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Abstract: Metabolomics is a powerful tool used to understand comprehensive changes in the metabolic
response and to study the phenotype of an organism by instrumental analysis. It most commonly
involves mass spectrometry followed by data mining and metabolite assignment. For the last few
decades, hair has been used as a valuable analytical sample to investigate retrospective xenobiotic
exposure as it provides a wider window of detection than other biological samples such as saliva,
plasma, and urine. Hair contains functional metabolomes such as amino acids and lipids. Moreover,
segmental analysis of hair based on its growth rate can provide information on metabolic changes
over time. Therefore, it has great potential as a metabolomics sample to monitor chronic diseases,
including drug addiction or abnormal conditions. In the current review, the latest applications of hair
metabolomics in animal studies and clinical settings are highlighted. For this purpose, we review
and discuss the characteristics of hair as a metabolomics sample, the analytical techniques employed
in hair metabolomics and the consequence of hair metabolome alterations in recent studies. Through
this, the value of hair as an alternative biological sample in metabolomics is highlighted.
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1. Introduction

Metabolome is a term that refers to a collection of metabolites present in cells, tissues, organs,
and organisms. The metabolome can be divided into three categories: All endogenous metabolites
in living organisms, microbial metabolites produced by microorganisms, and all foreign metabolites
derived from xenobiotics [1]. Metabolomics, a holistic analytical approach to studying metabolomes, is
a powerful tool in understanding the comprehensive changes in metabolic responses in living systems
induced by external stimuli or genetic alterations and is the endpoint of the omics cascade [2–5].
Unlike genomics, transcriptomics, and proteomics, metabolomics reflects the phenotype of living
things, enabling us to observe simultaneous changes in many metabolites, thus aiding the discovery of
biomarkers for disease diagnosis and facilitating the determination of the metabolic effects on toxicity
and the exploration of the action mechanisms in pathogenesis [6–13]. The number of papers published
concerning metabolomics and biomarkers has increased exponentially over the past several years.
Metabolomic analysis has been performed on a variety of biological samples, including cells, plasma,
urine, and tissues, with plasma (22.0%) and urine (16.9%) being the most commonly used samples
in studies published in 2018 (Figure 1). Research themes were mostly related to the investigation of
drug- or toxicant-induced damage and to find potential biomarkers for various diseases, such as cancer
and diabetes [14–17].
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Hair analysis was initially proposed as a biomonitor for chronic toxicological exposure to metals, 
drugs, and other toxicants. Hair is a distinct bioanalytical sample that can provide information on the 
history and severity of an individual’s xenobiotic exposure, based on quantitative and segmental 
analysis, despite the lack of pharmaco- or toxicokinetic evidence for xenobiotic deposition in hair. 
Substances in blood are incorporated into hair through the hair follicle and are distributed in the 
strands of hair as they grow [18–20]. In a previous study, it was proposed that xenobiotics in 
capillaries connected to hair roots are incorporated during melanosome transfer from melanocytes to 
keratinocytes as well as directly through melanocytes or keratinocytes in hair [21]. Hair pigmentation 
is known to be a facilitating factor for the incorporation of basic compounds. Hair, as a biomonitor, 
is advantageous because of its longer detection window compared to those of other biological 
specimens. In addition, hair has many advantages as a bioanalytical sample, including effortless 
sample collection, convenient transport and storage, and easily repeated sampling [18–20,22]. 

In the current review, the latest applications of hair metabolomics in animal studies and clinical 
settings are highlighted. For this purpose, we review and discuss the characteristics of hair as a 
metabolomics sample, the analytical techniques used, and the consequences of hair metabolome 
alterations from previous studies. Through this, the value of hair as an alternative sample in 
metabolomics is highlighted. 

 

Figure 1. Number of Pubmed searches with the keywords, metabolomics, and biomarker, from 2002 
to 2018 and the proportional contribution of biological samples in metabolomics research in 2018. 

2. Methods 

Scientific articles in the field of metabolomics and hair analysis research during the last years 
since 2000 were retrieved using PubMed and studied. More than twenty thousand articles were 
found in each research field. The search terms, ‘metabolomics’ and ‘biomarkers’ (published between 
2002–2018), as well as ‘metabolomics’ and ‘cells, plasma, urine or hair’ (published in 2018), were used 
(Figure 1). Since our current study focuses on hair metabolomics, a PubMed search of ‘hair’ and 
‘metabolomics or metabolome’ was run, and it yielded 50 articles published between 2008 and 2019. 
Abstracts were further examined manually in order to determine their relevance to the current 
review. Finally, some articles were summarized for their relevance to hair metabolomics, four for 
animal studies (Table 1), and eleven for clinical settings (Table 2). Additionally, relevant articles from 
the reference lists were considered in the discussion of hair analysis and metabolomics 
methodologies.

Figure 1. Number of Pubmed searches with the keywords, metabolomics, and biomarker, from 2002 to
2018 and the proportional contribution of biological samples in metabolomics research in 2018.

