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ABSTRACT Deep-learning models often struggle to generalize well to unseen domains because of the
distribution shift between the training and real-world data. Domain generalization aims to train models that
can acquire general features from data across different domains, thereby improving the performance on
unseen domains. Inspired by the glance-and-gaze approach, which mimics the way humans perceive the
real world, we introduce the domain-adaptive vision transformer (DA-ViT) model, which adopts a human
cognitive perspective for domain generalization. We merge glance and gaze blocks to initially capture
general information from each block and subsequently acquire more detailed and focused information.
Unlike previous methods that predominantly employ convolutional neural networks, we adapted the ViT
model to learn features that are robust across different visual domains. DA-ViT is pretrained on the
ImageNet 1K dataset and designed to adaptively learn features that are generalizable across various visual
domains. We evaluated our adapted model for domain generalization and demonstrated that it outperforms
the ResNet50 model based on non-ensemble algorithms by 0.7%p on the VLCS benchmark dataset. Our
proposedmodel introduces a new approach for domain generalization that leverages the capabilities of vision
transformers to adapt effectively to diverse visual domains.

INDEX TERMS Domain generalization, ViT, masked ViT, cross-attention-based ViT, glance and gaze,
human cognitive approach.

I. INTRODUCTION
Deep learning models continue to advance rapidly and
are being applied to various real-world tasks. However,
in practical usage, many of these models fail to meet
research expectations because of disparities between training
and real-world data. Despite the development of advanced
models, such as convolutional neural network (CNN) archi-
tectures and vision transformer (ViT)-based models, real-
world applications are plagued with challenges. To address
domain generalization, we propose a deep-learning model,
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Domain-Adaptive Vision Transformers(DA-ViT), inspired
by human cognitive processes.

Our approach is designed to address the limitations
associated with existing domain generalization studies that
either utilize only CNN-based models or focus solely on
learning strategies. The proposed DA-ViT model introduces
a cognitive perspective for domain generalization. This
approach draws inspiration from the rich history of deep-
learning studies that have successfully mimicked human
biological and cognitive processes. By incorporating these
cognitive insights, we aimed to enhance the performance
and robustness of deep-learning models in real-world
applications.
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A. DOMAIN GENERALIZATION METHODS AND THEIR
LIMITATIONS
Recent advances in deep-learning models have demonstrated
remarkable performance across diverse domains, such as
image object classification [1], [2], segmentation [3], [4],
and translation [5]. However, when deep-learning models
are deployed in real-world applications, they often suffer
from performance degradation owing to the difference
in distribution between the training and real-world data.
To address this issue, several domain generalization studies
have been conducted that feature various strategies, such
as data manipulation [6], [7], [8], data representation
learning [9], [10] and learning strategies [11], [12], [13].
Data manipulation techniques involve modifying input data
to improve generalization by extracting more generalized
representations. These techniques include methods such as
data augmentation, achieved through randomization [14] and
transformations [15], as well as data generation [16], [17].
Data representation learning involves adversarial train-
ing [18] to learn domain-invariant representations, domain-
unbiased representation learning [9], [19] to perform explicit
feature alignment between domains, and domain shar-
ing [20] or specific partial separation [21] for improved
generalization. Another approach, learning strategy, aims to
enhance generalization by utilizing ensemble [22] and meta-
learning [11], [23] techniques to obtain general expressions.
However, these methods have limitations. For instance,

data manipulation lacks a theoretical guarantee, and although
adversarial training excels in domain adaptation, it lacks
meaningful results for generalization. The design of an
optimization strategy for a learning strategy is complex [24].
To address these issues and improve deep learning for real-
world tasks, we propose DA-ViT, which is inspired by the
human vision perspective and exhibits enhanced domain
generalization.

