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The genus Potyvirus (the family Potyviridae) is the largest group of plant-infecting

viruses transmitted by aphids. Through high-throughput RNA sequencing analysis of

asymptomatic samples of Aconitum carmichaelii, a significant medicinal herb in Asia,

we identified the genome sequences of two RNA viruses, tentatively named

Aconitum potyvirus 1 (AcoPV1) and Aconitum potyvirus 2 (AcoPV2). The genomes

of AcoPV1 and AcoPV2 encode polyproteins composed of 3,069 and 3,054 amino

acids, respectively. Sequencecomparisonsandphylogenetic analysesestablished that

AcoPV1 and AcoPV2 represent unique, novel members within the genus Potyvirus.

The estimated RNA polymerase slippage rates at the GAAAAAAmotif, responsible for

the production of P3N-PIPO or P3N-ALT trans-frame fusion proteins, were 0.79% in

AcoPV1 and 1.38% in AcoPV2. The RNA reads of AcoPV1 and AcoPV2 were

predominantly found in the leaf and flower tissues, indicating potential feeding

preferences of vectors for these viruses. These findings demonstrate the

effectiveness of high-throughput RNA sequencing in not only uncovering novel

potyviruses, but also in elucidating their genomic dynamics within host plants.
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Introduction

The genus Potyvirus, belonging to the family Potyviridae, represents the largest

genus of plant viruses, containing 201 species approved by the International

Committee on Taxonomy of Viruses1 (last accessed 27 June, 2023) (Inoue-Nagata

et al., 2022). Potyviruses have positive-sense single-stranded RNA genomes and
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encode an open reading frame (ORF) for a large polyprotein.

The potyvirus polyprotein is proteolytically processed to yield

ten mature peptides, named P1 protease (P1), helper

component-protease (HC-Pro), P3 protein (P3), 6-

kilodalton (kDa) peptide 1 (6K1), cylindrical inclusion

protein (CI), 6-kDa peptide 2 (6K2), viral protein genome-

linked (VPg), nuclear inclusion-a protease (NIa-Pro), nuclear

inclusion-b protein (NIb), and capsid protein (CP), in the

sequence from N- to C-terminus (Goh and Hahn, 2021; Pasin

et al., 2022). The viral protease P1, HC-Pro, and NIa-Pro

recognize nine cleavage sites within the polyprotein: P1 and

HC-Pro cleaves the P1/HC-Pro and HC-Pro/P3 junctions

respectively, while NIa-Pro processes the other seven

junctions (P3/6K1, 6K1/CI, CI/6K2, 6K2/VPg, VPg/NIa-

Pro, NIa-Pro/NIb, and NIb/CP) (Adams et al., 2005a; Goh

and Hahn, 2021). The NIb protein is an RNA-dependent RNA

polymerase (RdRp) and plays a vital role in viral replication.

Potyviruses and other members of the family Potyviridae

carry an additional small ORF, which is referred to as the pretty

interesting Potyviridae ORF (PIPO) (Chung et al., 2008; Park

et al., 2017; Choi et al., 2021). During the replication of the viral

genome, the viral RdRp occasionally slips at a conserved

sequence of GAAAAAA (GA6) or a similar motif within the

P3 coding region, leading to the insertion of an extra adenine (A)

residue into the GA6 sequence (Olspert et al., 2015; Rodamilans

et al., 2015; Choi et al., 2021). The efficiency of the A residue

insertion has been estimated to be between 0.8% and 2.1% in

several potyviruses (Olspert et al., 2015; Rodamilans et al., 2015;

Olspert et al., 2016; Untiveros et al., 2016). When these RNA

polymerase slippage products are translated, a trans-frame fusion

protein known as P3N-PIPO, which comprises the N-terminal

region of P3 and a PIPO-derived peptide, is produced (Chung

et al., 2008; Olspert et al., 2015). The P3N-PIPO protein plays a

crucial role in facilitating the movement of potyvirus genomic

RNAs from cell to cell (Wen and Hajimorad, 2010; Wang, 2021).

