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ABSTRACT
The optimization problems are becoming more complicated, requiring new and efficient optimiza-
tion techniques to solve them. Many bio-inspired meta-heuristic algorithms have emerged in the
last decade to solve these complex problems as most of these algorithms may be trapped into local
optima and could not effectively solve all types of optimization problems. Hence, researchers are still
trying todevelopnewandbetter optimizationalgorithms. This paper introduces anovel biologically-
basedoptimization algorithmcalled circulatory system-basedoptimization (CSBO). CSBO ismodeled
basedon the functionof thebody’s bloodvesselswith twodistinctive circuits, i.e. pulmonary and sys-
temic circuits. The proposed CSBO algorithm is tested on a wide variety of complex functions of the
real world and validated with the standard meta-heuristic algorithms. The results indicate that the
CSBO algorithm successfully achieves the optimal solutions and avoids local optima. Note that the
source codeof theCSBOalgorithm ispublicly available athttp://www.optim-app.com/projects/csbo.

ARTICLE HISTORY
Received 9 July 2021
Accepted 3 July 2022

KEYWORDS
Circulatory System Based
Optimization (CSBO);
complex optimization
functions; optimization;
biologically inspired
algorithm; and real-world
problems

1. Introduction

Optimizing the design process is one of the most critical
topics most engineers and inventors consider. A typical
design can be optimized if its parameters are selected
appropriately. Optimization is a mathematical tool that
selects the best decision from the available set of pos-
sible solutions to achieve the ideal goal. After defining
the problem variables, it is considered a function called
the objective function. Physical conditions are then dis-
played as constraints on the problem. Then, the optimal
solution is obtained by solving the resulting model using
optimization methods (Radosavljević, 2018).

Generally, an optimization problem, whether it is a
minimization or maximization, can be described as fol-
lows (Radosavljević, 2018):

Minimizez = F(x) (1)

Subject to:

gi(x) ≤ 0; i = 1, 2, . . . , n (2)

CONTACT Shahab S. Band shamshirbands@yuntech.edu.tw; Changhyun Jun cjun@cau.ac.kr

hj(x) = 0; j = 1, 2, . . . ,m (3)

xld ≤ xd ≤ xud ; d = 1, 2, . . . ,D. (4)

In the above equation, F(x) represents the objective
function of a typical optimization problem, x is the vector
of variables with D dimension, i.e. the algorithm inputs.
gi(x) and hj(x) vectors are the inequality and equality
constraints of the problem, and n and m parameters are
the number of the inequality and equality constraints,
respectively.

Optimization problems from different application
perspectives can be divided into the following different
categories:

• Static and dynamic: If the objective function varies
with time, the optimization problem is dynamic; oth-
erwise, it is static.

• Constrained and unconstrained:A constrained opti-
mization problem involves variables restricted to
a specific set or constraint, and an unconstrained
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optimization problem concerns variables that are not
restricted.

• Linear or non-linear: The objective function and
constraints of linear optimization problems are linear
functions of the design variables.

• Discrete and continuous: A discrete optimization
problem has certain discrete control variables. On the
other hand, in a continuous problem, the values of the
variables are continuous.

• Random and non-random: In an optimization prob-
lem, depending on whether the variables are real,
binary, or random values, the problem is divided into
different categories of true, binary, or random.

• Single andmulti-objective:A problem can havemul-
tiple objective functions. Each of them requires the
setting of specific control parameters.

The optimization problems’ methods are divided into
four categories: counting, computational, innovative, and
meta-heuristicmethods. Aswith dynamic programming,
counting expands the scope of the search space in each
iteration because there is only one point in the domain
space of the objective function at a time. Computational
methods interface applied mathematics, statistics, infor-
mation science, and engineering. It emphasizes analyti-
cally intractable problems of classical and quantum com-
putations. Researchers are interested in developing com-
putational and mathematical methods to quantify, ana-
lyze, and understand recent applications in more compli-
cated systems. Unlike the mathematical methods with a
mathematical basis and the convergence of algorithms,
the innovative and meta-heuristic methods are proven
(where the problem is convex) and may not have proper
convergence. Suppose the objective function is not con-
vex or concave in solving optimization problems. In that
case, there is almost no mathematical algorithm to guar-
antee the optimal global solution. Therefore, different
optimization methods and a new stochastic algorithm
have been established. In these methods, a close and
acceptable optimal solution is obtained in a limited
and acceptable time. These methods are random and
inspired by nature and physical processes. Due to the
drawbacks of the mathematical methods, evolutionary
methods have been proposed for optimization problems.
Among them, the following algorithms have been intro-
duced. Finally, but certainly not least, developing novel
algorithms is a prominent area of research for many
researchers. Evolutionary events, the collective behav-
ior of species (swarm intelligence approaches), physi-
cal laws, and human-related concepts can all serve as
inspiration for developing a new algorithm. Indeed, the
inspiredmeta-heuristic algorithms are classified into four
subclasses as a primary classification (Mirjalili, 2016):

• Natural evolutionary processes or occurrences inspire
evolutionary algorithms (EAs): such as using the
behavior of flora for artificial flora algorithm (AFA) (L.
Cheng et al., 2018), plant intelligence (Akyol & Alatas,
2017), virulence optimization algorithm (VOA), and
an optimization strategy inspired by the ideal process
through which viruses attack bodily cells (Jaderyan &
Khotanlou, 2016), evolution strategies (ESs), a sub-
class of nature-inspired direct search (Rechenberg,
1989). Genetic algorithms (GAs) are search heuris-
tics inspired by Charles Darwin’s theory of natural
evolution (Holland, 1992). An opposition-based high
dimensional optimization algorithm (OHDA) unique
feature is its angularmovement in response to very few
samples, enabling successful search in high dimen-
sions (GhaemiDizaji et al., 2020). An artificial infec-
tious disease algorithm via the SEIQR epidemicmodel
(G. Huang, 2016) aims to show the relationship of
an infectious disease to an optimization algorithm.
Mouth brooding fish algorithm (Jahani & Chizari,
2018) models organisms’ symbiotic interaction tac-
tics to live and reproduce in an environment and
finds the optimal answer by using mouth brooding
fish movement, dispersion, and protection patterns.
Colonial competitive differential evolution (CCDE),
which is based on mathematical modeling of socio-
political evolution (Ghasemi et al., 2016), tree growth
algorithm (TGA) that replicates the fight for food and
light among trees (Cheraghalipour et al., 2018), inva-
sive tumor growth (ITGA) achieved by abnormal cells
detaching from the tumor bulk because of a decrease
in or complete lack of intercellular adhesionmolecules
(Tang et al., 2015), slime mould algorithm (SMA) that
inspired via the foraging and diffusion conduct of
slime mould (Li et al., 2020), and invasive weed opti-
mization (IWO) that mimics weed colony’s behavior
(Mehrabian & Lucas, 2006).

