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Many peptide growth factors, including EGFR ligands, accelerate wound reepithelialization in vivo and in vitro.
Furthermore, EGFR expression is transiently increased at wound margins, suggesting an active role for this
receptor in wound repair. During reepithelialization of cutaneous wounds, keratinocytes display a phenotypic
plasticity resembling aspects of epithelial–mesenchymal transformation. The transcription factor Slug/Snai2 is a
regulator of epithelial–mesenchymal transformation during development, and we previously reported that Slug
expression is elevated in keratinocytes bordering cutaneous wounds in vivo, ex vivo, and in vitro. In this study
we provide evidence that Slug expression is necessary for an EGFR-stimulated reepithelialization response.
Epidermal growth factor (EGF) induces Slug expression and the response to EGFR activation is more robust than
to other receptor tyrosine kinase ligands. EGFR-stimulated reepithelialization is highly dependent on Slug, as
demonstrated by the absence of EGF-stimulated outgrowth in explants derived from Slug null mice. In vitro
reepithelialization stimulated by ectopic Slug expression was not impaired by an inhibitor of EGFR catalytic
activity, suggesting that Slug is a downstream mediator of this EGFR-stimulated response. Our findings provide
evidence that Slug is an essential component of the pathway leading to EGFR-mediated epithelial outgrowth.
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INTRODUCTION
Successful wound healing is a complex process involving cells
of the epidermis, dermis, vasculature, and the immune system
(Coulombe, 2003; Arnoux et al., 2005). A crucial component
of wound repair is reepithelialization, whereby the epidermal
defect is sealed and barrier function is reestablished (Cou-
lombe, 2003; Arnoux et al., 2005). During reepithelialization,
migrating keratinocytes undergo numerous functional and
phenotypic alterations reminiscent of epithelial–mesenchymal
transformation, including retraction of intermediate filaments,
disruption of desmosomes and hemidesmosomes, alterations
in the actin-based cytoskeleton, and loss of cell polarity
(Coulombe, 2003; Arnoux et al., 2005). These changes in
keratinocyte morphology and behavior after injury are often
referred to collectively as ‘‘keratinocyte activation’’ (Coulombe

1997, 2003; Freedberg et al., 2001; Arnoux et al., 2005).
Keratinocytes become activated in response to changes in the
microenvironment upon injury and then become major
participants in the repair process through secretion of various
cytokines and growth factors that help orchestrate tissue repair
(Coulombe 1997, 2003; Freedberg et al., 2001; Arnoux et al.,
2005; Myers et al., 2007).

Ligands for the EGFR are present in the wound environ-
ment and promote wound repair (Werner and Grose, 2003).
EGFR expression is elevated at the leading edge of healing
wounds (Stoscheck et al., 1992; Wenczak et al., 1992), and
experimental augmentation of EGFR expression improves
wound healing in vivo (Nanney et al., 2000). Furthermore,
keratinocyte migration in vitro and epithelial outgrowth
in vivo is decreased in EGFR null keratinocytes (Repertinger
et al., 2004), indicating that the EGFR is important for optimal
wound repair. Although regulation of keratinocyte migration
and epithelial outgrowth by ligands for the EGFR has been
described (Stoll et al., 1997; Hudson and McCawley, 1998;
Repertinger et al., 2004; Li et al., 2006; Tokumaru et al.,
2000), the key downstream effectors of EGFR required for
epithelial outgrowth are not well characterized.

The similarities among wound repair, tumor invasion, and
developmental processes in the embryo are of interest based
on the potential for shared regulatory pathways (Wood et al.,
2002; Martin and Parkhurst, 2004; Stramer and Martin,
2005). Slug/Snai2 expression is enhanced at the margins of
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healing wounds in vitro (Savagner et al., 2005; Ikuta and
Kawajiri 2006), ex vivo, and in vivo (Savagner et al., 2005);
and in vitro reepithelialization is markedly accelerated in
keratinocytes that ectopically express Slug (Savagner et al.,
2005). Because Slug expression appears to be regulated by
ras- and mitogen-activated protein kinase cascades
(Savagner, 2001; Conacci-Sorrell et al., 2003; Schmidt
et al., 2005; Hudson et al. 2007) and the EGFR and Slug
are both elevated at the margins of healing wounds
(Stoscheck et al., 1992; Wenczak et al., 1992; Savagner
et al., 2005; Ikuta and Kawajiri 2006), we investigated
whether Slug is a downstream mediator of EGFR-regulated
reepithelialization.

