α; τ) ∗ gλ,q(τ)

)
∗ · · · ∗

(
ϕ(2, 2− α; τ) ∗ gλ,q(τ)

)]︸ ︷︷ ︸ ∗ξ(τ), (21)

where

gλ,q(τ) = τ +
∞

∑
n=2

[1 + ([n]q − 1)λ]τn.

Remark 5. When q→ 1−, in Definition 10, then we obtain the operator defined in [11].

We now propose a definition based on quantum (or q-) calculus and the concept of
subordination, which is as follows:

Definition 11. Let β ∈ [0, ∞), q ∈ (0, 1), and γ ∈ C\{0}. It is claimed that a function p(τ)
belongs to the class β− Pq,γ if and only if

p(τ) ≺ Pβ,γ,q(τ), (22)

where

Pβ,γ,q(τ) =
2Pβ,γ(τ)

(q+ 1) + (1− q)Pβ,γ(τ)
, (23)

and Pβ,γ(τ) is given in (2).

Geometrically, all values of the function p(τ) ∈ β− Pq,γ take from the domain Λβ,q,γ
which we will describe as

Λβ,q,γ = Λβ,q + γ (24)

where

Λβ,q =

{
w : Re

(
(q+ 1)w

(q− 1)w + 2

)
> β

∣∣∣∣ (q+ 1)w
(q− 1)w + 2

− 1
∣∣∣∣}.

The domain Λβ,q,γ is denoted by the generalized conic domain.

Remark 6. When q→ 1−, then

Λβ,q,γ = Λβ,γ = {w : Re(w) > β|w− 1|+ γ}

=

{
s + it : s > β

√
(s− 1)2 + t2 + γ

}
,

where Λβ,q,γ is studied in [11].

Remark 7. When γ = 0 and q→ 1−, then Λβ,q,γ = Λβ. This conic domain was determined by
Kanas and Wisniowska [8,26].
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Remark 8. When γ = 0 and q → 1−, in Definition 11, then β− Pq,γ = P
(

pβ

)
introduced by

Kanas and Wisniowska in [8,26].

Remark 9. When γ = 0, β = 0, and q→ 1−, in Definition 11, then β− Pq,γ = P.

Definition 12. The class SPn,q
α,λ (β, γ) is defined as the set of all functions ξ ∈A satisfying

the condition

Re

(
τ∂q(Ðn,α

λ,qξ(τ))

Ðn,α
λ,qξ(τ)

)
> β

∣∣∣∣∣τ∂q(Ðn,α
λ,qξ(τ))

Ðn,α
λ,qξ(τ)

− 1

∣∣∣∣∣+ γ. (25)

Remark 10. When q → 1−, then we have a known class of analytic functions investigated by
Al-Oboudi and Al-Amoudi in [11].

Definition 13. The class UCVn,q
α,λ (β, γ) is defined as the set of all functions ξ ∈A satisfying

the condition

Re

(
1 +

τ∂q(∂qÐn,α
λ,qξ(τ))

∂q(Ðn,α
λ,qξ(τ))

)
> β

∣∣∣∣∣τ∂q(∂qÐn,α
λ,qξ(τ))

∂q(Ðn,α
λ,qξ(τ))

∣∣∣∣∣+ γ. (26)

Remark 11. When q→ 1−, then we have a known class of analytic functions defined by Al-Oboudi
and Al-Amoudi in [11].

It is clear that
ξ ∈ UCVn,q

α,λ (β, γ)⇔ τ∂qξ ∈ SPn,q
α,λ (β, γ) (27)

and that
UCVn,q

α,λ (β, γ) ⊂ SPn,q
α,λ (β, γ).