• Swarm Intelligence Algorithms (SIAs) development:
Simulating natural patterns and behaviors in nature is
one of the primary goals of SIAs. Fitness dependent
optimizer (FDO), which simulates the behavior of the
bee swarm in order to locate better colonies (Abdul-
lah & Ahmed, 2019), lion optimization algorithm
(LOA) that inspired by lions’ unique lifestyle and
social behavior (Yazdani & Jolai, 2016), monarch
butterfly optimization (MBO) that inspired via ide-
alizing and simplifying the travel of monarch but-
terflies (Wang et al., 2019), yellow saddle goatfish
algorithm, an optimization model motivated by yel-
low saddle goatfish hunting behavior involving chaser
and blocker fish (Zaldívar et al., 2018), Aquila opti-
mizer (AO) that inspired via the Aquila’s strategies
in nature during the process of catching the prey
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(Abualigah et al., 2021), sailfish optimizer (SO) influ-
enced by a group of hunting sailfish (Shadravan
et al., 2019), moth search algorithm (MSA) that
motivated via the Lévy flights and phototaxis of
the moths (Wang, 2018), ant colony optimization
(ACO) (Dorigo & di Caro, 1999), kidney-inspired
algorithm (KA) making a novel population-based
algorithm informed by the human kidney mech-
anism (Jaddi et al., 2017), artificial hummingbird
algorithm (AHA) that mimics the intelligent forag-
ing behaviors and flight skills of hummingbirds (Zhao
et al., 2022), a naturalistic approach to Harris hawks
optimization (HHO) (Heidari et al., 2019), artificial
ecosystem-based optimization (AEO), a population-
based optimizer that mimics three unique traits
of live organisms (Zhao et al., 2020), Chameleon
swarm algorithm (CSA) that mimics the dynamic
skills of chameleons when hunting and navigating
for food sources (Braik 2021), crow search algorithm
(CSA) motivated by crows’ social smart tendency
for hiding food (Askarzadeh, 2016), cooperation
search algorithm (CSA) taking cues from modern
business teamwork (Feng et al., 2021), grasshopper
optimization algorithm (GOA) based on the natu-
ral foraging and swarming activity of grasshoppers
(Saremi et al., 2017), COOT algorithm motivated
by the dynamic behavior of the population of birds
(Naruei & Keynia, 2021), black widow optimization
algorithm (BWOA) prompted by black widow spider
mating rituals (Hayyolalam & Kazem, 2020), JAYA
algorithm a gradient-free optimization technique (R.
Rao, 2016), tunicate swarm algorithm (TSA), which
mimics tunicate navigation and foraging turbojet
engines and swarming behavior (Kaur et al., 2020),
chimp optimization algorithm (COA) influenced by
chimps’ individuality and sexual motivation (Khishe
& Mosavi, 2020), pity beetle algorithm (PBA) based
on a beetle’s aggregation habit (Kallioras et al., 2018),
emperor penguin optimizer (EPO) resembles emperor
penguin huddling (Dhiman & Kumar, 2018), ludo
game-based met-heuristics (P. R. Singh et al., 2019),
which uses two or four players to imitate the game
ludo to update distinct swarm intelligent character-
istics, Fox optimization algorithm (RFO) which uses
a mathematical model of red fox hunting, developing
population, searching for food, and habits (Połap &
Woźniak, 2021), galactic swarm optimization (GSO)
via motion between stars (Muthiah-Nakarajan &
Noel, 2016), parasitism–predation algorithm (PPA)
to tackle the challenges of low convergence and the
constraint of dimensionality of enormous data (A.-
A. A. Mohamed et al., 2020), earthworm optimization
algorithm (EWA) via the butterfly adjusting operation

and migration operation (Wang et al., 2018), Barnacle
mating habits in nature served as inspiration for BMO
(Sulaiman et al., 2020), a biological-inspired opti-
mization algorithm named squirrel search algorithm
(SSA) (Jain et al., 2019), colony predation algorithm
(CPA) based on animals to avoid enemies (Tu et al.,
2021), wild geese algorithm (WGA) which natural
life and death in the wild is its basis (Ghasemi et al.,
2021), hunger games search (HGS) which mimics
the behavioral choice and hunger-driven activities of
animals (Yang et al., 2021), bald eagle search opti-
mization algorithm (BESO) an innovative, based on
bald eagles’ hunting tactics or social conduct when
searching for fish (Alsattar et al., 2020), phasor par-
ticle swarm optimization (PPSO) based on a phasor-
theoretic model of particle design variables with a
phase angle (Ghasemi et al., 2019), elephant herd-
ing optimization (EHO) which mimics the herding
behavior of elephants (Wang et al., 2015), buttery opti-
mization algorithm (BOA) that imitates the natural
foraging and mating activities of butterflies (Sharma
et al., 2021).