B. TRANSFORMERS AND THEIR APPLICATIONS
Transformer-based models such as BERT [25] and the GPT
series [26], [27], [28] have significantly enhanced perfor-
mance across various domains, including translation [29],
text classification [30], and question answering [31]. Notably,
the extension of transformers to images using models such
as ViT [32] represents a breakthrough, diverging from
the prevalent use of CNNs, which acquire local image
representations. ViT enables learning of global information,
thereby revolutionizing image processing. Subsequently,
various transformer-based models were developed. For
instance, the detection transformer model (DETR) [33],
which consists of an encoder and decoder structure, not
only simplifies the detection pipeline but also removes
many hand-designed components and consequently exhibits
good performance in object detection. A pretrained image
transformer (IPT) [34] improves image enhancement by
solving basic image-processing problems such as denoising
and de-raining. The texture transformer network for image

super-resolution (TTSR) model [35] approaches the super-
resolution problem by texture learning. For representation
learning, masked autoencoders (MAEs) [36] have been
applied to reconstruction tasks that mask the ViT patches.
Multiscale ViT [37] has demonstrated remarkable perfor-
mance on video tasks without pretraining. However, few
studies have explored the application of ViT in representation
learning for domain generalization. Therefore, the aim of our
study is to enhance vision representation and extend the utility
of the model to domain generalization by integrating masked
ViT and cross-attention-based ViT.

C. ADVANCES IN DEEP LEARNING TECHNOLOGIES THAT
MIMIC HUMANS
Initially, the field of deep learning encompassed emu-
lating human neural activity and learning. Subsequently,
researchers have actively explored deep-learning methods
that replicate human functions from both biological and cog-
nitive perspectives. The journey to mimic human deep neural
networks began with the development of shallow networks
such as ResNet and AlexNet, which then progressed into
deeper architectures such as ResNet50 and ResNet101 [38].
Additionally, techniques inspired by human visual percep-
tion, which utilize both slow and fast methods for pose
estimation through video flow analysis, have emerged,
further advancing this field [39]. Furthermore, a growing
body of research is aimed at approaching object detection
from a cognitive perspective [40]. These studies introduced
innovative approaches and made significant advancements in
the research within their respective domains.

In this paper, we introduce DA-ViT with the ‘‘glance-
and-gaze’’ cognitive approach, which is a longstanding
concept used in human vision and object recognition. Our
implementation of the glance-and-gaze method is intended
to improve domain generalization. By combining deep-
learning models, which can perform tasks similar to the
way humans do, with cognitive methods such as glance
and gaze, we anticipate promising results. Our approach
mimics how humans extract limited information through a
quick glance and improve upon it by focusing their attention.
Through glancing, humans perceive only a limited amount of
information, such as key features or rough information about
an object. A quick initial glance improves the accuracy of
information absorption while focusing on and gazing at an
object after acquiring preliminary knowledge. To replicate
this cognitive perspective, we utilized the masked ViT and
cross-attention-based ViT to emulate the functions of glance
and gaze, respectively. Within the glance block, we use the
masked ViT to acquire approximate information. Within the
gaze block, we utilize a cross-attention-based ViT to learn
more comprehensive and refined information.

Our contributions are as follows:
• Unlike the conventional CNN-based model for domain
generalization, our design utilizes a ViT-based model
with a transformer architecture. This design choice is
intended to preserve the ability of the model to retain the
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strength of learning common expressions across various
domains.

• To incorporate a human-like cognitive perspective into
domain generalization, we introduce DA-ViT, based
on a glance-and-gaze approach. This approach utilizes
human-inspired learning techniques to innovate our
model structure in domain generalization. We aim to
address the current situation in which domain gener-
alization primarily revolves around model ensembles
and complex learning strategies, which can be difficult
to implement in real-world scenarios. Through this
approach, we strive to develop models that emulate
human learning processes, ultimately enhancing the
feasibility and practicality of domain generalization.

• We evaluated the performance of our proposed DA-ViT
model, which integrates human cognitive insights,
in different domains. Overall, DA-ViT exhibited a
performance improvement of 0.7%p on the VLCS
dataset.