Hair analysis was initially proposed as a biomonitor for chronic toxicological exposure to metals,
drugs, and other toxicants. Hair is a distinct bioanalytical sample that can provide information on
the history and severity of an individual’s xenobiotic exposure, based on quantitative and segmental
analysis, despite the lack of pharmaco- or toxicokinetic evidence for xenobiotic deposition in hair.
Substances in blood are incorporated into hair through the hair follicle and are distributed in the
strands of hair as they grow [18–20]. In a previous study, it was proposed that xenobiotics in capillaries
connected to hair roots are incorporated during melanosome transfer from melanocytes to keratinocytes
as well as directly through melanocytes or keratinocytes in hair [21]. Hair pigmentation is known to be
a facilitating factor for the incorporation of basic compounds. Hair, as a biomonitor, is advantageous
because of its longer detection window compared to those of other biological specimens. In addition,
hair has many advantages as a bioanalytical sample, including effortless sample collection, convenient
transport and storage, and easily repeated sampling [18–20,22].

In the current review, the latest applications of hair metabolomics in animal studies and clinical
settings are highlighted. For this purpose, we review and discuss the characteristics of hair as a
metabolomics sample, the analytical techniques used, and the consequences of hair metabolome
alterations from previous studies. Through this, the value of hair as an alternative sample in
metabolomics is highlighted.

2. Methods

Scientific articles in the field of metabolomics and hair analysis research during the last years since
2000 were retrieved using PubMed and studied. More than twenty thousand articles were found in
each research field. The search terms, ‘metabolomics’ and ‘biomarkers’ (published between 2002–2018),
as well as ‘metabolomics’ and ‘cells, plasma, urine or hair’ (published in 2018), were used (Figure 1).
Since our current study focuses on hair metabolomics, a PubMed search of ‘hair’ and ‘metabolomics or
metabolome’ was run, and it yielded 50 articles published between 2008 and 2019. Abstracts were
further examined manually in order to determine their relevance to the current review. Finally, some
articles were summarized for their relevance to hair metabolomics, four for animal studies (Table 1),
and eleven for clinical settings (Table 2). Additionally, relevant articles from the reference lists were
considered in the discussion of hair analysis and metabolomics methodologies.
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Table 1. Use of hair metabolomics in animal studies.

No. Pathologic
Condition

Study
Objective

Study Subjects
(Animal Species,

Animal Model, etc.)

Sample
Preparation

Analytical Platform
(Untargeted or

Targeted)

Key metabolites Changed
(Possible Biomarkers)

Consequence of
Metabolic
Changes

Reference (Year
Published)

Increased Decreased

1 Stroke Biomarker
discovery

Spontaneously
hypertensive rats
(SHR/Izm) and

stroke-prone SHR rats
(SHRSP/Izm)

Acidic solvent
sonication

UPLC-ESI-TOF-MS
(Untargeted)

m/z 235.40 ion at
2.30 min -

Potential
biomarker of

stroke

Inagaki et al., J
Chromatogr A

(2007)

2 Diabetes Biomarker
discovery

Spontaneous
insulin-resistant mice

(ddY-H)

Brief solvent
extraction

UPLC-ESI-TOF-MS
(Untargeted) - N-Acetyl-L-leucine

Potential
biomarker of

diabetes

Tsutsui et al., Clin
Chim Acta (2011)

3

Dermal toxicity
(drug-induced

sebaceous gland
atrophy)

Metabolic
profiling

Rats and hamsters
dosed with a
stearoyl-CoA

desaturase 1 (SCD 1)
inhibitor

Solvent
incubation for

16 h

NMR
(Untargeted) -

1,2-distearoyl-3-oleoyl-rac-
glycerol, lathosterol-like
sterol esters, wax ester,
total cholesterol, and

cholesterol for rats, and
lathosterol-like sterol

esters, and wax ester for
hamsters

Reduction of lipid
levels by an SCD

1 inhibitor

Khandelwal et al.,
J Lipid Res (2014)

4 Drug addiction Metabolic
profiling

Methamphetamine
self-administering rats

Solvent
incubation

UPLC-ESI-QTOF-MS
(Untargeted)

Acetylcarnitine,
5-methylcytidine,

1-methyladenosine,
palmitoyl-(l)-carnitine

(l)-Norvaline/betaine/5-
aminopentanoate/(l)-
valine, lumichrome,
deoxycorticosterone,

oleamide, stearamide,
hippurate

Metabolic
perturbation in

the central
nervous system

and energy
production

Choi et al.,
Metabolomics

(2017)

UPLC-ESI-TOF-MS, ultra-performance liquid chromatography with electrospray ionization time-of-flight mass spectrometry; NMR, nuclear magnetic resonance spectroscopy;
UPLC-ESI-QTOF-MS, ultra-performance liquid chromatography with electrospray ionization quadrupole time-of-flight mass spectrometry.
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Table 2. Use of hair metabolomics in clinical settings.