• Physics-Inspired algorithms (PIAs): Yin-Yang-pair
optimization (YYO) algorithm via physical event or
specific tool (Punnathanam & Kotecha, 2016), an
algorithm by Franklin’s and Coulomb’s laws the-
ory, i.e. the CFA optimizer (Ghasemi et al., 2018),
gradient-based optimizer (GBO)which uses Newton’s
approach to investigate the search domain using a
number of vectors and twomajor operators (Ahmadi-
anfar et al., 2020), electromagnetic field optimization
(EFO) that the behavior of electromagnets with vary-
ing polarities and a natural ratio called the golden
ratio is its basis (Abedinpourshotorban et al., 2016),
weIghted meaN oF vectOrs (INFO) which uses a
solid structure and updating the vectors’ position
(Ahmadianfar et al., 2022), wind driven optimiza-
tion (WDO) algorithmwhich updates the velocity and
position of wind-controlled air parcels regarding the
physical equations that control air motion (Bayraktar
et al., 2013), Lévy flight distribution (LFD) (Houssein
et al., 2020), Equilibrium optimizer (EO) a revolu-
tionary optimization technique for the implementa-
tion of control volume mass balance models (Fara-
marzi et al., 2020), simulated annealing (SA) amethod
involves metalworking process of heating and cooling
a material to change its physical qualities (Kirkpatrick
et al., 1983), supernova optimizer (SO) motivated by
supernova phenomena (Hudaib & Fakhouri, 2018),
dynamic differential annealed optimization (DDAO)
(Ghafil & Jármai, 2020), henry gas solubility optimiza-
tion (HGSO) encouraged by Henry’s law (Hashim
et al., 2019), artificial chemical reaction optimizer
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(ACRO), which is designed to be inspired by chemical
reactions (Alatas, 2011), water evaporation optimiza-
tion (WEO) that simulates the evaporation of water
molecules on a solid surface with varying wettability
(Kaveh & Bakhshpoori, 2016), rain-fall optimization
based on behavior of raindrops (Kaboli et al., 2017),
gases Brownian motion optimization (GBMO) moti-
vated by gas Brownian movement and turbulent rota-
tional motion (Abdechiri et al., 2013), atom search
optimization (ASO) basis of the basic of molecular
dynamics (Zhao et al., 2019), turbulent flow of water-
based optimization (TFWO) fascinated by whirlpools
formed in turbulent water flow (Ghasemi et al., 2020),
thermal exchange optimization (TEO) based on New-
ton’s law of cooling (Kaveh & Dadras, 2017), heat
transfer search (HTS)which the law of thermodynam-
ics and heat transfer are its basis (Patel & Savsani,
2015), RUNge Kutta algorithm (RUN) which the law
of the Runge Kutta (RK) method and the mathemat-
ical foundations (Ahmadianfar et al., 2021), weighted
superposition attraction (WSA) in which agents cre-
ate a superposition that causes other solution vec-
tors to follow (Baykasoğlu & Akpinar, 2017), and
gravitational search algorithm (GSA) based on mass
exchanges and gravity (Rashedi et al., 2009).

• Human/social-related Algorithms (HSAs): political
optimizer (PO) replicating the human political pro-
cess (Askari et al., 2020), a very optimistic method
(Vommi &Vemula, 2018) employing two factors; luck
and effort, future search algorithm (FSA) which mim-
ics the person’s life (Elsisi, 2019), volleyball premier
league algorithm (VPLA) that works through inter-
acting and competing among volleyball teams (Mogh-
dani & Salimifard, 2018), path planning algorithm
(PPA) to find a sequence of valid configurations (Zhou
et al., 2017), pathfinder algorithm (PA) that tries to
solve the graph theory’s shortest path problem (Yapici
& Cetinkaya, 2019), teaching–learning-based opti-
mization (TLBO) algorithm that examines a teacher’s
impact on students (R.V. Rao et al., 2011), imperialist
competitive algorithm (ICA) suggests an optimiza-
tion method influenced by imperialism (Atashpaz-
Gargari & Lucas, 2007), collective decision optimiza-
tion (CDO) that human social behavior based on
decision-making traits is its basis (Q. Zhang et al.,
2017), and queuing search algorithm (QSA) which is
stimulated from human doings in queuing process (J.
Zhang et al., 2018).

Asmentioned above,many optimization algorithms have
been proposed recently. As stated by no free lunch the-
orems (Wolpert & Macready, 1997), the real-world deal
with a wide range of complex problems with different

objective functions. Therefore, the inherent nature of
algorithms may have the best functionality for several
functions. However, it suffers from performing well for
several other problems. No single algorithm can effec-
tively solve a wide variety of real-world problems, which
is the fundamental reason for presenting these new algo-
rithms. For example, the problems addressed in CEC
2014 functions consist of 30 different test functions: uni-
modal, simple multimodal, hybrid, and composition. In
CEC 2014, it has attempted to design these 30 test func-
tions to cover a wide range of real-world problems, such
as engineering design and economic load dispatch in
small to large-scale systems. Therefore, researchers need
an algorithm that can cover a broader range of problems
to rank excellently for every 30 test functions.

On the other hand, time is a significant factor in
many optimization problems. Therefore, a new algorithm
that is powerful and robust and has a reasonable speed
to reach an acceptable optimal solution is required.
Besides, each optimization algorithm has several con-
trol parameters that the user must determine their val-
ues according to his experience, which is sometimes
time-consuming and questionable. Therefore, a simple
and robust algorithm is required to give the optimal
and reasonable result with lower control parameters. In
other words, the need for a comprehensive and robust
algorithm is well felt in all branches of science. This arti-
cle introduces an algorithm called CSBO that can achieve
these goals.

TheCEC2005, CEC 2014, andCEC2017 standard test
functions are utilized in this paper to demonstrate the
effectiveness of the CSBO. These standard test functions
cover awide range of functions, such asmultimodal,mul-
timodal, and hybrid functions. We compare the results
with several modern and standard algorithms at each
optimization stage to show the algorithm’s performance.

Briefly, the advantages of the proposed algorithm can
be listed below:

• A new meta-heuristic algorithm inspired by regular
body function

• Ability to perform effectively for a wide range of real-
world functions

• Having a special competitive performance compared
to modern and standard algorithms

The remainder of this article is summarized as follows:
the conceptual and mathematical formulations of the
CSBO algorithm are introduced in Section 2. In Section
3, the performance of the proposed algorithm is bench-
marked on real-world test functions. The application of
the proposed algorithm for solving some engineering
optimization problems with complicated search spaces
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is investigated in Section 4. Finally, Section 5 represents
some essential conclusions.