II. RELATED WORK
A. DOMAIN GENERALIZATION
Domain generalization aims to learn common represen-
tations from the source domain to ensure that they are
generalized well on unused datasets or out-of-distribution
domain datasets during model learning. Domain general-
ization is typically categorized into three approaches. Data
manipulation, initially proposed as a method for randomly
generating learning environments that resemble the real
world, aims to generate diverse training data [41]. These
datasets help in learning general representations of domains
that are not included in the training process. The creation
of real-world-like data [42], which mitigates the reality
gap through domain randomization [14], contributes to
improving model generalization. In addition, techniques
such as self-supervised contrast regularization [8] enhance
the ability of the model to be generalized through self-
supervised learning. Representation learning focuses on
identifying invariant representations across diverse domains.
It commonly employs techniques such as maximum mean
discrepancy [43], [44] and Wasserstein distance [45] to
align features across different domains. Learning strategies
focus on utilizing general learning techniques to promote
generalization through various approaches such as ensemble
learning [22], [46], meta-learning [11], [12], [23], and
gradient operations [13], [47].

However, these methods have practical limitations and
are often considered inadequate [24]. They are customized
for specific learning algorithms and model selection [48].
Consequently, this limitation restricts model design, reduces
the scalability of domain generalization, and results in
performance improvements that are applicable only to limited
models. Presently, domain generalization relies primarily
on CNN-based models, emphasizing the need to develop
new models. In this paper, we introduce a new model for

domain generalization designed to address these challenges
and satisfy the aforementioned requirements.

B. ViT
The transformer model [49], initially employed in the field
of natural-language processing (NLP), has shown remarkable
performance in various applications such as language transla-
tion [29], question answering [31], and text generation [50].
Recently, there has been a significant research shift from
CNN-based approaches to ViT [2], [4], [32], [51], [52].
Transformers are increasingly applied to image-related tasks.
ViT-based studies have spurred advancements in computer
vision, leading to their use in various tasks such as object
detection [51], [52], image classification [2], [32], and
semantic segmentation [4].
Furthermore, there has been a growing interest in studying

masked ViT models, specifically for improving image
attributes [36], [53], [54]. One such approach [36] involves
randomly masking patches within input images and recon-
structing the masked regions. In this process, the encoder
operates on unmasked tokens, whereas the decoder utilizes
masked tokens and latent representations to reconstruct the
original image. The present study demonstrates the potential
of expanding the scope of self-supervised learning in the
field of computer vision by utilizing an encoder–decoder
architecture. The self-supervisor transformer [53] employs
a masked-patch approach to consider both high-level and
local features. Specifically, this masking strategy enhances
the comprehension of local contextual semantics without
compromising the overall image structure. It addresses issues
related to the insufficient extraction of local information and
the loss of spatial information. Furthermore, studies using
masked ViT models have revealed that an effective model
design can enhance the learning of image characteristics,
even when certain portions of an image are obscured or only
specific parts are learned [36], [53].

Within the domain of ViT-based research, cross-attention
is employed to learn features simultaneously within
images [55], [56] and between images and text [57], [58].
In addition, the dual-branch ViT [55] model combines infor-
mation across branches of varying scales or patch-embedding
sizes to effectively capture multiscale image features.
This approach combines two self-attention mechanisms,
operating within and between patches [56], with the aim of
effectively integrating local features and global information
while reducing the computational overhead associated with
capturing additional information. In studies examining the
relationship between images and word features [57], stacked
cross-attention was used to determine the similarity between
images and sentences. Meanwhile, in research applying
cross-modal attention to image patches and words [58],
the focus was on combining global semantic consistency
and alignment between local image regions and words.
Drawing inspiration from these studies, we propose an
approach for image feature learning using cross-attention
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FIGURE 1. Overall architecture of the proposed DA-ViT model. The glance block consists of a masked ViT with specific patches being masked. The gaze
block is configured using cross-attention.

blocks that combine masked ViT with pixel self-attention and
self-attention between image patches.

C. APPROACHING DEEP LEARNING FROM A HUMAN
PERSPECTIVE
In general, the development and advancement of deep-
learning research has been driven by the emulation of human
biological or cognitive processes [38], [59], [60], [61].
ResNet [38], [61] and Inception [60] are prominent examples
of deep-learning architecture that draw inspiration from
deep neural networks that resemble the structure of the
human brain. In addition, SlowFast [39] presents a video
recognition approach inspired by the function of retinal
ganglion cells in the human visual system. Specifically, the
model processes images through two streams, similar to how
human photoreceptors receive visual inputs, and applies them
to human pose estimation.