\
Pathologic
Condition

Study Objective Study Subject (Age, Gender,
Number of Subjects, etc.)

Sample Preparation
Analytical Platform

(Untargeted or
Targeted)

Key Metabolites Changed
(Possible Biomarkers)

Consequence of
Metabolic Changes

Reference (Year
Published)

Increased Decreased

1 Cancer
Polyamine

measurement for
cancer diagnosis

Patients with cervical cancer
(34–65 yr, n = 13) or ovarian

cancer (37–75 yr, n = 11)

Acidic solution incubation
followed by

N-ethoxycarbonylation and
N-pentafluoropropionylation

GC-MS
(Targeted)

Putrescine,
spermidine, spermine -

Deficits in polyamine
biosynthesis and

accumulation

Choi et al., Clin
Chem (2001)

2 Male pattern
baldness Steroid profiling Balding men (32.5 yr (mean),

n = 19)

Solvent sonication followed by
solid phase extraction and

trimethylsilation

GC-MS
(Targeted)

Dihydrotestosterone,
dihydrotestosterone/

testosterone ratio,
and cortisol/cortisone

ratio

- Increase of
5α-reductase activity

Jung et al., Rapid
Commun Mass
Spectrom (2011)

3 Fetal growth
restriction

Biomarker
discovery

Pregnant women (22–44 yr,
26–28 weeks

of gestation, n = 41)

Alkaline hydrolysis followed by
chemical derivatization with

methyl chloroformate

GC-MS
(Untargeted)

Heptadecane,
NADPH/NADP,

saturated fatty acids
(palmitate,

2-methyloctadecanoate,
myristate, margarate,
stearate, dodecanoate,

and octanoate)

Amino acids (lysine,
methionine, tyrosine,

valine, and threonine),
glutathione

Loss of redox control
and deficiency of

precursors for fetal
development and

growth

Sulek et al.,
Theranostics

(2014)

4
Gestational

diabetes mellitus
(GDM)

Biomarker
discovery

Pregnant women (30 yr
(median), 26–28 weeks

of gestation, n = 94)

Alkaline hydrolysis followed by
chemical derivatization with

methyl chloroformate

GC-MS
(Untargeted) Adipic acid -

Lipid peroxidation
related to the

oxidative stress
environment in

diabetes

He et al., Acta
Diabetol (2016)

5
Hair damage by
dyeing, perming,

and bleaching
Metabolic profiling

Treated samples of natural
hair of Asians (Beaaulax Co.,

Saitama, Japan, n = 10)

Acidic or alkaline hydrolysis
followed by chemical

derivatization with Waters
AccQ•Tag reagents for amino acids

UPLC-PDA and Cysteic acid and
cysteine/cysteic acid

Methionine and
tryptophan

Quantitative grading
of hair damage

Joo et al., Exp
Dermatol. (2016)Solvent extraction for extractable

lipids and further saponification
and solvent extraction followed by

chemical derivatization with
2-picolylamine for fatty acids

UPLC-ESI-QQQ-MS
(Targeted) -

Erucic acid, behenic acid,
lignoceric acid, nervonic

acid, cerotic acid, and
18-methyl eicosanoic acid

6 Heroin addiction Metabolic profiling Heroin abusers (20–56 yr,
male, n = 40, female, n = 18) Solvent sonication UFLC-ESI-IT-TOF-MS

(Untargeted) Sorbitol and cortisol
Arachidonic acid,

glutathione, linoleic acid,
and myristic acid

Deficits in energy
metabolism, sorbitol

pathway, and
immune cell function

Xie et al., J Mol
Neurosci (2016)

7 Cognitive
impairment Sterol profiling

Patients with mild cognitive
impairment (MCI, 70.3 yr
(mean), female, n = 15) or

Alzheimer’s disease (70.8 yr
(mean), female, n = 31)

Solvent pulverization followed by
trimethylsilation

GC-MS
(Targeted)

7α-Hydroxycholesterol
and

7β-hydroxycholesterol
- Impaired cholesterol

metabolism

Son et al., J
Steroid Biochem
Mol Biol (2016)

8 Infant lower
language ability

Maternal hair
metabolic profiling

for infant
neurodevelopment

Pregnant women
(26–28 weeks

of gestation, n = 373)

Alkaline hydrolysis followed by
chemical derivatization with

methyl chloroformate

GC-MS
(Untargeted) Phthalic acid -

Infant lower language
ability caused by high

maternal phthalate
exposure

Jones et al., Sci
Rep 2018
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Table 2. Cont.

\
Pathologic
Condition

Study Objective Study Subject (Age, Gender,
Number of Subjects, etc.)