Geometric interpretation: From (25) and (26), ξ ∈ UCVn,q
α,λ (β, γ) and ξ ∈ SPn,q

α,λ (β, γ) if

and only if p(τ) = 1 +
τ∂q(∂qÐn,α

λ,qξ(τ))

∂q(Ð
n,α
λ,qξ(τ))

and p(τ) =
τ∂q(Ð

n,α
λ,qξ(τ))

Ðn,α
λ,qξ(τ)

take all values in the conic

domain Λβ,q,γ given in (24). We can write the conditions (25) and (26) in the form

τ∂q(Ðn,α
λ,qξ(τ))

Ðn,α
λ,qξ(τ)

≺ Pβ,γ,q(τ) (28)

and

1 +
τ∂q(∂qÐn,α

λ,qξ(τ))

∂q(Ðn,α
λ,qξ(τ))

≺ Pβ,γ,q(τ). (29)

where Pβ,γ,q(τ) is given by (23) and Pβ,γ(τ) is given by (2).
By virtue of (25) and (26) and using the characteristics of the domain Λβ,q,γ given

in (24), we have

Re

(
τ∂q(Ðn,α

λ,qξ(τ))

Ðn,α
λ,qξ(τ)

)
>

β(q+ 1) + (3− q)γ

(1 + β)((1− q) + 2)
(30)

and

Re

(
1 +

τ∂q(∂qÐn,α
λ,qξ(τ))

∂q(Ðn,α
λ,qξ(τ))

)
>

β(q+ 1) + (3− q)γ

(1 + β)((1− q) + 2)
, (31)

which means that

ξ ∈ SPn,q
α,λ (β, γ)⇒ Ðn,α

λ,qξ ∈ ST
(

β(q+ 1) + (3− q)γ

(1 + β)((1− q) + 2)

)
⊆ ST (32)
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and

ξ ∈ UCVn,q
α,λ (β, γ)⇒ Ðn,α

λ,qξ ∈ CV
(

β(q+ 1) + (3− q)γ

(1 + β)((1− q) + 2)

)
⊆ CV. (33)

Remark 12. When we take q → 1−, in (30)–(33), we have the following special cases studied
in [11].

Re

(
τ(Ðn,α

λ ξ(τ))
′

Ðn,α
λ ξ(τ)

)
>

β + γ

1 + β

and

Re

1 +
τ
(
Ðn,α

λ ξ(τ)
)′′(

Ðn,α
λ ξ(τ)

)′
 >

β + γ

1 + β
,

which means that

ξ ∈ SPn
α,λ(β, γ)⇒ Ðn,α

λ ξ ∈ ST
(

β + γ

1 + β

)
⊆ ST

and

ξ ∈ UCVn
α,λ(β, γ)⇒ Ðn,α

λ ξ ∈ CV
(

β + γ

1 + β

)
⊆ CV.

2. A Set of Lemmas

Here, we provide several lemmas that may be used to further explore the paper’s
key outcomes.

Lemma 1 ([27]). Let p(τ) = 1 +
∞
∑

n=1
pnτn be analytic in E and satisfy Re p(τ) > 0 for τ in E,

then ∣∣∣p2 − µp2
1

∣∣∣ ≤ 2 max{1, |2µ− 1|}, µ ∈ C.

Lemma 2 (see [28]). Let p(τ) = 1 +
∞
∑

n=1
pnτn ≺ ξ(τ) = 1 +

∞
∑

n=1
Cnτn, and if ξ(τ)is convex

univalent in E, then
|pn| ≤ |C1|, n ≥ 1.

Lemma 3 ([29]). Let ξ and g be starlike of order 1
2 . Then so is ξ ∗ g.

Lemma 4 ([30]). Let ξ and g be univalent starlike functions of order 1
2 . Then, for every function

ξ ∈A, we have
ξ(τ) ∗ g(τ)ξ(τ)

ξ(τ) ∗ g(τ)
∈ co(ξ(E)), τ ∈ E,

where co denotes the closed convex hull.

New lemmas are explored here that will be useful in establishing the article’s results.