2. Circulatory System Based Optimization
(CSBO) algorithm

Modeling is one of the most important branches of engi-
neering that is a good way to study the behavior of a
system (Ghasemi et al., 2021). Models are representa-
tions of different systems.With the help of the model, the
effect of different factors on the system can be simulated.
Of course, models must predict the behavior of differ-
ent systems and functions of each problem in different
conditions.

2.1. Regular circulatory system

This article presents a new powerful optimizer using the
circulatory system function model. The heart is a fan-
tastic organ that pumps oxygen and nutrient-rich blood
through the human body to sustain life. The heart is an
essential part of the cardiovascular system, called the cir-
culatory system. It contains all elastic, muscular tubes
(vessels) that carry blood from the heart to the body and
back to it.

Blood is vital for the body. In addition to carrying fresh
oxygen from the lungs and nutrients to the body’s tissues,
it also eliminates the body’s waste products, including
carbon dioxide, away from the tissues. This circulation
is necessary to sustain life and promote the health of all
parts of the body.

According to the simple inspiration model from the
circulatory system of the body’s regular performance in
Figure 1, the body’s blood vessels are functionally divided
into two distinctive circuits: the pulmonary circuit and
the systemic circuit. The pump for the pulmonary cir-
cuit, which circulates blood through the lungs, is the right
ventricle. The left ventricle is the pump for the systemic
circuit, which provides the blood supply for the body’s
tissue cells. Pulmonary circulation transports oxygen-
poor blood from the right ventricle to the lungs, where
the blood picks up a new blood supply. Then it returns
the oxygen-rich blood to the left atrium.

Blood is considered a Newtonian fluid in most cases.
The main variables of the circulatory system are flow,
pressure, and volume. Pressure-flow modeling of the cir-
culatory system can be examined from two perspectives,
beating and non-beating, which is considered in a model
inspired by the beating perspective.

Arteries and veins are considered cylindrical ves-
sels whose walls have elastic properties. To stimulate
blood flow in most models, the momentum continuity
(Fan et al., 2009), known as the Navier-Stokes equations

Figure 1. A simple inspirationmodel from the circulatory system
for modeling CSBO (‘Pixabay.com,’ n.d.).

(Johnston et al., 2006), is used with the assumption of
constant density and viscosity. The Newtonian fluid can
be expressed in the following general form regardless of
several gravitations.

ρ

(
∂v
∂t

+ v − ∇v
)

= −∇P − ∇ .τ (5)

Δ �U = 0 (6)

Where ρ is the fluid density, v is the velocity vector, P is
the pressure, t represents time, and τ is the stress tensor.

The systemic circulation provides the functional
blood supply to all body tissue. It carries oxygen and
nutrients to the cells and picks up carbon dioxide and
waste products. Systemic circulation carries oxygenated
blood from the left ventricle, through the arteries, to the
capillaries in the body’s tissues. From the tissue capil-
laries, the deoxygenated blood returns through a system
of veins to the right atrium of the heart. It then moves
into the right ventricle, and the above cycle is repeated,
equivalent to one iteration in our proposed algorithm.

In this algorithm, we have modeled two pulmonary
and systemic circuits as two separate groups with two dif-
ferent optimization cycles. They are equivalent to specific
functions modeled on a specific type of population.
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Figure 2. The blood circulatory (a) and equivalent optimizer (b) process.

Here, this process of the circulatory system is equiv-
alent to the generation of a more substantial population
and elimination of a weaker population in the optimiza-
tion algorithm. Themathematical modeling of the CSBO
optimization process is explained in the following sec-
tions.

2.2. Circulatory system regular performance as an
intelligent systematic algorithm: CSBO

In the mathematical modeling of new meta-heuristic
optimization algorithms, many hypotheses based on the
inspiration of the phenomenon may be considered. In
this section, we briefly explain how to model the circula-
tory system function as an optimizer and implement the
proposed CSBO algorithm.

In the CSBO algorithm, like any other meta-heuristic
optimization algorithm, at first, an initial population is
generated based on a random function within the prob-
lem range, which here represents the mass of blood
droplets. The position of the blood droplets represents
the possible solutions to an optimization problem in the
search space, and the circulatory system acts as an oper-
ator of this population to refine and strengthen them
and eliminate the weaker population. In other words,
the solution (blood) quality in the search space (body)
is improved throughout an iterative process based on the
functionality of the blood’s circularity system in the body.

In the proposed algorithm, the pulmonary circulation
deals with deoxygenated blood, which is equivalent to the
weaker population, and the systematic circulation deals

with oxygenated blood, which is equivalent to the popu-
lation with a better target value. In other words, it deals
with a better population. The ith bloodmass (BMi) (or ith
individual of the population in CSBO) will move based
on its position. In other words, it will be directed to a
more optimal position; otherwise, it will maintain its cur-
rent position. Figure 2 shows how the evolutionary pro-
cess of the blood in the circulatory system equivalently
can be modeled as an optimizer system. Also, Table 1
shows, in detail, how the elements or functions of the
circulatory system are modeled in the proposed CSBO
algorithm.

2.3. Themathematical modeling of the CSBO
algorithm

At first, the CSBO algorithm, like any other meta-
heuristic algorithm, starts with an initial population or
blood masses BMi = (Bmi,1,Bmi,2, . . . ,Bmi,D) for a typ-
ical problem with the number of dimensions D (d=
1:D), which randomly generates between the minimum
BMmin = (Bmmin,1,Bmmin,2, . . . ,Bmmin,D) and
maximum BMmax = (Bmmax,1,Bmmax,2, . . . ,Bmmax,D)

values of the problem parameters range as follows:

BMi = BMmin + rand(1,D)

× (BMmax − BMmin); i = 1 : Npop. (7)

This initial population, as mentioned earlier, plays the
same role as blood particles or masses in the body.
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Table 1. The equivalent concepts of the circulatory system and
CSBO algorithm.