Sample Preparation
Analytical Platform

(Untargeted or
Targeted)

Key Metabolites Changed
(Possible Biomarkers)

Consequence of
Metabolic Changes

Reference (Year
Published)

Increased Decreased

9

Small for
gestational age

infants
Biomarker

discovery and
metabolic

mechanism study

Pregnant women (30.8 yr
(mean), 39.1 weeks
of gestation, n = 20) Alkaline hydrolysis followed by

chemical derivatization with
methyl chloroformate for GC-MS
and alkaline hydrolysis followed
by solvent extraction for LC-MS

GC-MS and
UPLC-ESI-QTOF-MS

(Untargeted)

Margaric acid,
pentadecanoic acid,
and myristic acid

-
Deficits in placental
function of fatty acid
transfer to the fetus

Delplancke et al.,
Sci Rep (2018)

GDM
Pregnant women (32.7 yr

(mean), 38.6 weeks
of gestation, n = 11)

1-Hydroxy-3-nonanone
and 22-oxavitamine

D3

Tryptophan, leucine,
citric acid,

3,4-oxaolidinercarboxylic
acid, 2-oxovaleric acid,

3-pyridinecarboxamide,
2-methylpentan-2-yl
trifluoraoacetate, and

2-oxobutyric acid

Deficits in energy
metabolism and

degradation of amino
acids

10 GDM

Maternal hair
metabolic profiling

for gestational
diabetes mellitus

Pregnant women (32 yr
(mean), 24–28 weeks
of gestation n = 49)

Alkaline hydrolysis followed by
chemical derivatization with

methyl chloroformate

GC-MS and
UPLC-ESI-QTOF-MS

(Untargeted)

Pentachloroethane,
1-hydroxyvitamin D5,
(3beta,23E)-3-hydroxy-
27-norcycloart-23-en-

25-one,
(4-methylphenyl)

acetaldehyde, linalyl
isobutyrate, and

3-phenyl-1-propanol

Proline, 4-methoxy-benzoic
acid, 5-methylhexanoic acid,

dihydroceramide,
2,2,9,9-tetramethyl-
undecan-1,10-diol,
palmitoylglycine,

benzeneacetic acid,
2-butenoic acid, glutamic
acid, but-2-enedioic acid,

2-oxobutyric acid,
N,4-diethyl-4-heptanamine,

N-methoxycarbonyl-l-proline,
pyrrolidine-1,2-dicarboxylic

acid, (1-ethyl) ester,
NADP_NADPH,

malonic acid,
2-methylcyclohexanone,

3-hydroxy-2-octanone, and
C17 sphinganine

No correlation
between maternal

diet in GDM and hair
metabolomes

Chen et al.,
Metabolomics

(2018)

11
Intrahepatic
cholestasis of

pregnancy (ICP)

Biomarker
discovery

Pregnant women (27.9 yr
(mean), 17-41 weeks
of gestation n = 38)

Alkaline hydrolysis followed by
chemical derivatization with

methyl chloroformate
GC-MS - Adipic acid and succinic acid

No correlation
between ICP and hair

metabolomes

de Seymour et al.,
Metabolomics

(2018)

yr, years; GC-MS, gas chromatography mass spectrometry; UPLC-PDA, ultra-performance liquid chromatography photodiode array detector; UPLC-ESI-QQQ-MS, ultra-performance liquid
chromatography with electrospray ionization triple quadrupole mass spectrometry; UFLC-ESI-IT-TOF-MS, ultra-fast liquid chromatography with electrospray ionization ion-trap-time of
flight mass spectrometry; UPLC-ESI-QTOF-MS, ultra-performance liquid chromatography with electrospray ionization quadrupole time-of-flight mass spectrometry
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3. Hair as A Metabolomics Sample

3.1. Hair as An Analytical Sample

Human hair is composed of fibrous proteins (mostly α-keratins, 85-93%), melanins, water
(typically 3–5%, and up to 15% by mass), lipids (1–9%), and mineral compounds (0.25–0.95%). Hair
or fur colors are different among humans and animals depending on the composition of the melanin
hair pigments which are derived from the oxidation and polymerization of tyrosine. Eumelanins
and pheomelanins are the black-brown subgroup and the yellow-to-reddish brown subgroup of
melanin pigments, respectively [23–25]. It has been reported that twenty-one proteinogenic amino
acids are distributed in hair and their presence is affected by genetics, diet, hair treatments, and
environmental conditions. Hair lipids originate from sebum and are composed of free fatty acids and
neutral lipids [19]. Thus, hair contains functional metabolomes, such as amino acids and lipids that
originate from the living body, and therefore, the metabolic changes observed in hair can be used as
long-term bio-monitors for diseases or abnormal conditions. Although metabolomics studies using
hair are currently limited, hair is a promising alternative sample in metabolomics.

While there is no universal method for hair sample collection for metabolomics, the guidelines
for hair sample collection for drug testing were previously published. It is recommended that a
“lock of hair” or a pencil thickness of hair from at least three parts of the posterior vertex region of
the scalp, where inter-individual variations such as hair growth rate and growth stage (anagen) are
not significant, be collected, wrapped with a piece of aluminum foil followed by a paper envelope,
and stored in a dry, dark environment at room temperature before analysis [20,26]. In previous studies
on hair metabolomics, a hair sample was collected from the occipital region of the scalp [27–35], in the
same way as hair is collected for drug testing. The collected hair was stored at either 4 ◦C [34] or
−20 ◦C [28,33,35] before analysis in metabolomics studies.