Lemma 5. Let β ∈ [0, ∞) be fixed and

pβ,γ,q(τ) =
2Pβ,γ(τ)

(q+ 1) + (1− q)Pβ,γ(τ)
. (34)

Then

Pβ,γ,q(τ) = 1 +
2

q+ 1
Q1τ +

{
2

q+ 1
Q2 −

2(1− q)

q+ 1
Q2

1

}
τ + · · · ,

where Q1 and Q2 are given by (5) and (6).
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Proof. From (34), we have

Pβ,γ,q(τ) =
2Pβ,γ,q(τ)

(q+ 1) + (1− q)Pβ,γ(τ)

=
2

q+ 1
{

Pβ,γ(τ)
}
− 2(1− q)

(q+ 1)2

{
P2

β,γ(τ)
}
+

2(1− q)2

(q+ 1)3

{
P3

β,γ(τ)
}

−2(1− q)3

(q+ 1)4

{
P4

β,γ(τ)
}
+ · · · . (35)

By using (4) in (35), we have

Pβ,γ,q(τ) =

(
2

q+ 1
− 2(q+ 1)

(q+ 1)2 +
2(1− q)2

(q+ 1)3 + · · ·
)

+

(
2

q+ 1
Q1 −

4(1− q)

(q+ 1)2 Q1 +
6(1− q)2

(1− q)3 Q1 + . . .
)

τ

+

{(
2

q+ 1
− 4(1− q)

(q+ 1)2 +
6(1− q)2

(q+ 1)3 + . . .
)

Q2

−
(

2(1− q)

(q+ 1)2 +
6(1− q)2

(q+ 1)3 + . . .
)

Q2
1

}
τ,

=
∞

∑
n=1

2(−1)n−1(1− q)n−1

(q+ 1)n +
∞

∑
n=1

2n(−1)n−1(1− q)n−1

(q+ 1)n Q1τ

+

{
∞

∑
n=1

2n(−1)n−1(1− q)n−1

(q+ 1)n Q2

−
∞

∑
n=1

2(2n− 1)(−1)n−1(1− q)n−1

(q+ 1)n+1 Q2
1

}
τ2 + · · · . (36)

The series
∞
∑

n=1

2(−1)n−1(1−q)n−1

(q+1)n ,
∞
∑

n=1

2n(−1)n−1(1−q)n−1

(q+1)n , and
∞
∑

n=1

2(2n−1)(−1)n−1(1−q)n−1

(q+1)n+1 are

convergent and convergent to 1, 2
q+1 and 2(1−q)

(q+1) .

Therefore, (36) becomes

Pβ,γ,q(τ) = 1 +
2

q+ 1
Q1τ +

{
2

q+ 1
Q2 −

2(1− q)

(q+ 1)
Q2

1

}
τ2 + · · · . (37)

With this, the proof of Lemma 5 is finished.

Lemma 6. Let P(τ) = 1 +
∞
∑

n=1
pnτn ∈ β− Pq,γ, then

|pn| ≤
2

q+ 1
|Q1|, n ≥ 1.

Proof. By Definition 11, p(τ) ∈ β− Pq,γ if

p(τ) ≺ Pβ,γ,q(τ), (38)

where β ∈ [0, ∞), and Pβ,γ,q(τ) is given by (2).
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By using (37) in (38), we have

P(τ) ≺ 1 +
2

q+ 1
Q1τ +

{
2

q+ 1
Q2 −

2(1− q)

(q+ 1)
Q2

1

}
τ2 + · · · . (39)

Now by using Lemma 5 on (39), we have

|pn| ≤
2

q+ 1
|Q1|.

With this, the proof of Lemma 6 is finished.

Lemma 7. Let Λα
qξ be in the class SPn,q

α,λ (β, γ). Then ξ is in the class SPn,q
α,λ (β, γ).