An A residue can also be deleted from the GA6 sequence, leading

to the production of an alternative trans-frame fusion protein

called P3N-ALT, which also plays a role in the movement of

potyvirus genomic RNAs between cells (Hagiwara-Komoda

et al., 2016).

Native plants are often associated with viruses that result in

latent infections without exhibiting noticeable disease symptoms

(Ilyas et al., 2022; Rosario et al., 2022; Cruz et al., 2023). The

advent of high-throughput RNA sequencing (RNA-seq) has

provided a tool for characterizing these viruses (Nibert et al.,

2016; Bejerman and Debat, 2022). Numerous novel RNA virus

genome sequences have been identified within assembled

transcriptome contigs from diverse plant RNA-seq datasets

(Goh et al., 2021; Park et al., 2021; Shin et al., 2022a; Shin

et al., 2022b; Choi et al., 2022; Choi et al., 2023). In this study, we

report discovery of two novel potyvirus genome sequences by

high-throughput RNA-seq of Aconitum carmichaelii tissue

samples.

Materials and methods

High-throughput RNA-seq data

In this study, we analyzed RNA-seq data originally collected

from four tissue samples (flower, bud, leaf, and root) of a three-

year-old A. carmichaelii plant with the aim of identifying key

genes involved in the biosynthesis of diterpene alkaloids (Rai

et al., 2017). The plant, which was cultivated under natural

conditions at a research center in Tsukuba, Japan, did not

show any symptoms of viral disease. The RNA-seq data are

available in the Sequence Read Archive (SRA) of the National

Center for Biotechnology Information (NCBI) under the

accession numbers SRR6225420–SRR6225423. High-quality A.

carmichaelii RNA-seq data were obtained by filtering raw data

using sickle (version 1.332) with the parameter “-q 30 -l 55.”

Transcriptome contigs were generated by assembling high-

quality reads using the SPAdes Genome Assembler (version

3.15.43) with the parameter “--rnaviral” (Bushmanova et al.,

2019).

Viral genome identification and annotation

Putative viral genome contigs were initially identified by

comparing A. carmichaelii transcriptome contigs with known

viral RdRp domain sequences extracted from the Pfam database

(release 35.04) using DIAMOND (version v2.0.14.1525)

(Buchfink et al., 2021). Accession numbers of the Pfam RdRp

families used for preparation of known viral RdRp domains are

PF00602, PF00603, PF00604, PF00680, PF00946, PF00972,

PF00978, PF00998, PF02123, PF03431, PF04196, PF04197,

PF05273, PF05788, PF05919, PF06317, PF06478, PF07925,

PF08467, and PF12426. A polyprotein ORF of a putative

potyvirus genome contig was predicted using the NCBI

ORFfinder6. Protease cleavage sites of a polyprotein were

identified by a sequence comparison with polyproteins of

closely related viruses. Pairwise sequence identities were

calculated using FASTA (version 36.3.8h7). Sequence logo

representations were prepared using WebLogo (version 38)

(Schneider and Stephens, 1990; Crooks et al., 2004).

2 https://github.com/najoshi/sickle

3 https://github.com/ablab/spades

4 https://www.ebi.ac.uk/interpro/download/Pfam

5 https://github.com/bbuchfink/diamond

6 https://www.ncbi.nlm.nih.gov/orffinder

7 https://github.com/wrpearson/fasta36

8 http://weblogo.threeplusone.com
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RNA polymerase slippage analysis

High-quality reads were mapped to potyviral genome contig

sequences using BWA (version 0.7.17-r1194-dirty9) with the

BWA-MEM algorithm (Li and Durbin, 2009). RNA-seq reads

that span a putative RNA polymerase slippage site in the

P3 coding region were extracted, and the frequency of

insertions or deletions of A residues was determined.