Not only scalp hair but also hair from other parts of the body such as axillary or pubic hair were
used as analytical samples, mainly in cases where scalp hair was not available or for the purpose of
confirmation of the results from scalp hair analysis to prove previous drug use. However, there were
inconsistencies between quantitative results from scalp hair and from hair from other parts of the
body [18,36–39]. The hairs of different growth rates and different stages of hair growth (anagen, catagen,
and telogen) depend on the anatomical location of hair. Sweat or sebum secretion, as a mechanism of
drug incorporation, increases in axillary or pubic hair, compared with scalp hair. Moreover, there is a
higher possibility of contamination depending on individual hygiene habits and lower elimination due
to exposure to other external environmental conditions such as light, weather or cosmetic treatments
in axillary or pubic hair [40].

Contamination, as well as natural or intentional variations and deterioration of both exogenous
and endogenous analytes in hair, can affect the interpretation of analytical results in hair. These variable
factors include personal or ethnical differences in hair pigmentation (melanin content), the external
contamination by xenobiotics, and the potential washout effects from shampooing and other
treatments. [18,19]. These could possibly cause pharmaco- or toxico-kinetic changes in hair.
Nevertheless, previous studies have reported the overall positive correlation between drug doses and
hair concentrations [41–43]. Moreover, statistical evaluations of the concentration of the drug and
metabolites in hair from large populations have resulted in reference ranges for the severities of drug
abuse [38,44]. These results suggest the potential of hair analysis in metabolomics.

3.2. Application of Hair Analysis in Metabolomics

As shown in Figure 1, metabolomics studies have been mostly conducted using biofluids, such as
plasma or urine, from animals and humans. Hair metabolomics studies represent only 0.4% of the total
papers published in 2018, which is the highest recorded in the last decade. While hair analysis has
been used to investigate xenobiotic exposure over the last few decades, the analysis of the endogenous
compounds, cortisol, and cortisone, in human hair was first performed by Raul et al. [45] in 2004 to



Molecules 2019, 24, 2195 7 of 17

monitor the use of glucocorticoids by athletes. Since then the applications of hair cortisol analysis have
notably expanded and it is now used as a bio-monitor for Cushing syndrome, adrenal insufficiency,
therapy monitoring, cardiovascular disease, stress, mental illness, and childhood obesity [46–48].
However, there are some limitations to using hair as a bio-monitor due to inter-individual variables,
including hair pigmentation, hair treatment, and external contamination, which makes it difficult
to provide significant correlations between the levels of hair metabolomes and disease or disorder
severity [19,21,49]. Nevertheless, the clinical uses of hair cortisol concentrations demonstrate the
potential of metabolomic analysis of hair and its application as a diagnostic tool for diseases or
abnormal conditions.

Segmental analysis of scalp hair provides information on the history of drug or toxicant exposure
or toxicological changes over time [19,50,51]. The knowledge that scalp hair grows approximately
1 cm/month allows one to predict the period during which the drug was ingested, which has been often
applied to test hair samples from drug-facilitated crimes [52–55] and post-mortem drug poisoning
cases [36,38,56,57] for forensic purposes. However, the determination of drug exposure time is not
straightforward due to axial diffusion during segmental hair analysis [58]. Therefore, as a practical
way of determining drug exposure time, analyzing each ~1 cm hair segment and comparing the results
across samples was recommended. In particular, this was suggested for drugs that were also present
endogenously in hair (e.g., γ-hydroxybutyrate) [59,60]. In a previous study, the long-term steroid
profiling of cortisol, cortisone, testosterone, androstenedione, dihydroepiandrosterone sulphate, and
17-α-hydroprogesterone was performed in proximal 3 cm hair segments, corresponding to the history
of the most recent three months. Furthermore, 3–6 cm and 6–9 cm segments, each corresponding
to an additional two trimesters, were analyzed to assess the variety of steroid concentrations along
consecutive segments. This study provided a potential application of hair segmental analysis in clinical
endocrinology [61]. In a recent metabolomics study, the physiological transition from early to late
pregnancy was successfully monitored based on the results obtained from the analysis of maternal
hair segments, corresponding to each of the three trimesters [33]. Thus, segmental hair analysis can be
useful for tracking changes in metabolism over time.

4. Analytical Techniques for Hair Metabolomics

4.1. General Metabolomics Methodology

In general, there are three analytical approaches in metabolomics: metabolic profiling, metabolic
fingerprinting, and metabolic footprinting. Metabolic profiling is a targeted approach that involves
the analysis of metabolites with similar physico-chemical properties (e.g., carbohydrates, amino
acids, organic acids, nucleosides) or within the same biochemical pathways (e.g., glycolysis,
gluconeogenesis, β-oxidation, citric acid cycle). Metabolic fingerprinting is an untargeted approach
that investigates overall changes of metabolites in cells, tissues, and organisms. Metabolic footprinting
is a comprehensive analytical approach focusing on metabolites that are secreted by cells into a specific
medium rather than within the intracellular metabolome [9].