Proof. Let Λα
qξ ∈ SPn,q

α,λ (β, γ); then from (32), Ðn,α
λ,qΛα

qξ ∈ ST. Using (16) and (21), we can
write Ðn,α

λ,qξ in terms of Ðn,α
λ,qΛα

qξ as follows:

Ðn,α
λ,qξ(τ) = ϕ(2− α, 2; τ) ∗Ðn,α

λ,qΛα
qξ,

and by convolution properties, we obtain

τ∂q
(

Ðn,α
λ,qξ(τ)

)
= ϕ(2− α, 2; τ) ∗ τ∂q

(
Ðn,α

λ,qΛα
qξ
)

.

Using Lemma 4 and (32), we obtain

τ∂q
(

Ðn,α
λ,qξ(τ)

)
Ðn,α

λ,qξ(τ)
=

ϕ(2− α, 2; τ) ∗
[

τ∂q
(

Ðn,α
λ,qΛα

qξ(τ)
)

Ðn,α
λ,qΛα

qξ(τ)

]
Ðn,α

λ,qΛα
qξ(τ)

ϕ(2− α, 2; τ) ∗ τ∂q
(

Ðn,α
λ,qΛα

qξ
)

∈ co

τ∂q
(

Ðn,α
λ,qΛα

qξ(τ)
)

Ðn,α
λ,qΛα

qξ(τ)
(E)

 ⊆ Λβ,q,γ.

Therefore, ξ ∈ SPn,q
α,λ (β, γ).

Lemma 8. Let Λα
qξ be in the class UCVn,q

α,λ (β, γ). Then ξ is in the class UCVn,q
α,λ (β, γ).

Proof. By virtue of (27) and Lemma 7, we have

Λα
qξ ∈ UCVn,q

α,λ (β, γ)⇔ τ∂qΛα
qξ ∈ SPn,q

α,λ (β, γ)

⇔ Λα
qτ∂qξ ∈ SPn,q

α,λ (β, γ)

⇔ τ∂qξ ∈ SPn,q
α,λ (β, γ)

⇔ ξ ∈ UCVn,q
α,λ (β, γ).

Therefore, ξ ∈ UCVn,q
α,λ (β, γ).

Lemma 9. Let 0 ≤ β < 1 and 1
2 ≤ γ < 1 or β ≥ 1 and 0 ≤ γ < 1. If ξ ∈ SPn,q

α,λ (β, γ), then
Ðn,α

λ,qξ ∈ ST( 1
2 ).

Proof. From (30), the result is obvious, where β(q+1)+(3−q)γ
(1+β)((1−q)+2) ≥

1
2 for 0 ≤ β < 1 and

1
2 ≤ γ < 1 or β ≥ 1 and 0 ≤ γ < 1.
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3. Main Results

Theorem 1. Let 0 ≤ β < ∞, q ∈ (0, 1), µ ∈ C, and let ξ(τ) ∈ SPn,q
α,λ (β, γ), and ξ is of the

form (1). Then ∣∣∣a3 − µa2
2

∣∣∣ ≤ 2|Q1|(
[3]q − 1

)
Ψ3,k,q(α, λ)(q+ 1)

max{1, |2v− 1|} (40)

where v is given by (48) below.

Proof. If ξ(τ) ∈ SPn,q
α,λ (β, γ), then by definition,

SPn,q
α,λ (β, γ) ≺ Pβ,γ,q(τ)),

there is a Schwartz function w with w(0) = 0 and |w(τ)| < 1, in such a way that

τ∂q(Ðn,α
λ,qξ(τ))

Ðn,α
λ,qξ(τ)

= Pβ,γ,q(w(τ)). (41)

Let h ∈ P, defined as

h(τ) =
1 + w(τ)

1− w(τ)
= 1 + c1τ + c2τ + · · · .

This can be written as

w(τ) =
c1

2
τ +

1
2
(c2 −

c2
1

2
)τ2 + · · · .