RESULTS AND DISCUSSION
EGFR activation promotes epithelial outgrowth and Slug
expression

Epithelial cell migration from murine skin explants is a model
for examining the reepithelialization component of wound
repair (Mazzalupo et al., 2002; Savagner et al., 2005). Using
this model, epithelial outgrowth from explants was limited
when maintained in medium containing 10% fetal bovine
serum (FBS) but lacking epidermal growth factor (EGF)
(Figure 1). Explant outgrowth was markedly increased when
1 nM EGF was included in the culture medium, and the
response was lost in the presence of AG1478, an inhibitor of
EGFR catalytic activity (Figure 1). These findings indicate that

EGFR activation is a potent stimulator of epithelial outgrowth
from mouse skin explants.

Because Slug is upregulated at the margins of healing
wounds (Savagner et al., 2005) and elevated Slug expression
promotes epithelial outgrowth (Savagner et al., 2005;
Chandler et al., 2007), we determined if EGF induces Slug
expression. EGF stimulated Slug mRNA expression by 4.5-
fold in vitro (Figure 2a). Keratinocyte growth factor induced
Slug expression by nearly 2.5-fold, and modest increases
(o2-fold) were observed following treatment with insulin-
like growth factor-1 or basic fibroblast growth factor.
Interestingly, this finding is consistent with results obtained
in human skin explants where EGF, insulin-like growth
factor-1, and fibroblast growth factor were all identified as
important mitogens, but explant outgrowth was substantially
greater with EGF (Bhora et al., 1995). Because the EGFR
ligand transforming growth factor-a (TGF-a) is reported to be
a more robust migration stimulus than EGF (Hudson and
McCawley, 1998; Li et al., 2006), we tested both ligands for
their ability to induce Slug protein expression. EGF and TGF-
a induced Slug within 4 hours and maximal response was
observed at 24 hours of treatment (Figure 2b). Induction of
Slug was nearly twofold greater with TGF-a than EGF (10 nM,
24 hours treatment, n¼4).

EGFR activation also stimulated Slug expression in mouse
skin explants. In Slug–lacZ mice, the Slug locus has been
inactivated by an in-frame insertion of the b-galactosidase
gene into the zinc-finger coding region of the Slug gene, thus
Slug expression can be monitored by detecting b-galactosi-
dase activity (Jiang et al. 1998). EGFR-stimulated Slug
expression was also apparent at sites of epithelial outgrowth
of explants from Slug–lacZ heterozygotes as determined by
expression of a Slug–b-galactosidase fusion protein (Figure
2c) and measurement of Slug mRNA levels in keratinocytes
migrating from the explant (data not shown). Slug expression
was greatly reduced in explants grown in complete medium
containing FBS when EGFR activation was blocked by
AG1478 (Figure 2c). These findings indicate that Slug is an
EGFR responsive gene and suggest that Slug is a candidate
downstream mediator of EGFR-dependent reepithelialization.

EGF-dependent epithelial outgrowth is highly dependent on
Slug expression
To test whether Slug is required for EGFR-stimulated
keratinocyte outgrowth, we compared ex vivo reepitheliali-
zation in explants derived from wild-type, heterozygous (not
shown), or Slug null mice (Figure 3). Time-dependent and
EGFR activation-dependent epithelial outgrowth was
observed in explants isolated from wild-type and hetero-
zygous mice with some evidence for a partial defect in the
heterozygotes at the time of most active outgrowth
(5 day outgrowth area: Slug wild type 0.252±0.003
versus Slug null 0.144±0.027 cm2). Little outgrowth was
observed in Slug null explants. Although EGF effectively
enhanced epithelial outgrowth in explants isolated from
wild-type mice, exogenous EGF did not promote this
response in explants derived from Slug null mice (Figure 3).
As further evidence that Slug is downstream of EGFR
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Figure 1. EGFR activation promotes ex vivo reepithelialization. Explants

from wild-type mice were cultured for 5 or 7 days as described in ‘‘Materials

and Methods’’. Explants were maintained in basal medium without EGF or in

basal medium supplemented with EGF (1 nM) with or without 5 mM AG1478.

Epithelial outgrowth was measured from digital images. Values represent the

mean of 2–4 explants per mouse per treatment group from a total of four

individual mice ± standard deviation. *Po0.05 EGF treatment compared to

untreated control cultures.
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activation, inhibition of EGFR by AG1478 did not disrupt
migration of SCC12F cells expressing exogenous Slug
(Figure 4). The defect in outgrowth does not appear to be
due to changes in cell proliferation. Quantification of Ki-67-
positive cells in the intact epidermis did not reveal a
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Figure 2. Induction of Slug and Snail by growth factors. (a) SCC 12F cells

were grown to confluence, rinsed with phosphate-buffered saline, and placed

in serum-free medium containing 0.1% (w/v) bovine serum albumin for

48 hours before addition of the indicated concentrations of growth factors.

RNA was collected after 2 hours and mRNA levels were measured as

described in ‘‘Materials and Methods’’. Values were normalized to GAPDH

with the baseline level of Slug (filled bars) or Snail (open bars) in untreated

cells defined as 1.0 (dotted line) and other values expressed as fold increase.