Several analytical tools, such as nuclear magnetic resonance spectroscopy (NMR), liquid
chromatography mass spectrometry (LC-MS), gas chromatography mass spectrometry (GC-MS),
capillary electrophoresis-mass spectrometry, and direct infusion mass spectrometry, are available for
metabolomic studies. NMR has the advantage of reproducibility, but has lower sensitivity than that of
GC-MS or LC-MS. Conversely, GC-MS has a relatively high sensitivity, but covers a limited number of
metabolites with a lower range of polarity. LC-MS is considered a powerful tool for metabolomics,
as it is sensitive and covers analytes with a wide range of polarity. Moreover, it can rapidly quantify a
number of metabolites following a relatively simple sample preparation (i.e., no chemical derivatization
required) [62,63]. The application of NMR or GC/MS in metabolomics has also been expanded with their
advantages as analytical tools [2,64–69]. Elaborate sample preparation is not needed for NMR analysis.
In particular, the analysis of compounds that are difficult to ionize in MS is straightforward. NMR



Molecules 2019, 24, 2195 8 of 17

enables compounds with identical masses, including those with different isotopomer distributions, to be
identified. Recently, high sensitivity is achieved with the development of ultra-high-field NMR [70].
GC-MS has great advantages for volatile organic compounds [67]. Moreover, well-established libraries
of both commercial and in- house metabolite databases are available, and the quality of matching is
fairly high [71]. The use of NMR, GC/MS, and LC/MS in combination could produce complementary
data and synergically investigate metabolic changes.

For MS-based metabolomics, two different approaches are often used, namely untargeted and
targeted metabolomics (Figure 2), both of which have advantages and disadvantages. In untargeted
metabolomics, where a high-resolution mass spectrometer is commonly used, full-scan MS analysis
followed by MS/MS analysis for the selected ion features are performed in order to identify
significantly changed ion features and assign metabolites. First, the overall patterns of metabolic
disturbances are investigated, based on large amounts of information from full-scan MS spectra,
using differential analysis among groups of biological samples under different conditions. Metabolite
assignment is commonly done by matching with public MS and/or MS/MS databases such as Human
Metabolome Database (HMDB) and METLIN as well as in-house ones if available. Significantly
up- or down-regulated metabolites (or ion features) and their related metabolic pathways can then
be determined by significance analysis followed by pathway analysis [72,73]. This approach is
mostly used for mechanistic studies, hypothesis generation, biomarker discovery, and diagnostics.
However, the main problem with this approach is that it is a complicated and time-consuming process,
because it deals with large amounts of raw data, and has difficulties in identifying unknown small
molecules [62]. In particular, the acquisition of informative MS/MS spectra of ion features is limited
due to the soft ionization of atmospheric pressure ionization and multi-adduct formation occurring in
LC-MS. Moreover, MS/MS fragmentation patterns are generally inconsistent due to varying instrument
conditions, limiting the applications of MS/MS spectral libraries in LC-MS. Furthermore, MS/MS
spectral libraries are restricted mostly to typical metabolites and drug or toxicant-derived metabolites,
making it difficult to recognize meaningful metabolites [62,74,75].

In contrast, in targeted metabolomics, where a low-resolution mass spectrometer is mostly
employed, specific numbers of metabolites are analyzed and quantified absolutely or relatively.
Therefore, to use this approach, information such as the chemical structure and molecular weight
of the metabolites to be analyzed should be investigated in advance [62]. This approach is useful in
understanding specific metabolic enzymes and alterations in kinetics, end products, and the known
biochemical pathways of the resulting metabolic changes. When using targeted metabolomics, sample
preparation can be optimized to reduce significant analytical interferences [73]. This approach has
a high degree of accuracy and precision as targeted metabolites are measured with well-validated
methods [72]. However, the biggest limitation of this method is that it cannot be used to identify new
biomarkers, as it can only quantify previously known metabolites [62].