Now

τ∂q(Ðn,α
λ,qξ(τ))

Ðn,α
λ,qξ(τ)

= 1 + ([2]q − 1)Ψ2,k,q(α, λ)a2τ

+
{
([3]q − 1)Ψ3,k,q(α, λ)a3 −

([2]q − 1)Ψ2
2,k,q(α, λ)a2

2

}
τ2 + · · · (42)

Similarly,

Pβ,γ,q(w(τ))

= 1 +
Q1c1

(q+ 1)
τ +

1
(q+ 1)

{
Q2c2

1
2

+ (c2 −
c2

1
2
)Q1 −

(1− q)Q2
1c2

1
2

}
τ2 + · · · (43)

By using (42) and (43) in (41) and comparing both sides, we obtain

a2 =
Q1c1

([2]q − 1)(q+ 1)Ψ2,k,q(α, λ)
(44)

and

([3]q − 1)Ψ3,k,q(α, λ)a3 − ([2]q − 1)Ψ2
2,k,q(α, λ)a2

2

=
1

(q+ 1)

{
Q2c2

1
2

+ (c2 −
c2

1
2
)Q1 −

(1− q)Q2
1c2

1
2

}
(45)

After some simple calculation of (45), we obtain
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a3 =
Q1

([3]q − 1)Ψ3,k,q(α, λ)(q+ 1)

(
c2 −

(
1
2
− Q2

2Q1
+

(1− q)Q1

2
− Q1

([2]q − 1)(q+ 1)

)
c2

1

)
(46)

and ∣∣∣a3 − µa2
2

∣∣∣ ≤ |Q1|
([3]q − 1)Ψ3,k,q(α, λ)(q+ 1)

{
c2 − vc2

1

}
, (47)

where

v =
1
2
− Q2

2Q1
+

(1− q)Q1

2
− Q1

([2]q − 1)(q+ 1)

+
µQ1([3]q − 1)Ψ3,k,q(α, λ)

([2]q − 1)2(q+ 1)Ψ2
2,k,q(α, λ)

. (48)

Now by using Lemma 1 on (47), we have∣∣∣a3 − µa2
2

∣∣∣ ≤ 2|Q1|(
[3]q − 1

)
Ψ3,k,q(α, λ)(q+ 1)

max{1, |2v− 1|}.

This concludes the proof of Theorem 1.

Theorem 2. A function ξ of the type (1) is in SPn,q
α,λ (β, γ) if

∞

∑
n=2
{[n]q(1 + β)− (β + γ)}Ψn,k,q(α, λ)|an| ≤ 1− γ, (49)

where Ψn,k,q(α, λ) is given by (20).

Proof. It suffices to show that

β

∣∣∣∣∣τ∂q(Ðn.α
λ,qξ(τ))

Ðn.α
λ,qξ(τ)

− 1

∣∣∣∣∣− Re

{
τ∂q(Ðn.α

λ,qξ(τ))

Ðn.α
λ,qξ(τ)

− 1

}
< 1− γ.

We have

β

∣∣∣∣∣τ∂q(Ðn.α
λ,qξ(τ))

Ðn.α
λ,qξ(τ)

− 1

∣∣∣∣∣− Re

{
τ∂q(Ðn.α

λ,qξ(τ))

Ðn.α
λ,qξ(τ)

− 1

}

≤ (1 + β)

∣∣∣∣∣τ∂q(Ðn.α
λ,qξ(τ))

Ðn.α
λ,qξ(τ)

− 1

∣∣∣∣∣
= (1 + β)

∣∣∣∣∣∣∣∣
τ +

∞
∑

n=2
[n]qΨn,k,q(α, λ)anτn

τ +
∞
∑

n=2
Ψn,k,q(α, λ)anτn

− 1

∣∣∣∣∣∣∣∣
= (1 + β)

∣∣∣∣∣∣∣∣
τ +

∞
∑

n=2
[n]qΨn,k,q(α, λ)anτn − τ −

∞
∑

n=2
Ψn,k,q(α, λ)anτn

τ +
∞
∑

n=2
Ψn,k,q(α, λ)anτn

∣∣∣∣∣∣∣∣
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= (1 + β)