Data shown represent the mean of three independent samples, each analyzed

in three separate PCR reactions, ± standard deviation. *Po0.05 compared to

Slug level in control group; #Po0.05 compared to Snail level in control

group. (b) SCC12F cells were grown as in (a), treated with 1 nM EGF or 1 nM

TGF-a for the indicated times (upper panels) or with the indicated

concentrations of EGF or TGF-a for 24 hours (lower panels). Slug protein was

detected by immunoblot analysis. Data shown are representative of three

independent experiments. (c) Explants from wild-type mice were treated as

indicated for 5 days (AG¼ 5 mM AG1478). Activity of the b-galactosidase–Slug

fusion protein (blue stain) was detected by histochemistry.
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Figure 3. EGF-dependent epithelial outgrowth is dependent on Slug

expression. Explants from sex- and age-matched wild-type (þ /þ ) or

homozygous Slug null (�/�) littermates were cultured in complete medium

containing 5 nM EGF (þ ) or complete medium containing 5 mM AG1478 to

inhibit EGF receptor activity (�). Epithelial outgrowth was measured as

described in ‘‘Materials and Methods’’ and the legend to Figure 1. *Po0.05

comparing activated EGFR versus inactivated EGFR at the corresponding time

point.
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Figure 4. Inhibition of EGFR does not disrupt keratinocyte outgrowth in cells

expressing exogenous Slug. SCC 12F cells were infected with either AdSlug or

AdGFP as described in ‘‘Materials and Methods’’. An in vitro wound was

introduced into cultures treated with 5 mM AG1478 or untreated, and

outgrowth into the wounded area was monitored by phase contrast

microscopy. As previously reported, ectopic Slug expression enhanced

in vitro reepithelialization and cell spreading (Savagner et al., 2005), but note

that the Slug-associated keratinocyte outgrowth (arrows) was evident even

when EGFR activity was inhibited by AG1478.
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significant difference between wild-type and knockout
epidermis (12.04±3.32 versus 16.08±7.07, P¼0.112 using
Student’s t-test), nor were significant differences in Ki-67
staining evident at the wound margins of wild-type and Slug
null mice (manuscript in preparation).

Interestingly, epithelial outgrowth in Slug null mice was
impaired despite EGF stimulation of Snail expression
(Figure 2a), illustrating that Slug and Snail may play distinct
roles in the epidermis. A recent publication highlights
divergent transcriptional programs regulated by Slug and
Snail despite their significant structural similarities (Moreno-
Bueno et al., 2006).

Several lines of evidence suggest an important role for Slug
in normal adult epidermis. Slug is expressed in adult skin
predominantly in hair follicles and interfollicular epithelium
adjacent to hair follicles (Parent et al., 2004). Slug expression
coincides with outgrowth from wound margins (Savagner
et al., 2005; Ikuta and Kawajiri, 2006) and ectopic expression
of Slug promotes epithelial outgrowth of keratinocytes
(Savagner et al., 2005) and corneal epithelium (Chandler
et al., 2007). Furthermore, Slug expression is greatly reduced
at the margins of nonhealing corneal ulcers (Chandler et al.,
2007). Collectively, these findings suggest that Slug expres-
sion plays a positive role in wound reepithelialization. Our
findings provide evidence that Slug is an essential component
of the pathway leading to EGF-stimulated epithelial out-
growth and supports the conclusion that Slug contributes to
regenerative processes in adult tissues.

MATERIALS AND METHODS
Cell culture studies

The nontumorigenic human keratinocyte cell line (SCC 12F) was

generously provided by Dr William A. Toscano, Jr (University of

Minnesota, Minneapolis, MN) and maintained in a medium

consisting of 50% Dulbecco’s modified Eagle’s medium and 50%

Hams-F12 medium (DME:F12; Sigma, St Louis, MO) containing the

antibiotics penicillin and streptomyocin, 5% glutamine, and 5% FBS

(Gibco, Gaithersburg, MD) as previously described (Hudson et al.,

2007). To minimize basal expression of Slug and Snail for induction

studies, confluent cultures were maintained for 2 days in serum-free

medium before growth factor treatment (Hudson et al., 2007).