4.2. Sample Preparation and Instrumental Methods for Hair Metabolomics

GC-MS and LC-MS are popular analytical tools for hair analysis. For the preparation of hair
samples for GC-MS or LC-MS analysis of xenobiotics or exogenous and endogenous metabolites,
no specific reference method is available. In general, the hair sample preparation process consists of
washing, cutting, extraction, purification, and/or concentration. The washing step is required to remove
foreign matter deposited on the hair strands from the external environment. Both organic solvents
(e.g., dichloromethane, acetone, methanol) and aqueous solutions (e.g., 0.1% sodium dodecylsulfate
in water, distilled water) are used either alone or in sequences containing different solvents and/or
aqueous solutions for decontamination. After that, analytes are extracted from the hair using a
variety of methods, including incubation in organic solvents, such as methanol, and acidic or alkaline
hydrolysis, depending on the chemical properties of the analytes [18,20].
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Unlike other traditional biological specimens, such as blood and urine, hair is a complicated
solid matrix in which compounds are firmly incorporated. Therefore, recovery or extraction efficacy
is an important analytical issue in hair analysis. The extraction efficacy of a drug and a metabolite
(e.g., methamphetamine and amphetamine) in hair was examined using hair reference materials, which
are essential in the development of hair drug analysis methods [76,77]. However, hair reference material
for endogenous compounds and standardized analytical methods in hair metabolomics are currently
not available. In the previous hair metabolomics studies (shown in Tables 1 and 2), the commonly used
sample preparation methods such as LC-MS and GC-MS, i.e., general extraction, purification and/or
chemical derivatization [18,20] were used for targeted or untargeted metabolomics, in the analysis of
a variety of drugs and their metabolites in hair. For targeted metabolomics of polyamine, steroids,
amino acids, and fatty acids, chemical derivatization for a functional group in the targeted compounds
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were employed [27,78,79]. One previous study conducted hair extraction using CHCl3 followed by
evaporation, and reconstitution with CDCl3 for NMR-based hair metabolomics [80].

For LC-MS-based hair metabolomics, solvent extraction is often performed with or without an
ultrasonic bath, e.g., ultrasonication using methanol and 5 M HCl (20:1) for one hour [81,82], 2 mM
ammonium formate and methanol (50:50) for two hours [30] or methanol incubation for 16 hours [83].
Chemical derivatization is used specifically for the analysis of polar metabolites (e.g., amino acids) and
to convert them to less polar analytes, making them more suitable for the non-polar LC stationary
phase. Acidic (using 6 M HCl for all amino acids, except for tryptophan) or alkaline (using 4 M NaOH
for tryptophan) hydrolysis was performed for the extraction of amino acids from human hair, and then
amino acid derivation was conducted using Waters AccQ•Tag reagents [79]. For extraction of hair
lipids, a previously reported systemic method based on the characteristics of lipids was employed.
Solvent extraction using chloroform–methanol 2:1, 1:1 and 1:2 (v/v) was used for extractable lipids
from hair and the delipidized hair was further saponified and extracted using chloroform to extract
integral lipids [84]. For the identification of fatty acids in hair, chemical derivatization was performed
using the 2-picolylamine, which reacts with the carboxylic acid group in fatty acids [85].

Chemical derivatization was more often employed after extraction in order to improve the
volatility and sensitivity of the analytes in GC-MS-based hair metabolomics. Hair polyamines were
determined to be N-ethoxycarbonyl (EOC)-N-pentafluoropropionyl (PFP) derivatives, based on the
extractive two-phase EOC reaction of amino groups in aqueous solutions combined with subsequent
PFP derivatization of the remaining active hydrogen atoms [78]. Hair steroids were determined after
ultrasonication in methanol followed by trimethylsilylation using N-methyl-N-trifluorotrimethylsilyl
acetamide, ammonium iodide, and dithioerythritol [27,31]. Also, hair samples were often derivatized
using methyl chloroformate (MCF) for GC-MS-based metabolomics. MCF converts amino and
non-amino organic acids (e.g., fatty acids) into volatile carbamates and esters [28,29,32–35].

5. Use in Animal Studies

Well-controlled animal models offer inherent phenotypes for specific diseases or abnormal
conditions. Therefore, biological samples from animal models are often used in metabolomics
studies [86–88]. However, only a few metabolomics studies have been conducted using animal
hair. Table 1 summarizes the metabolomics studies performed to investigate metabolic signatures
and to discover biomarkers in fur from animal models of chronic diseases, such as cardiovascular
disease, diabetes, and drug addiction [81–83]. In a previous study using ultra-performance liquid
chromatography with electrospray ionization time-of-flight mass spectrometry (UPLC-ESI-TOF-MS),
the ionic features detected in fur from spontaneously hypertensive rats (SHR/Izm) and stroke-prone
SHR rats (SHRSP/Izm) were compared with those of normal Wistar Kyoto control rats with advancing
ages from 5 to 43 weeks. The most significantly altered ionic feature was the m/z 235.40 ion at
2.30 min, which was suggested as a potential biomarker for stroke [81]. In another previous study,
the concentrations of 6 and 15 metabolites or ion features significantly increased and decreased,
respectively, with age, in diabetic mice fur. N-acetyl-L-leucine detected in fur, together with
other biological samples, such as plasma, liver, and kidney, from diabetic mice, was suggested
as a potential biomarker based on metabolomic profiling results [82]. Choi et al. conducted
metabolic characterizations in urine and fur from a rat model of methamphetamine self-administration.
In the rat fur samples, some functional metabolites, including acetylcarnitine, palmitoyl-(l)-carnitine,
deoxycorticosterone, oleamide, and stearamide, significantly changed, which implies metabolic
perturbations in the central nervous system and energy production. Since the more significantly
changed functional metabolites were observed in fur compared with urine, animal hair was proposed
as a more reliable diagnostic specimen for drug addiction [83]. Moreover, drug-induced sebaceous
gland atrophy was examined using fur from rats and hamsters. Since animal hair is coated with sebum
and reflects dermal condition, animal hair metabolomics was suggested as a test method for dermal
toxicity [80].
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6. Use in Clinical Settings