Element or function in
the circulatory system

The equivalent concept
in the CSBO algorithm

Blood mass Algorithm population
Blood movement in the body Population movement

within the problem
range

Cleaner blood with more oxygen Objective function
Circulation cycle Algorithm iteration
Deoxygenated blood Weaker population
Oxygenated blood Stronger population
Blood purification Population

composition
Blood pumping Changing the

population position
CO2 separation from blood Crossover
Pulmonary and systemic circulations Population separation

2.3.1. Movement of bloodmass in the veins
The ith blood mass in the veins, BMi, moves based on
the imposed force or pressure. The mass always moves
in a direction that has more optimal conditions. There-
fore, the value of its objective function (amount of force
or pressure) decreases.We canmodel the clogged arteries
in the heart as trapping in locally optimal solutions. We
like this situation not to happen like in the real world. As
the body continues to work, the algorithm will continue
its optimization process well. This step of the circulatory
cycle is modeled based on the particle positions and their
objective function values as follows:

BMnew
i = BMi + Ki1 × pi × (BMi − BM1)

+ K23 × pi × (BM3 − BM2) (8)

Kij = F(BMj) − F(BMi)

|F(BMj) − F(BMi)| + ε

=
⎧⎨
⎩
1; F(BMi) < F(BMj)

−1; F(BMi) > F(BMj)

0; F(BMi) = F(BMj)

(9)

In fact, Kij determines the direction of movement of the
ith bloodmass (BMi) in the arteries. pi is a value between
0 and 1 and depends on the problemdimensions. It deter-
mines the amount of displacement and moves toward a
better value in each circulation cycle.

2.3.2. Population or bloodmass flow in pulmonary
circulation
As mentioned earlier, the pulmonary circulation deals
with deoxygenated blood, equivalent to the weaker pop-
ulation in optimization. In fact, in the CSBO, at each
iteration, the population is sorted, and NR numbers of
the weakest population enter the pulmonary circulation

and are directed to the lungs to gain oxygen

BMnew
i = BMi +

(
randn
it

)
× randc(1,D), i = 1 : NR

(10)

In (7), randn denotes the randomnormal number, it indi-
cates the current algorithm iteration, randc indicates the
random vector from the Cauchy probability distribution,
andD is the number of the optimization problem dimen-
sion. The pulmonary circulation also changes the pi for
this population as follows:

pi = rand(1,D), i = 1 : NR (11)

2.3.3. Population or bloodmass flow in systematic
circulation
As mentioned, NR numbers of the weakest sorted pop-
ulation enter the pulmonary circulation. The rest of the
population (NL = Npop-NR) that have a better fit value
enter the systematic circulation with a new amount in
order to circulate through the body, as modeled below:

BMnew
i,j = BM1,j + pi ∗ (BM3,j − BM2,j) (12)

The systematic circulation also corrects the pi for this
group of population as follows:

pi = F(BMi) − FWorst

FBest − FWorst
, i = 1 : NL (13)

where FWorst and FBest are the worst and best values of
cost function obtained until the current iteration.

The cycle of optimization will be continued for the
specified number of iterations. Similar to other meta-
heuristic algorithms, eachmember of the population will
accept the new position if it gets a better value of the
fitness function.

The CSBO algorithm pseudo-code is summarized in
Algorithm 1.

3. The competitive study based on the standard
real-world benchmark functions: CEC 2005, CEC
2014, and CEC 2017 benchmarks

In order to confirm the functionality of our proposed
inspired approach, named CSBO algorithm, a test bed
of well-known 14 CEC 2005, 30 CEC 2014 and 29 CEC
2017 benchmarks functions is employed in the following
experiments.

3.1. CEC2005 benchmark functions

In this section, the first fourteen CEC 2005 popular test
functions (Y. Wang et al., 2011) have been utilized to
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Table 2. Summary of the selected 14 test functions from CEC 2005 (Y. Wang et al., 2011) for
testing CSBO for global real-parameter optimization (Fmin = 0).

Real-parameter unimodal test functions: [BSmin , BSmax ]

Shifted Sphere F1 = ∑D
i=1 z

2
i , the o = [o1, o2, . . . , oD] (the shifted global

optimum) for all functions. Moreover, the z = x − o for
all shifted functions and all shifted Rotated functions.

[−100, 100]D

Shifted Schwefel’s Problem 1.2 F2 = ∑D
i=1

(∑i
j=1 zj

)2
. [−100, 100]D

Shifted Rotated High
Conditioned Elliptic

F3 = ∑D
i=1 (106)

i−1
D−1 z2i , where z = (x − o) ∗ M, and the

M: orthogonal matrix.
[−100, 100]D

Shifted Schwefel’s Problem 1.2
with Noise in Fitness

F4 =
(∑D

i=1

(∑i
j=1 zj

)2) ∗ (1 + 0.4|N(0, 1)|). [−100, 100]D

Schwefel’s Problem 2.6 with
Global Optimum on Bounds

F5 = max{|Aix − Bi|}, the A is a D∗Dmatrix, Ai is the ith
row of A. Bi = Ai ∗o. o is a D∗1 vector, and oi is a random
number in the range [−100, 100].

[−100, 100]D

Real-parameter multimodal test functions:

Shifted Rosenbrock’s F6 = ∑D−1
i=1 (100(z2i − zi+1)

2 + (zi − 1)2), z = x − o +
1.

[−100, 100]D

Shifted Rotated Griewank’s
without Bounds

F7 = 1
4000

∑D
i=1 (zi)2 −

D∏
i=1

cos
(

zi√
i

)
+ 1, z = (x − o) ∗

M, M = M,(1 + 0.3|N(0, 1)|). M’ is the linear
transformation matrix, condition number= 3
orthogonal matrix.

[−600, 600]D

Shifted Rotated Ackley’s with
Global Optimum on Bounds

F8 = −20exp(−0.2
√
D−1

∑D
i=1 z

2
i ) −

exp
(
D−1 ∑D

i−1 cos(2πzi)
)

+ 20 + e, z = (x − o) ∗ M.