The glance-and-gaze mechanism, which embodies the
human cognitive perspective, influences various forms across
multiple fields. For example, in applications related to
human–object interaction, the glancing transformer [40]
swiftly determines whether feature map pixels correspond
to interaction points. The model subsequently facilitates
adaptive reasoning, enabling judgment-based determination
of the nature of human–object interaction. Furthermore,
the glance-and-gaze network (GaGNet) [62] expands the
concept of glance and gaze, incorporating the cognitive
aspect of human perception to improve speech processing
and enhancement. In the field of speech processing, GaGNet
adopts a dual approach: ‘‘glance,’’ which offers an initial
estimation, and ‘‘gaze,’’ which compensates for the loss of
spectral information. Furthermore, GAGNet [63] provides
a solution to the structural limitations of the current
CNN models in breath sound classification. This network

utilizes global features through ‘‘glance’’ and localized
features through ‘‘gaze,’’ leading to significant performance
improvements using publicly accessible breath-sound data.
The glance-and-gaze transformer (GG-Transformer) [64] is
also inspired by the glancing and gazing behavior of human
beings when recognizing objects in natural scenes. Unlike
our study, which is aimed at domain generalization, GG-
Transformer introduces an efficient transformer that reduces
the computational and memory costs of self-attention.
It combines a self-attention branch with a simple depth-
wise convolution layer branch to model both long-range
dependencies and local context.

The development of deep learning has been profoundly
influenced by the emulation of human biological and
cognitive perspectives. Furthermore, studies that began with
the construction of models have evolved significantly. When
dealing with tasks that exhibit human-like characteris-
tics, models effectively mimic human-like capabilities and
actively advance towards acquiring the abilities to learn and
reason. In this context, the objective of this study is to
develop a model designed for domain generalization, taking
inspiration from ‘‘glance and gaze.’’ The ultimate goal is to
overcome the challenges and limitations that arise when using
models in real-world problem-solving situations.

III. METHOD
In the field of visual recognition, humans quickly perceive
the presence of an object and its general characteristics with
a quick glance. This study introduced DA-ViT, which is
an approach that emulates human cognitive processes by
integrating masked ViT and cross-attention-based ViT using
a glance-and-gaze approach. The overall architecture of the
proposed model is illustrated in Fig. 1. In the glance block
of the proposed design, the masked ViT is used to infer the
approximate information. In the gaze block, cross-attention
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is employed to combine pixel attention and interpatch
attention, thereby enhancing the richness of the image
characteristics. The proposed DA-ViT model integrates both
general initial information and specific intricate details to suit
each characteristic.

A. GLANCE BLOCK
A pivotal focus of this study lies on developing the ‘‘glance’’
aspect from a cognitive perspective. In previous studies
investigating human–object interactions [40] or enhanced
speech recognition [62], humans perceived the presence or
absence of objects and gained a basic understanding of their
overall characteristics through glancing [40], [63]. However,
this understanding is often incomplete and imprecise. When
humans cast a glance, they may inaccurately perceive the
existence of objects, resulting in incomplete gathering of
information. Although valuable, gaze supplementation only
partially compensates for this inadequacy, resulting in a
limited amount of information being obtained from the initial
glance. To address this limitation, we designed a glance
block using masked ViT to better align with human cognitive
characteristics. The overall structure of the glance block is
illustrated in Fig. 2.

FIGURE 2. Structure of the glance block. Three-quarters of the image
patches are masked.

The glance block closely resembles ViT but incorporates
mask-based learning as an additional component. More
precisely, we transform the original image x ∈ RH×W×C

into xglance ∈ RN×(P2×C), where (H × W ) is the size
of the original image, C is the number of channels, and
(P×P) is the size of the patch. In the glance block, the patch
size is set to 7 × 7. Subsequently, we incorporate learnable
embeddings to capture positional information. Unlike ViT,
the proposed model does not include a [CLS] token.
Following the partitioning of the input image into patches,
we determine the set of patches to be used while masking
the remaining patches that will not be utilized. This process
is similar to the exclusion of patches from consideration.
To be precise, we utilize a random uniform distribution
to randomly select a set of patches to be retained. This
strategic random sampling significantly reduces redundancy.
By employing a stack of encoders in a layered fashion,
we obtain approximate information regarding the images to
be captured. The following operations are performed within

the glance block:

zo = Patch.Emb(xglance) + Pos.Emb (1)

hatztemp1 = MSA(LN (ẑn−1)) + ẑn−1 (2)