Previous hair metabolomic investigations in clinical settings are summarized in Table 2.
Mostly, clinical hair metabolomics was applied for the long-term monitoring of chronic
pathophysiological conditions (e.g., pregnancy complications, cancer, male pattern baldness, drug
addiction, etc.). Those previous studies demonstrated that human hair is a potential diagnostic sample
that contains robust and stable biomarkers for chronic diseases [27–33,78].

The clinical applications of maternal hair metabolomics recently increased, in particular to discover
diagnostic biomarkers and study metabolic mechanisms in pregnancy-related complications, such as
fetal growth restriction (FGR), small-for-gestational-age infants (SGA), gestational diabetes mellitus
(GDM), infant lower language ability, and intrahepatic cholestasis of pregnancy (ICP) [28,29,32–35].
Some key hair metabolites, up- or down-regulated with pregnancy-related complications, are listed
with their implications in Table 2. A loss of redox control and a deficiency of precursors for fetal
development and growth were linked to FGR [28]. Previous studies on the changes of GDM-related
hair metabolomes reported lipid peroxidation related to the oxidative stress environment in diabetes,
deficits in energy metabolism, and degradation of amino acids, but no correlation between maternal
diet and hair metabolomes [29,33,34]. Deplancke et al. also found that the concentrations of margaric
acid, pentadecanoic acid, and myristic acid in hair from pregnant women with SGA significantly
decreased, which implies a deficit in placental function of fatty acid transfer to the fetus [33]. Recently,
de Seymour et al. examined the hair metabolomics of ICP, with no correlation between ICP and hair
metabolomes observed [35]. Furthermore, another maternal hair metabolomics study demonstrated
the correlation between infant lower language ability and higher maternal phthalate exposure [32].

The metabolic profiling for classes of targeted analytes (e.g., polyamines, steroids, sterols) in
human hair was employed in patients with cancer [78], male pattern baldness [27], and cognitive
impairment or Alzheimer’s disease [31]. Those studies clarified the relationship between disease or
abnormal conditions and known metabolic pathways, and provided information on the metabolic basis
of those diseases. In hair from patients with cervical cancer or ovarian cancer, significant increases in the
levels of putrescine, spermidine, and spermine were observed, probably due to deficits in polyamine
biosynthesis and accumulation in hair [78]. The metabolic alteration in male-pattern baldness, and the
metabolic effects of dutasteride, an inhibitor of 5α-reductase, were successfully investigated by hair
steroid profiling [27]. Son et al. proved that cognitive impairment was caused by the up-regulation of
7α- and 7β-hydroxycholesterol due to impaired cholesterol metabolism and suggested the latter as a
predictive biomarker [31].

Hair damage by dyeing, perming, and bleaching was evaluated by absolute quantification of
the amino acids and lipids in hair. The hair concentration of cysteic acid and cysteine/cysteic acid
increased while methionine and tryptophan decreased significantly with hair treatment. Hair lipids,
such as erucic acid, behenic acid, lignoceric acid, nervonic acid, cerotic acid, and 18-methyl eicosanoic
acid, were also down-regulated [79].

Drug addiction is a chronic relapsing disorder which develops from the repetition of positive
and negative effects caused by temporary drug use and withdrawal, respectively [89,90]. Clinical
laboratory criteria for the diagnosis and treatment of drug addiction are not fully elucidated, and no
specific biomarkers are currently available. Only limited information is available regarding the effect of
drug abuse or addiction on endogenous metabolites in hair. Xie et al. previously reported that sorbitol
and cortisol were up-regulated while arachidonic acid, glutathione, linoleic acid, and myristic acid
were down-regulated, based on a metabonomic study on heroin addicts hair. This result implies that
energy metabolism, sorbitol pathway, and immune cell function are disturbed by heroin addiction [30].

7. Conclusions

As shown in Figure 3, hair metabolomics approaches have recently been employed to investigate
the metabolic signature of a variety of chronic diseases or abnormal conditions in animal studies
and clinical settings to explain the pathophysiological mechanisms underlying disease, as well as to
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propose new diagnostic biomarkers for long-term monitoring. Hair has a great advantage in that
the endogenous compounds deposited in hair are retained. Metabolic alterations identified in hair
could provide insight into metabolic perturbation over a longer period of time than other conventional
biological samples (e.g., plasma, urine). Thus, hair metabolomics can be a successful metabolomics
approach with high potency for evaluating the animal and human pathological conditions.
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Figure 3. Application of hair metabolomics.
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