[−32, 32]D

Shifted Rastrigin’s F9 = ∑D
i=1(z

2
i − 10 cos(2πzi) + 10), z = x − o. [−5, 5]D

Shifted Rotated Rastrigin’s F10 = ∑D
i=1(z

2
i − 10 cos(2πzi) + 10), z = (x − o) ∗ M. [−5, 5]D

Shifted Rotated Weierstrass . [−0.5, 0.5]D

Schwefel’s Problem 2.1

F12 =
D∑
i=1

(Ai − Bi(x))
2,

Ai =
D∑
j=1

(aij sinαj + bij cosαj),

Bi(x) =
D∑
j=1

(aij sin xj + bij cos xj),

.

aij , bij are random integer numbers in the range
[−100,100], α is a random number from [−π ,π ].

[−π , π ]D

Real parameter expanded multimodal test functions:

Shifted Expanded Griewank’s
plus Rosenbrock’s Function

F13 = F8(F2(z1, z2)) + . . . + F8(F2(zD−1, zD))

+ .F8(F2(zD , z1))+, z = x − o + 1.
[−3, 1]D

Shifted Rotated Expanded
Schaffer’s F6 Function

F14 = F6(z1, z2) + . . . + F6(zD−1, zD)

+ .F6(zD , z1)+, z = (x − o) ∗ M.
,

z = (x − o) ∗ M

[−100, 100]D

show the performance of the proposed algorithm. These
functions, which have been used in a wide variety of
optimization articles in recent years, are shown inTable 2.

3.1.1. Number of population in CSBO algorithm
This section selects five different populations for our
algorithm and then runs the optimization function.
These populations are 30, 45, 60, 75 and 90. The same
computer did all the simulations 30 times per test func-
tion and 300,000 function evaluations (NFEs) (Y. Wang
et al., 2011) with 30 dimensions.

The simulation results with NR = 15 are given in
Table 3. In the last column, three indexes are shown in
which Nb (the number of the best results) is the num-
ber of tries that the algorithm obtained the best results in

comparisonwith other studied algorithms,Nw (the num-
ber of the worst results) is the number of tries that the
algorithm obtained the worst results compared to other
studied algorithms and Mr (the mean rank) is the aver-
age rank of all obtained tries among all the test functions.
According to this Table 3, the algorithm can performwell
with different populations. For example, the population
of 45 could be an appropriate choice for D = 30. We
chose this number for the rest of our work.

3.1.2. Effect of NR on CSBO performance analysis
In this section, we consider different values of NR, i.e. 5,
10, 15, 20 and 30, to assess the algorithm’s effectiveness.
All the simulations were done by taking 45 populations.
From the results, it is evident that different values of NR
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Table 3. Summary of the results for CSBO from CEC2005 with D = 30 and NR = Npop/3.

Npop = 30 Npop = 45 Npop = 60 Npop = 75 Npop = 90
Functions Mean± Std.R Mean± Std.R Mean± Std.R Mean± Std.R Mean± Std.R

Unimodal F1 0 .0± 0 .0 0 .0± 0 .0 0 .0± 0 .0 0 .0± 0 .0 0 .0± 0 .0
1 1 1 1 1

F2 2.03E−23± 3.38E−23 2.69E−21± 4.38E−21 1.43E−17± 2.26E−17 1.42E−14± 3.46E−14 8.94E−13± 1.33E−12
1 2 3 4 5

F3 34640± 20429 35093± 23108 60587± 30084 48267± 26321 76693± 36766
1 2 4 3 5

F4 27.84± 31.1 0.581± 0.942 0.0629± 0.102 0.0134± 0.0349 0.00829± 0.0155
5 4 3 2 1

F5 740± 537 149± 193 340± 509 55.88± 77.4 116.9± 229
5 3 4 1 2

Basic multimodal F6 2.14± 2.06 0.532± 1.40 0.553± 1.41 0.70± 1.23 3.42± 2.88
4 1 2 3 5

F7 0.0272± 0.0245 0.0177± 0.0145 0.020± 0.0173 0.0128± 0.0144 0.00607± 0.00919
5 3 4 2 1

F8 20.95± 0.0524 20.95± 0.0463 20.96± 0.0355 20.96± 0.0451 20.96± 0.0479
1 1 2 2 2

F9 1.66E−15± 1.83E−15 0 .0± 0 .0 0 .0± 0 .0 0 .0± 0 .0 0 .0± 0 .0
2 1 1 1 1

F10 71.77± 10.74 83.44± 12.06 84.5± 10.88 87.18± 11.23 94.95± 10.18
1 2 3 4 5

F11 31.06± 1.33 30.37± 1.53 30.79± 0.914 31.53± 1.27 31.77± 1.42
3 1 2 4 5

F12 41256± 6491 22139± 23412 49124± 17694 56649± 7280 64075± 11207
2 1 3 4 5

Expanded multimodal F13 2.7± 0.243 3.09± 0.302 3.34± 0.314 3.51± 0.288 3.90± 0.415
1 2 3 4 5

F14 12.84± 0.204 12.91± 0.21 12.87± 0.32 12.98± 0.192 13.07± 0.225
1 3 2 4 5

Nb/Nw/Mr 7/4/2.36 6/0/1.93 2/1/2.64 3/1/2.79 4/9/3.43

have a negligible effect on CSBO. For F2, F3, F6, F9, F11,
and F14, NR = 15 leads to better performance. How-
ever, the efficiency of CSBO deteriorates quickly with the
decrease ofNR to 5 formore text functions (except F1 and
F14). For the rest values ofNR (10, 20, and 30), CSBO has
approximately the same performance asNR = 15. There-
fore, according toTable 4,NR = Npop/3 is an appropriate
choice for our algorithm.

R denotes the algorithm ranking in the correspond-
ing function compared to other algorithms in Table 4, in
which 1 and 5 indicate the best and worst rank, respec-
tively, and this is true for all parts of this paper.