∣∣∣∣∣∣∣∣
τ

(
1 +

∞
∑

n=2
[n]qΨn,k,q(α, λ)anτn − 1−

∞
∑

n=2
Ψn,k,q(α, λ)anτn

)
τ

(
1 +

∞
∑

n=2
Ψn,k,q(α, λ)anτn

)
∣∣∣∣∣∣∣∣

= (1 + β)

∣∣∣∣∣∣∣∣
∞
∑

n=2
([n]q − 1)Ψn,k,q(α, λ)anτn

1 +
∞
∑

n=2
Ψn,k,q(α, λ)anτn

∣∣∣∣∣∣∣∣
< (1 + β)

∞
∑

n=2
([n]q − 1)Ψn,k,q(α, λ)|an|

1−
∞
∑

n=2
Ψn,k,q(α, λ)|an|

,

Therefore,

(1 + β)

∞
∑

n=2
([n]q − 1)Ψn,k,q(α, λ)|an|

1−
∞
∑

n=2
Ψn,k,q(α, λ)|an|

≤ 1− γ.

After some simple calculation, we have

∞

∑
n=2

([n]q(1 + β)− (β + γ))Ψn,k,q(α, λ)|an| ≤ 1− γ.

Hence, this completes our result.

When we take q → 1−, then Theorem 2 makes use of a well-established finding
from [11].

Corollary 1. The set SPn
α,λ(β, γ) contains the function f of the type (1), if

∞

∑
n=2

n{n(1 + β)− (β + γ)}Ψn(α, λ)|an| ≤ 1− γ,

where

Ψn,k(α, λ) =

{
Γ(n + 1)Γ(2− α)

Γ(n + 1− α)
(1 + λ(n− 1))

}k
.

Remark 13. The outcomes of Theorem 2 and Corollary 1 in [31] are the same whether we consider
q→ 1−, n = 1, α = 0, λ = 0, and β = 1.

Remark 14. We can obtain the result that is proved in [32], if we consider q→ 1−, α = 0, λ = 1,
and γ = 0 in Theorem 2.

Theorem 3. The class UCVn,q
α,λ (β, γ) has the function ξ of the type (1) if

∞

∑
n=2

[n]q{[n]q(1 + β)− (β + γ)}Ψn,k,q(α, λ)|an| ≤ 1− γ.

Proof. Use the same technique of Theorem 2; we obtain the proof of Theorem 3.

When we take q→ 1−, then from Theorem 3, we have a known result studied in [11].
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Corollary 2. The class UCVn
α,λ(β, γ) has the function ξ of the type (1) if

∞

∑
n=2
{n(1 + β)− (β + γ)}Ψn(α, λ)|an| ≤ 1− γ,

where

Ψn,k(α, λ) =

{
Γ(n + 1)Γ(2− α)

Γ(n + 1− α)
(1 + λ(n− 1))

}k
.

Theorem 4. The class SPn,q
α,λ (β, γ) has the function ξ of the type (1). Then

|a2| ≤
2|Q1|

(q+ 1)([2]q − 1)Ψ2,k,q(α, λ)
(50)

and

|an| ≤
2|Q1|

(q+ 1)([n]q− 1)Ψn,k,q(α, λ)

n−1

∏
j=2

(
1 +

2|Q1|
(q+ 1)[j]q − 1

)
. (51)

Proof. Let ξ ∈ SPn,q
α,λ (β, γ); then

τ∂q(Ðn,α
λ,qξ(τ))

Ðn,α
λ,qξ(τ)

≺ Pq,β,γ(τ).