Phylogenetic analysis

MAFFT (version 7.47510), with the parameter “--auto,” was

utilized for creating a multiple alignment of potyviral polyprotein

sequences (Nakamura et al., 2018). Information-rich segments

from the multiple sequence alignment were extracted using

trimAl (version 1.4.rev2211) with the parameter “-automated1”

(Capella-Gutierrez et al., 2009). The maximum likelihood

phylogenetic tree was constructed using IQ-TREE (version

2.2.012) with the “-B 1000” parameter (Minh et al., 2020). The

resulting phylogenetic tree was visualized using MEGA (version

11.0.1313) (Kumar et al., 2018).

Results and discussion

Identification of novel potyvirus genomes

RNA-seq reads previously generated from four tissue types

(flower, bud, leaf, and root) of a three-year-old A. carmichaelii

plant were assembled into contigs (Rai et al., 2017). Two of these

contigs, with lengths of 9,492 and 9,441 bp respectively, exhibited

significant sequence similarities to RdRp sequences of known

potyviruses. They contained a full-length coding region for

potyviral polyproteins, although the completeness of the

genomes should be verified through a molecular method such

as rapid amplification of cDNA ends. The predicted polyprotein

ORFs had lengths of 9,210 and 9,165 bp, encoding 3,069 and

3,054 aa polyproteins, respectively.

BLAST searches of the NCBI protein database revealed that

the two putative potyvirus genome contigs identified in the A.

carmichaelii transcriptome were most similar to tulip breaking

virus (TBV), a member of the genus Potyvirus, with

approximately 56% amino acid sequence identity of

polyprotein sequences (Wylie et al., 2019). The species

demarcation criteria for potyviruses are generally accepted

as <76% nucleotide identity of the large ORF and <82%
amino acid identity of the polyprotein (Adams et al., 2005b;

Inoue-Nagata et al., 2022). Therefore, the two newly identified

viruses can be considered novel and distinct from previously

known potyviruses. The second most closely related known

potyvirus was lily mottle virus (LMoV), with around 53%

amino acid sequence identity of polyprotein sequences (Zheng

et al., 2003).

The polyprotein ORFs of the two newly identified potyvirus

genome contigs exhibited a nucleotide sequence identity of 66%,

while the amino acid sequence identity of polyprotein sequences

was 69%. According to the aforementioned demarcation criteria,

the two genome sequences were considered to originate from

distinct potyviruses and were tentatively named Aconitum

potyvirus 1 (AcoPV1, 9,492 bp) and Aconitum potyvirus 2

(AcoPV2, 9,441 bp). The AcoPV1 and AcoPV2 sequences

were deposited in the NCBI GenBank under accession

numbers OP271473 and OP271474, respectively.

The large polyprotein of a potyvirus is processed into ten

mature peptides (P1, HC-Pro, P3, 6K1, CI, 6K2, VPg, NIa-Pro,

NIb, and CP) by the three potyvirus proteases (P1, HC-Pro, and

NIa-Pro) (Adams et al., 2005a; Goh and Hahn, 2021; Pasin et al.,

2022). Cleavage sites and boundaries of mature peptides were

predicted in the AcoPV1 and AcoPV2 polyproteins based on

sequence similarities with mature proteins of closely related

potyviruses, including TBV and LMoV (Figure 1). The

polyprotein sequences of AcoPV1 and AcoPV2 surrounding

the cleavage sites matched previously deduced consensus

sequences for the potyvirus protease recognition sites (Adams

et al., 2005a; Goh and Hahn, 2021).

All members of the family Potyviridae are known to have a

secondary ORF, termed PIPO, which is situated in the P3 coding

region, and is in frame −1 relative to the P3 (Yang et al., 2021;

Inoue-Nagata et al., 2022). The PIPO ORF is expressed into a

trans-frame fusion protein, known as P3N-PIPO, due to the

insertion of an A residue at the slippery GA6 motif during

replication (Chung et al., 2008). In the genomes of

AcoPV1 and AcoPV2, the GA6 motifs were located at

positions 2,802–2,808 and 2,782–2,788, respectively. The PIPO

ORFs of AcoPV1 and AcoPV2 encode 59 and 82 amino acids,

respectively. No additional GA6 motif other than that in the

P3 coding region was found in AcoPV1 and AcoPV2 sequences.