In Figure 3, the summary of the CSBO convergence
curves has been shown based on the results given in
Table 4 to optimizeCEC2005 functions. As it is clear from
these curves, the CSBO has a decent convergence speed
formost functions. According to the figures, although the
convergence characteristic ofNR = 5 for the F9 curve has
the highest convergence rate, its final solution is inferior
compared to other NR values. On the other hand, NR =
15 has the best convergence characteristic. Moreover, the
convergence rates for the NR = 10 and 30 and even NR
= 5 are also acceptable.

3.1.3. Comparisonwith other algorithms
This section proposes the test functions obtained by the
CSBO algorithm compared with other standard algo-
rithms in related articles, as shown in Table 5 with NFEs:
3.00E + 05 for D = 30 and 500,000 for D = 50. The
parameter setting of some competitor algorithms, in this
case, is given in Table 6. In this table, the plus sign (+)
represents that other algorithms outperform the offered
CSBO, the minus sign (−) denotes that other algorithms
underperform the proposed CSBO, and the equal sign
(= ) shows the same functionality.

We compared our algorithm with GL-25 (global and
local real-coded genetic algorithms based on parent-
centric crossover operators) (Y. Wang et al., 2011),
HRCGA (real-coded genetic algorithm) (C. Li et al.,
2011), EPSDE (an ensemble of trial vector generation
approaches and control parameters ofDE) (Y.Wang et al.,
2011), SaDE (DE with strategy adaptation) (Y. Wang
et al., 2011), SLPSO (self-learning particle swarm opti-
mizer) (C. Li et al., 2011), APSO (an adaptive PSO) (C.
Li et al., 2011) and FIPS or FIPSO (a fully informed PSO)
(C. Li et al., 2011). Although the proposed algorithm
is basic, it can conquer other algorithms in the same
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Table 4. Summary of the results CSBO for CEC2005 test functions for testing different NRwith Npop = 45 and D = 30.

NR 5 10 15 20 30
Functions Mean± Std.R Mean± Std.R Mean± Std.R Mean± Std.R Mean± Std.R

Unimodal F1 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0
1 1 1 1 1

F2 1.01E−18± 2.51E−18 1.14E−19± 2.66E−19 2.69E−21± 4.38E−21 4.00E−18± 6.12E−18 7.62E−17± 1.94E−16
3 2 1 4 5

F3 52056± 33375 390224± 27925 35093± 23108 45437± 24326 72386± 41031
4 2 1 3 5

F4 0.526± 0.672 5.15± 19 0.581± 0.942 0.545± 1.81 0.99± 1.46
2 5 3 1 4

F5 304± 354 220± 273 149± 193 139± 249 70.2± 134
5 4 3 2 1

Basic multimodal F6 5.05± 2.95 1.40± 1.81 0.532± 1.40 0.532± 1.40 0.797± 1.65
34 23 11 41 52

F7 0.0228± 0.0115 0.0130± 0.0133 0.0177± 0.0145 0.0121± 0.00914 0.0112± 0.0119
5 3 4 2 1

F8 20.94± 0.0546 20.92± 0.0644 20.95± 0.0463 20.97± 0.0421 20.91± 0.0706
3 2 4 5 1

F9 9.47E−16± 1.63E−15 1.18E−16± 4.59E−16 0.0± 0.0 0.0± 0.0 0.0± 0.0
3 2 1 1 1

F10 88.2± 15.2 81.8± 10.1 83.44± 12.06 89.82± 10.76 89.07± 10.76
3 1 2 5 4

F11 30.7± 1.15 30.4± 1.76 30.37± 1.53 32.05± 1.49 32.2± 1.64

F12 41046± 14303 37680± 8969 22139± 23412 45986± 11205 20768± 24578
4 3 2 5 1

Expanded multimodal F13 2.95± 0.235 2.94± 0.273 3.09± 0.302 3.43± 0.109 3.40± 0.205
2 1 3 5 4

F14 12.91± 0.192 12.91± 0.166 12.91± 0.21 13.03± 0.157 13.00± 0.195
1 1 1 3 2

Nb/Nw/Mr 2/4/3.07 4/1/2.29 7/0/2.0 4/5/3.0 6/3/2.64

circumstance, which shows its effectiveness as a novel
solution for optimization problems. The ‘–’, ‘+ ’, and
‘= ’ denote that the performance of the corresponding
algorithm is worse than, better than, and similar to that
of CSBO, respectively.

From Table 5, it can be found that SaDE and EPSDE
generally have similar performance after CSBO. FIPS
algorithm has the worst performance among all in this
table. In addition, PSO and GA have the same average
ranking. Moreover, SaDE has the most comparable per-
formance to CSBO in the test functions of F6 and F14.
It should be noted that SaDE is an enhanced evolved
algorithm, while CSBO is the first version of its kind.

3.2. CEC 2014 benchmark functions

This section investigates the results of implementing the
CSBO on CEC 2014 benchmark functions.

3.2.1. CSBO initial evaluation in comparisonwith
original classical algorithms
In order to verify the performance of the proposed
CSBO algorithm compared to other algorithms, we have
selected the CEC2014 functions in this section. These are
real-world modeled optimization functions. CEC 2014
functions (unimodal, simple multimodal, hybrid, and
composition benchmark tests) (J. J. Liang et al., 2013)
have been used successfully in many recent articles and,
therefore, in this paper to test the performance of the

proposed CSBO algorithm, we have used them. These
functions are described (Liang et al., 2013).

In this section, we have selected two dimensions, 30
and 50, with 30 runs for each test function. The num-
ber of evolutions in all parts of the article is 300,000 and
500,000 for two dimensions, 30 and 50, respectively. Also,
Npop and NR for these two dimensions are set at 45 and
15 and 60 and 20, respectively. The parameter setting of
some of the competitor algorithms is given in Table 7.