Define

q(τ) =
τ∂q(Ðn,α

λ,qξ(τ))

Ðn,α
λ,qξ(τ)

= 1 +
∞

∑
n=1

pnτn,

implying
τ∂q(Ðn,α

λ,qξ(τ)) = q(τ)
(

Ðn,α
λ,qξ(τ)

)

τ

(
1 +

∞

∑
n=2

[n]qΨn,k,q(α, λ)anτn

)
=

(
1 +

∞

∑
n=2

pnτn

)(
τ +

∞

∑
n=2

Ψn,k,q(α, λ)anτn

)
,

∞

∑
n=2

([n]q − 1)Ψn,k,q(α, λ)anτn =
∞

∑
n=2

pnτn +
∞

∑
n=2

(
n−1

∑
j=1

cjΨn−j,n,q(α, λ)an−j

)
τn

When we evaluate the τ-coefficient of each side, we obtain

an =
1

([n]q − 1)Ψn,k,q(α, λ)

n−1

∑
j=1

pjΨn−j,k,q(α, λ)an−j, a1 = 1.

Taking the mod and applying Lemma 6, we have

|an| ≤
2|Q1|

([n]q − 1)(q+ 1)Ψn,k,q(α, λ)

n−1

∑
j=1

Ψn−j,k,q(α, λ)an−j, a1 = 1, (52)

For n = 2 in (52), we obtain

|a2| ≤
2|Q1|

(q+ 1)
(
[2]q − 1

)
Ψ2,k,q(α, λ)

.
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Therefore, the result is true for n = 2. Let n = 3 in (52); we have

|a3| ≤
2|Q1|

(q+ 1)([3]q − 1)Ψ3,k,q(α, λ)

[
Ψ2,k,q(α, λ)|a2|+ 1

]

|a3| ≤
2|Q1|

(q+ 1)([3]q − 1)Ψ3,k,q(α, λ)

[
1 +

2|Q1|
(q+ 1)([2]q − 1)

]
.

Therefore, the result is true for n = 3. Let n = 4 in (52); we have

|a4| ≤
2|Q1|

(q+ 1)([4]q − 1)Ψ4,k,q(α, λ)
×{(

2|Q1|
(q+ 1)[3]q − 1

)(
1 +

2|Q1|
(q+ 1)([2]q − 1)

)
+

(
1 +

2|Q1|
(q+ 1)([2]q − 1)

)}
,

=
2|Q1|

(q+ 1)([4]q − 1)Ψ4,n,q(α, λ)
×
{(

1 +
2|Q1|

(q+ 1)([2]q − 1)

)(
1 +

2|Q1|
(q+ 1)([3]q − 1)

)}
.

If n is 4, then the conclusion holds. Mathematical induction allows us to derive

|an| ≤
2|Q1|

(q+ 1)([n]q − 1)Ψn,k,q(α, λ)

n−1

∏
j=2

(
1 +

2|Q1|
(q+ 1)[j]q − 1

)
.

Theorem 5. Let 0 ≤ µ ≤ α < 1, q ∈ (0, 1). Then

SPn,q
α,λ (β, γ) ⊆ SPn,q

µ,λ(β, γ)

where
(0 ≤ β < 1 and

1
2
≤ γ < 1) or (β ≥ 1 and 0 ≤ γ < 1).

Proof. Let ξ ∈ SPn,q
α,λ (β, γ). Then by (21) and convolution properties, we have

Ðn,µ
λ,qξ(τ) =

[(
ϕ(2, 2− µ; τ) ∗ gλ,q(τ)

)
∗ · · · ∗

(
ϕ(2, 2− µ; τ) ∗ gλ,q(τ)

)]︸ ︷︷ ︸ ∗ξ(τ)
n-times

Ðn,µ
λ,qξ(τ) = [ϕ(2− α, 2− µ; τ) ∗ · · · ∗ ϕ(2− α, 2− µ; τ)]︸ ︷︷ ︸ ∗Ðn,α

λ,qξ(τ)

n-times

and

τ∂q(Ð
n,µ
λ,qξ(τ)) = [ϕ(2− α, 2− µ; τ) ∗ · · · ∗ ϕ(2− α, 2− µ; τ)]︸ ︷︷ ︸ ∗τ∂q(Ðn,α

λ,qξ(τ)).

n-times

Additio ally, it is known that [33]

ϕ(2− α, 2− µ; τ) ∈ ST
(

1
2

)
.