ẑtemp2 = MLP(LN (ẑtemp1)) + ẑn (3)

B. GAZE BLOCK
As previously mentioned, gaze should exhibit the character-
istics of focused concentration. In several studies [65], [66],
the process of feature learning for images involved estab-
lishing relationships between individual pixels. In particular,
we developed a gaze block inspired by the cross-attention
mechanism found in ViT [56]. This gaze block leverages
pixel self-attention within individual patches, divides the
image into patch units, and applies cross-attention to establish
connections between these patches. We employed a cross-
attention-based transformer model that utilizes both pixel
self-attention (PiSA) and interpatch self-attention (PaSA).
This design enables the system to comprehensively learn
pixel-wise information within an image and the relationships
between various patches. The structure of the gaze block is
shown in Fig. 3.

FIGURE 3. Structure of the gaze block. The gaze block consists of
cross-attention stacking of the PiSA and PaSA, each with layer
normalization [67].

Similar to that observed for word tokens in NLP [25], [28],
using all pixels in an image or feature map as tokens
results in a significant increase in computational require-
ments. In computer vision, understanding the relationships
among pixels is crucial for object recognition. However,
considering every pixel in all the images is computationally
challenging. Therefore, we exclusively applied self-attention
to the pixels within the divided patches. More specifically,
when addressing the computational complexities posed by
considering every pixel in all the images, we limited our
self-attention to the pixels corresponding to the divided
patch. This approach enables the system to capture pixel
relationships within individual patches without the need for
complete pixel computation across the entire image. In this
study, we applied pixel self-attention within each patch using
inner patch self-attention [56], as shown in Fig. 4.

However, limiting pixel self-attention solely to a divided
patch confines our focus to the pixel correlations within that
specific patch. In an image, it is crucial not only to understand
the relationships between pixels but also to gain a comprehen-
sive understanding of its content and meaning. Thus, drawing

115648 VOLUME 11, 2023



Y. Cho et al.: Domain-Adaptive Vision Transformers for Generalizing Across Visual Domains

FIGURE 4. Pixel self-attention (PiSA) structure, which includes an
attention mechanism with an inner patch. PiSA operates by unfolding and
stacking the inputs.

inspiration from cross-patch self-attention [56], we utilize
interpatch self-attention to simultaneously capture the overall
image context and identify the relationships between patches,
as shown in Fig. 5. In the proposed approach, the feature map
of each channel is separated and partitioned into patches of
size H/N × W/N . Subsequently, we utilize self-attention
to facilitate interpatch self-attention, enabling the capture
of global information from the entire feature map. Here, N
denotes the patch size and H and W denote the height and
width of the feature map, respectively. As shown in Fig. 3,
we combined pixel and inter-patch self-attention blocks to
extract and integrate both the features of a pixel within the
patch and those across the entire image and feature map.
Specifically, pixel self-attention utilizes relative position
encoding [68], [69], [70], whereas interpatch attention adopts
absolute position encoding. The reason for this differentiation
lies in the nature of interpatch attention, which operates on a
complete single-channel feature map.

FIGURE 5. Structure of interpatch self-attention (PaSA), which includes an
attention mechanism with a cross patch. Interpatch self-attention
operates by unfolding and stacking the inputs.

The cross-attention block consists of two pixel self-
attention (PiSA) blocks and an interpatch self-attention
(PaSA) block. The gaze block is composed of multiple cross-
attention blocks, and each stage of the network features a
different number of layers and patch-embedding layers. The
operations performed within the cross-attention block are as
follows.

yo = Patch.Emb(xgaze) + Pos.Emb (4)

ŷtemp1 = PiSA(LN (ŷn−1)) + ŷn−1 (5)

ŷtemp2 = MLP(LN (ŷtemp1)) + ŷtemp1 (6)

ŷtemp3 = PaSA(LN (ŷtemp2)) + ŷtemp2 (7)