RNA polymerase slippages of AcoPV1 and
AcoPV2

The GA6 motif within the P3 coding region of potyviruses

induces rare RNA polymerase slippages during replication,

resulting in the crucial insertion of an A residue for P3N-

PIPO protein production (Olspert et al., 2015; Rodamilans

et al., 2015; Hagiwara-Komoda et al., 2016; Olspert et al.,

9 https://github.com/lh3/bwa

10 https://mafft.cbrc.jp/alignment/software

11 http://trimal.cgenomics.org

12 http://www.iqtree.org

13 https://www.megasoftware.net
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2016; Untiveros et al., 2016). The RNA polymerase slippage rate

can be estimated by counting RNA-seq reads originating from

the slippage products in the GA6 motif. To detect and quantify

the slippage products of the AcoPV1 and AcoPV2, RNA-seq

reads spanning the GA6 motifs were extracted and examined

(Figure 2).

A total of 509 and 1,084 RNA-seq reads were mapped to the

GA6 motif in AcoPV1 and AcoPV2, respectively. Among these,

505 (99.21%) for AcoPV1 and 1,069 (98.62%) for

AcoPV2 matched the original unmodified (wild type)

sequence. There was one read for AcoPV1 (0.20%) and seven

reads for AcoPV2 (0.65%) that potentially originated from the

single-A insertion or +1A product, which is essential for P3N-

PIPO protein production.

Interestingly, we also observed RNA-seq reads corresponding

to other insertion or deletion products. One of these slippage

products, the single-A deletion or –1A product, might lead to

the production of another trans-frame fusion protein, known as

P3N-ALT, as previously reported in clover yellow vein virus

(ClYVV) (Hagiwara-Komoda et al., 2016). In AcoPV1, one read

(0.20%) was identified as the –1A product, potentially encoding

P3N-ALT, if present. The –1A product in AcoPV1 results in the

addition of 12 amino acids after the GA6 motif. In the case of

AcoPV2, four reads (0.37%) were identified as the –1A product,

which could add five amino acids after the GA6motif. Additionally,

we also observed other slippage products, including double-A

deletion (–2A) or double-A insertion (+2A) products. These

slippage products may be translated to produce P3N-ALT with

a single amino acid deletion or P3N-PIPO with a single amino acid

insertion, respectively.

As a result, we estimated the rate of RNA polymerase

slippage, potentially leading to the production of P3N-PIPO

or P3N-ALT, to be 0.79% in AcoPV1 and 1.38% in AcoPV2.

It is worth noting that the number of RNA-seq reads originating

from slippage products is too low to accurately measure their

RNA polymerase slippage rates.

FIGURE 1
The genomic structure of AcoPV1 and AcoPV2. (A, B) The diagrams illustrate the genomic contigs of AcoPV1 (A) and AcoPV2 (B). The ORFs for
the large polyprotein and PIPO are depicted as boxes, with their coordinates indicated above. Predicted cleavage sites are displayed below the
polyprotein, with the slash (“/”) marking the cleaved bond. (C) The five amino acid residues at the nine cleavage sites of the AcoPV1, AcoPV2, and
11 closely related potyvirus polyprotein sequences are presented. At the bottom, sequence logo representations derived from the frequency of
each amino acid residue at each position are shown.
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Phylogenetic positions of AcoPV1 and AcoPV2

To determine the phylogenetic positions of AcoPV1 and

AcoPV2 among known potyviruses, we retrieved polyprotein

sequences of known potyviruses from the NCBI protein database.