Therefore, we obtain by repeatedly using Lemma 3 n–times

[ϕ(2− α, 2− µ; τ) ∗ · · · ∗ ϕ(2− α, 2− µ; τ)]︸ ︷︷ ︸ ∈ ST(
1
2
).
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For (0 ≤ β < 1 and 1
2 ≤ γ < 1) or (β ≥ 1 and 0 ≤ γ < 1), we have, by Lemma 9,

Ðn,α
λ,qξ ∈ ST

(
1
2

)
Using Lemma 4, we obtain

τ∂q(Ð
n,µ
λ,qξ(τ))

Ðn,µ
λ,qξ(τ)

=

[ϕ(2− α, 2− µ; τ) ∗ · · · ∗ ϕ(2− α, 2− µ; τ)]︸ ︷︷ ︸ ∗
(

τ∂q(Ð
n,α
λ,qξ(τ)

Ðn,α
λ,qξ(τ)

(
Ðn,α

λ,qξ(τ)
))

[ϕ(2− α, 2− µ; τ) ∗ · · · ∗ ϕ(2− α, 2− µ; τ)]︸ ︷︷ ︸ ∗Ðn,α
λ,qξ(τ)

∈ co ∈
(

τ∂q(Ðn,α
λ,qξ(τ))

Ðn,α
λ,qξ(τ)

(E)

)
⊆ Λβ,q,γ.

Thus, ξ ∈ SPn,q
α,λ (β, γ).

Remark 15. When we take q→ 1−, then from Theorem 5, we have a known result studied in [11].
The result explored in [11] is obtained from Theorem 5 when q→ 1− .

Remark 16. If we consider q→ 1−, n = 1, λ = 0, and β = 0, in Theorem 5, we obtain the result
given in [34].

Remark 17. If we consider q→ 1−, n = 1, λ = 0, γ = 0, and β = 1, in Theorem 5, we obtain
the result given in [35].

Theorem 6. Let 0 ≤ µ ≤ α < 1, q ∈ (0, 1). Then

UCVn,q
α,λ (β, γ) ⊆ UCVn,q

µ,λ (β, γ)

where
(0 ≤ β < 1 and

1
2
≤ γ < 1) or (β ≥ 1 and 0 ≤ γ < 1).

Proof. The proof of Theorem 6 can be obtained by using the same method as that used to
prove Theorem 5.

Remark 18. When we take q→ 1−, then from Theorem 6, we have a known result studied in [11].

4. Conclusions

The operators of q-fractional calculus have been addressed and effectively imple-
mented in a number of recent and continuing publications; see [36]. From the fractional
calculus q-Pochhammer symbol, several writers have expanded the notions of fractional
q-integral and fractional q-derivative by proposing many different lower limits of inte-
gration. Many of these applications of the basic (or q-) calculus and the fractional basic
(or q-) calculus in the geometric function theory of complex analysis have inspired the
present work.

We were motivated to conduct this research after reading Srivastava’s survey-cum-
expository review essay [3], in which he describes the application of both the fundamental
(or q-) calculus and the fractional (or q-) calculus to the study of geometric functions. In
Section 1, we discussed some background ideas that are presented in this article and
also used the q-calculus operator theory and successfully defined the q-analogous of a
fractional differential operator for analytic functions. Considering this operator, we defined
subclasses of q-starlike and q-convex functions. In Section 2, we mentioned some known
lemmas, and also we proved some new lemmas. In Section 3, by utilizing these lemmas,
we examined several useful properties, such as inclusion relations, coefficient bounds,
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Fekete–Szego problem, and subordination results. We also highlight many known and
brand-new particular cases of our findings.
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