ŷtemp4 = MLP(LN (ŷtemp3)) + ŷtemp3 (8)

ŷtemp5 = PiSA(LN (ŷtemp4)) + ŷtemp4 (9)

ŷn = MLP(LN (ŷtemp5)) + ŷtemp5 (10)

The gaze block component follows the pipeline shown
in Fig. 6. In a related study involving cross-attention [56],
a patch size of 7×7was used andmulti-head attentionwas not
employed for interpatch self-attention. However, in our gaze
block, the patch size is enlarged to 14×14. By increasing the
patch size in the gaze block, distinct characteristics beyond
those learned from the relationship between patches within
the glance block component can be captured. This larger
patch size also allows the implementation of more effective
pixel self-attention, which leads to improved performance.
Furthermore, we incorporated multi-head attention into
the gaze block, which enables the extraction of more
comprehensive features during training.

FIGURE 6. Gaze block pipeline.

IV. EXPERIMENTS
A. EXPERIMENTAL SETTINGS
A single V100 GPU was used to train the model. To train
the glance block, we used a ViT encoder with three
layers. For gaze block training, we employed four lay-
ers, each comprising cross-attention blocks. These cross-
attention blocks combine pixel and interpatch self-attention.
The four layers consist of cross-attention blocks. During the
training on the ImageNet 1K dataset [71], we utilized the
AdamW optimizer [72] with an initial learning rate of 5e-5.
Subsequently, the learning rate was linearly adjusted using a
warm-up scheduler [73].

In this study, we followed the training and validation
protocols outlined in DomainBed [48] for a fair comparison.
To elaborate, we designated data from a specific domain as
the target domain; the remaining data served as the source
domain. Furthermore, we allocated 20% of the source domain
for validation. By utilizing different random seeds, we split
the data into training and validation sets and repeated the
training and validation procedures three times. The resulting
distributions were then averaged across all domains.

The performance of each test was recorded for each
dataset. In this experiment, we used an input image of size
224× 224. We used the pretrained DA-ViT on ImageNet 1K
as the backbone. For optimization, we employed stochastic
gradient descent (SGD) with a learning rate of 3e-3,
momentum of 0.9, weight decay of 1e-4, and batch size of 64.

B. DATASET
We utilized training and test data to evaluate the effectiveness
of DA-ViT. Specifically, our model was trained on ImageNet
1K, a dataset comprising 14,197,122 annotated images
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categorized according to the WordNet hierarchy. Since 2010,
ImageNet has played a crucial role in the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC), which serves
as a benchmark for image classification and object detection.
Prior to the evaluation of domain generalization, we pre-
trained our proposed model on ImageNet 1K. Subsequently,
we evaluated the domain generalization performance on the
VLCS benchmark dataset [74], which encompasses four
domains: VOC2007, LabelMe, Caltech101, and SUN09,
containing a total of 10,729 images. Each domain consists
of five categories: birds, cars, chairs, dogs, and people.

Furthermore, to evaluate the performance of our proposed
model, as well as each glance-and-gaze methodology,
we expanded our evaluation to include the PACS [75] and
Office-Home datasets [76]. The PACS dataset, which is
commonly used for domain adaptation and generalization
tasks, consists of four distinct domains: photos, art, cartoons,
and sketches, with a total of 9,991 images. The Office-Home
dataset, designed for domain adaptation and generalization
assessment, encompasses four domains: art, clip art, product,
and real. The art domain includes images such as sketches,
paintings, and decorations. Clip art consists of clipped
art images. Product contains images of objects without
backgrounds. Real images encompass images captured using
standard cameras. A total of 15,500 images were obtained.

FIGURE 7. (1) Dog label in the VLCS dataset, (2) dog label in the PACS
dataset, and (3) alarm clock label in the Office-Home dataset.

C. EXPERIMENTAL RESULTS
By leveraging the proposed DA-ViT model, we assessed
its domain generalization performance using the VLCS
benchmark dataset. Because the VLCS dataset consists
of real-world images, it aligns closely with our objective
of replicating human cognitive perspectives in real-world
contexts. We compared the performance of DA-ViT with that
of the ResNet50 model using a non-ensemble algorithm; the
results are presented in Table 1.