Growth factors were obtained from Sigma and included EGF, TGF-a,

keratinocyte growth factor, insulin-like growth factor-1, and basic

fibroblast growth factor. For experiments involving ectopic Slug

expression, subconfluent SCC 12F cells plated in a 12-well multiwell

plate were incubated with AdSlug, AdGFP, or with virus-free

medium (Chandler et al., 2007) as follows: adenovirus (AdGFP or

AdSlug, 10ml, viral titer of 108 plaque-forming units per ml) was

incubated with 2.5 ml Lipofectamine (Invitrogen, Carlsbad, CA) for

15 minutes at room temperature then added to 300ml serum and

antibiotic free DME:F12 medium. Cells were then incubated for 4

hours at 37 1C, the medium replaced with 500ml DME:F12 contain-

ing 5% FBS and further incubated for 48 hours. A preliminary study

titrating the virus concentration against the level of transgene

expression at 48 hours indicated a transduction efficiency of

65–80% at this concentration (data not shown). After 48 hours, cells

were moved to complete medium containing 5% FBS with or

without 1mM AG1478 (Cal Biochem, San Diego, CA). A cell-free

area was introduced into the now confluent cell cultures by scraping

the monolayer with a sterile pipette tip and washing extensively to

remove cellular debris (Savagner et al., 2005). In vitro reepithelia-

lization was monitored by migration of cells into the cleared area

after 24 hours.

Skin explants

Skin explants from wild-type, heterozygous, and homozygous Slug-

lacZ mice were grown exactly as described by Mazzalupo et al.

(2002) (Savagner et al., 2005). For specific studies, EGF was

eliminated from the medium or supplemented to levels indicated

in figure legends. To measure outgrowth area, the central skin core

was removed and the remaining rim of epithelial cells was fixed

briefly in 10% neutral-buffered formalin, permeabilized for

5 minutes in 70% ethanol and stained for 5 minutes with a 1:10

dilution of Mayer’s hematoxylin. Images were captured digitally,

adjusted in Adobe Photoshop to enhance contrast, and the area

representing outgrowth from the skin plug was quantitated using

NIH ImageJ. b-galactosidase staining of explants was performed as

previously described (Parent et al., 2004).

RNA isolation and quantitative mRNA measurement

Total RNA from cultured cells and explant outgrowths was isolated

using Trizol as directed by the manufacturer (Invitrogen). DNA was

removed using the DNA-free kit (Ambion, Austin, TX) as directed,

and cDNA was produced from 250 to 500 ng of RNA using

SuperScript II reverse transcriptase and oligo(dT) primers as

recommended by the enzyme supplier (Invitrogen). For explants,

the central tissue cores were removed before RNA isolation. Each

explant sample analyzed consisted of a pool of RNA from four

explants, representing two samples from each of two mice.

Quantitative PCR was performed using the Brilliant SYBR Green

QPCR mix (Stratagene, LaJolla, CA) as directed and 100 nM of each

primer. Primer sets included those for human Slug (50-CCCTGAA

GATGCATATTCGGAC-30; 50-CTTCTCCCCCGTGTGAGTTCTA-30),

human Snail (50-CGGAAGCCTAACTACAGCGA-30; 50-GGACAGAGT

CCCAGATGAGC-30), human glyceraldehyde 3-phosphate dehydro-

genase (GAPDH) (50-GCCGTGGAATTTGCCGT-30; 50-GCCATCAAT

GACCCCAT-30), mouse Slug (50-GATGTGCCCTCAGGTTTGAT-30;

50-ACACATTGCCTTGTGTCTGC-30), mouse Snail (50-TGTCCAGAG

GCTACACCTCA-30; 50-CTCACTGCCAGGACTCCTTC-30), and mouse

GAPDH (50-ACCCAGAAGACTGTGGATGG-30; 50-CACATTGGGG

GTAGGAACAC-30). Amplifications were carried out on a Stratagene

MX3000P Real-Time PCR System. In total, 45 cycles of 94 1C (30

seconds), 60 1C (30 seconds), and 72 1C (30 seconds) were

performed. Electrophoresis of the products revealed single bands of

the appropriate size (data not shown). RNA concentrations were

calculated using the LinReg PCR program (Ramakers et al., 2003)

and normalized to GAPDH values.

Immunoblot analysis of Slug

Slug antibody for western blot assay was a kind gift from Dr Pascale

Leroy. A total of 25 mg of protein was loaded on 15% SDS-PAGE gel,

transferred to nitrocellulose membrane and blocked in 5%

powdered milk in Tris-buffered saline Tween-20 (50 mM Tris, pH

7.5, 150 mM NaCl, 0.01% Tween 20). The membrane was incubated

with Slug primary antibodies (1:5,000) overnight at 4 1C in 5%

powdered milk in Tris-buffered saline Tween-20 and was then
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washed extensively with Tris-buffered saline Tween-20, and

incubated with 1:8,000 anti-chicken secondary antibodies (Santa

Cruz Biotechnology, Santa Cruz, CA). Proteins were visualized with

the ECL detection kit (Amersham Pharmacia Biotech, Piscataway,

NJ). Equivalent loading of proteins in each well was confirmed by

loading controls using antibodies to GAPDH (1:2,000).

Statistical analysis

Results for different treatment groups were compared by Student’s

t-test and the value for statistical significance was considered to be

Po0.05.
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