The pairwise identities of polyprotein sequences of AcoPV1,

AcoPV2, and other potyviruses are presented in Supplementary

Table S1. A maximum likelihood phylogenetic tree was inferred

from a multiple sequence alignment that included AcoPV1,

AcoPV2, and known polyprotein sequences (Figure 3).

Both AcoPV1 and AcoPV2 cluster together into a subclade,

supported by a 100% bootstrap value, distinct from the known

potyviruses. The clade that includes TBV and LMoV is the most

closely related known potyvirus group to AcoPV1 and AcoPV2.

Together, the AcoPV1/AcoPV2 and TBV/LMoV subclades form

a single clade, supported by a 99% bootstrap value (green box in

Figure 3).

The next most closely related clade comprises nine potyviruses:

leek yellow stripe virus, Platycodon mild mottle virus, bean yellow

mosaic virus, ClYVV,Mediterranean ruda virus, iris potyvirus A, lily

yellow mosaic virus, Paris virus 1, and Thunberg fritillary mosaic

virus. AcoPV1, AcoPV2, TBV, LMoV, and these nine potyviruses

form a robust clade within the genus Potyvirus, supported by a 100%

bootstrap value (blue box in Figure 3).

Abundance and distribution of AcoPV1 and
AcoPV2 in A. carmichaelii tissues

Potyviruses are primarily transmitted by aphids, which feed

on sap from leaves and other easily accessible parts of host plants

(Gadhave et al., 2020; Xia et al., 2023). To assess the distribution

and abundance of AcoPV1 and AcoPV2 within A. carmichaelii

tissue samples, we counted all mapped RNA-seq reads to the viral

genome sequences (Table 1).

In flower and leaf tissues, the viral RNA-seq reads of

AcoPV1 and AcoPV2 were notably higher compared to bud

and root tissues. In the flower tissue, AcoPV1 and AcoPV2 viral

FIGURE 2
RNA polymerase slippages at the GA6 motif. Frequencies of slippage products generated by potential RNA polymerase slippage events in the
AcoPV1 (top) and AcoPV2 (bottom) are presented. These slippage products include double-A deletion (–2A), single-A deletion (–1A), single-A
insertion (+1A), and double-A insertion (+2A), compared to the wild type (WT). Adenine residues of the GA6 motif are highlighted in red. Amino acid
sequences are color-coded to indicate residues from frame 0 (black, P3), frame −1 (blue, P3N-PIPO), and frame +1 (green, P3N-ALT).
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FIGURE 3
Phylogenetic positions of AcoPV1 and AcoPV2. The maximum likelihood phylogenetic tree was inferred from multiple alignment of selected
potyvirus polyprotein sequences. The potyviruses most similar to AcoPV1 and AcoPV2 were lily mottle virus (LMoV) and tulip breaking virus (TBV),
which are highlighted in the green box. AcoPV1, AcoPV2, LMoV, TBV, and other nine potyviruses formed a strong subclade, marked with a blue box,
within the genus Potyvirus. The genus Rymovirus, represented by three rymoviruses, was used as an outgroup to root the genus Potyvirus.
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reads accounted for 0.22% and 0.88%, respectively, of the total

RNA-seq reads. In leaf tissue, viral reads corresponding to the

AcoPV1 and AcoPV2 genomes comprised 0.70% and 0.36%,

respectively. For bud tissue, we observed lower quantities, with

0.02% for AcoPV1 and 0.18% for AcoPV2. In root tissue, both

viruses showed the lowest counts among tissues studied (less

than 0.01%).

It is notable that the A. carmichaelii plant analyzed in this study

did not display any viral disease symptoms. This suggests that viral

infection may be at an initial stage, and their distribution may be

limited to the original infection site or nearby tissues. Consequently,

the higher abundance of AcoPV1 and AcoPV2 RNA-seq reads in

leaf and flower tissues may reflect the feeding preferences of aphids,

which are likely their primary vectors.
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