TABLE 1. Comparison of DA-ViT with ResNet50 models using
non-ensemble algorithms.

Using the empirical risk-minimization (ERM) method,
DA-ViT achieves a performance of 78.1% on the VLCS
benchmark dataset. This demonstrates an improvement rang-
ing from 0.3%p to 1.4%p compared with the performance
of the ResNet50 model based on different non-ensemble
algorithms. When comparing the results obtained using the
same ERM algorithm, a 0.7%p improvement is observed.
The proposed DA-ViT model outperforms ResNet50 on the
VLCS dataset, which comprises real photos. ResNet50 and
DA-ViT have 25.6 M and 39.6 M parameters, respectively.

TABLE 2. Experimental comparison of the performance of DA-ViT, Glance,
and Gaze.

We separated our proposed model, DA-ViT, which com-
bines glance and gaze blocks, into Glance and Gaze models.
Subsequently, we evaluated the domain generalization per-
formance of the three models, DA-ViT, Glance, and Gaze,
using the benchmark dataset. The results of the evaluations
are presented in Table 2. DA-ViT consistently exhibits
superior performance compared to the individual Glance and
Gaze methodologies across the PACS, VLCS, and Office-
Home datasets. These results underscore the effectiveness
of the proposed model, which captures human cognitive
perspectives by integrating glance and gaze.

TABLE 3. Experiments specific to different domains within the VLCS,
PACS, and Office-Home datasets.

Table 3 lists the experimental results of selecting a target
domain and utilizing the remaining domains as source
domains for training. DA-ViT shows better performance
than the models using only Glance and Gaze individually
in all domain-specific experiments, except for SUN09 in
VLCS. These results demonstrate the effectiveness of the
proposed model. Performance is relatively low when using
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only glance; however, combining glance and gaze provides
better performance than using gaze alone.

However, the performance improvement is relatively small
for image types that are significantly different from pho-
tographs, such as the sketch domain in the PACS dataset and
the clip art domain in the Office-Home dataset. According to
the findings presented in Table 3, our analysis highlights the
exceptional performance of the proposed model, particularly
in handling image categories such as photorealistic images
within datasets that encompass a wide range of domains,
including paintings, infographics, real photographs, and
sketches.

V. CONCLUSION
In this study, we explored domain generalization, a research
area that can expand practical deep-learning applications
in the real world. Inspired by human cognitive processes,
we introduced the DA-ViT model as a novel approach for
domain generalization. Analogous to human perception, this
approach enables our model to capture both coarse informa-
tion through glances and more detailed information through
a focused gaze. In contrast to prior approaches, we adopted
a transformer-based architecture, which has demonstrated its
effectiveness in image processing and resulted in significant
performance improvements. To implement the glance-and-
gaze mechanism, we utilized the combination of a glance
block, with a masked ViT, and a gaze block, with a cross-
attention-based ViT. Because our goal was to mimic a
human-like perception of the real world, we evaluated the
domain generalization capability of our proposed model on
the VLCS dataset, which consists of real-world images.
Our experimental results demonstrate that the synergistic
utilization of glance and gaze leads to competitive accuracy,
outperforming ResNet50 based on non-ensemble algorithms
by 0.7%p.

Our proposed model demonstrates outstanding perfor-
mance when processing realistic photographic images but
exhibits limitations in domain generalization when con-
fronted with non-real-world images such as sketches or
cartoons. However, our model is designed to emulate human
perception of the real world. We emphasize that our work
fundamentally focuses on domain generalization for effective
application of deep-learning models in real-world scenarios.
Furthermore, the performance of DA-ViT is enhanced
when both glance and gaze mechanisms are employed
simultaneously. However, this also reveals a limitation in
that the performance falls short when relying solely on the
glance mechanism. Thus, in the future, we aim to include
learning the masking strategy in the glance block rather than
a simple random selection. Our study is significant because
it represents a pioneering effort to apply a human cognitive
perspective to domain generalization utilizing a glance-and-
gaze approach. In the future, we intend to incorporate datasets
from a broader range of domains and explore a wider array
of baselines to enhance our research. This study may enable

the development of a more elaborate cognitive model that
imitates humans.
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