The simulation results for D = 30 are given in
Table 8, compared to the robust and modern algo-
rithms in (X. Chen et al., 2017) e.g. LDWPSO (lin-
early decreasing inertia weight PSO), FIPSO or FIPS,
BLPSO (biogeography-based learning PSO), RCBBOG
(real code biogeography-based optimization with Gaus-
sian mutation), GL-25, and GBABC (Gaussian bare-
bones artificial bee colony). Both tables clearly show that
the proposedCSBOalgorithmhas defeated all other algo-
rithms for most functions (F1, F2, F3, F4, F13, F15, F17,
F18, F20, F F21, F22, F24, F25, F26, F28, and F30). In
addition, increasing the dimension of the functions could
not significantly affect CSBO. Interestingly, the proposed
algorithm never had the worst performance and rank for
both dimensions among the algorithms, indicating the
robustness and reliability of the CSBO. Nevertheless, to
mention that the two algorithms, GBABC and BLPSO,
overcame the CSBO for 7 and 8 test functions ofD = 30,
respectively, which is normal.
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Figure 3. The convergence rates of CSBO in different NR values of Table 4.
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Table 5. Summary of the results for CEC2005 test functions for different algorithms with D = 30 and NFEs = 3.00E+ 05.

GL-25 HRCGA EPSDE SaDE SLPSO APSO FIPS CSBO

Functions
MeanStd.
R/Win

MeanStd.
R/Win

MeanStd.
R/Win

MeanStd.
R/Win

MeanStd.
R/Win

MeanStd.
R/Win

MeanStd.
R/Win MeanStd. R

Unimodal F1 5.60E−27 2.10E−13 0.0 0.0 1.00E−13 7.20E−14 1.30E+ 02 0.00.01
1.76E−26 7.29E−13 0.0 0.0 1.74E−13 1.38E−13 2.47E+ 03

2/– 5/– 1/= 1/= 4/– 3/– 6/–
F2 4.04E+ 01 1.17E+ 01 4.23E−26 8.26E−06 1.82E−02 1.40E−06 1.72E+ 02 2.69E−214.38E−212

6.28E+ 01 1.03E+ 02 4.07E−261/+ 1.65E−054/– 9.53E−025/– 1.57E−053/– 4.44E+ 02
7/– 6/– 8/–

F3 2.19E+ 06 8.01E−13 8.74E+ 05 4.27E+ 05 1.19E−13 7.39E−14 8.87E+ 03 3.51E+ 042.31E+ 045
1.08E+ 06 4.99E−12 3.28E+ 06 2.08E+ 05 1.47E−13 1.43E−13 2.62E+ 05

8/– 3/+ 7/– 6/– 2/+ 1/+ 4/+
F4 9.07E+ 02 1.31E+ 03 3.49E+ 02 1.77E+ 02 1.16E+ 04 9.46E+ 02 7.70E+ 02 5.81E−019.42E−011

4.25E+ 02 3.62E+ 037/– 2.23E+ 03 2.67E+ 02 2.99E+ 04 3.30E+ 03 2.81E+ 03
5/– 3/– 2/– 8/– 6/– 4/–

F5 2.51E+ 03 NA 1.40E+ 03 3.25E+ 03 NA NA NA 1.49E+ 021.93E+ 021
1.96E+ 02 7.12E+ 02 5.90E+ 02

3/– 2/– 4/–
Basic multimodal F6 2.15E+ 01 8.59E+ 00 6.38E−01 5.31E+ 01 1.07E+ 01 2.99E+ 01 3.56E+ 06 5.32E−011.40E+ 001

1.17E+ 00 6.50E+ 01 1.49E+ 002/– 3.25E+ 01 1.40E+ 02 1.68E+ 02 8.31E+ 07
5/– 3/– 7/– 4/– 6/– 8/–

F7 2.78E−02 NA 1.77E−02 1.57E−02 NA NA NA 1.77E−021.45E−022
3.62E−02 1.34E−02 1.38E−02

3/– 2/= 1/+
F8 2.09E+ 01 2.11E+ 01 2.09E+ 01 2.09E+ 01 2.04E+ 01 2.12E+ 01 2.10E+ 01 20.954.63E−023

5.94E−02 3.08E−01 5.81E−02 4.95E−02 8.46E−01 3.57E−01 2.68E−01
2/+ 5/– 2/+ 2/+ 1/+ 6/– 4/–

F9 2.45E+ 01 2.99E+ 01 3.98E−02 2.39E−01 1.17E−13 5.74E+ 00 4.81E+ 01 0.00.01
7.35E+ 00 4.87E+ 01 1.99E−01 4.33E−01 1.79E−13 9.09E+ 00 5.71E+ 01

6/– 7/– 3/– 4/– 2/– 5/– 8/–
F10 1.42E+ 02 1.07E+ 02 5.36E+ 01 4.72E+ 01 1.15E+ 02 1.33E+ 02 1.90E+ 02 8.34E+ 011.21E+ 013

6.45E+ 01 4.07E+ 02 3.03E+ 01 1.01E+ 01 2.49E+ 02 3.00E+ 02 6.04E+ 01
7/– 4/– 2/+ 1/+ 5/– 6/– 8/–

F11 3.27E+ 01 1.67E+ 01 3.56E+ 01 1.65E+ 01 3.29E+ 01 3.04E+ 01 3.75E+ 01 3.03E+ 011.53E+ 003
7.79E+ 00 4.37E+ 01 3.88E+ 00 2.42E+ 00 1.45E+ 01 2.51E+ 01 1.03E+ 02

5/– 2/+ 7/– 1/+ 6/– 4/– 8/–
F12 6.53E+ 04 NA 3.58E+ 04 3.02E+ 03 NA NA NA 2.21E+ 042.34E+ 042

4.69E+ 04 7.05E+ 03 2.33E+ 03
4/– 3/– 1/+

Expandedmultimodal F13 6.23E+ 00 NA 1.94E+ 00 3.94E+ 00 NA NA NA 3.09E+ 003.02E−012
4.88E+ 00 1.46E−01 2.81E−01

4/– 1/+ 3/–
F14 1.31E+ 011.84E−01 NA 1.35E+ 01 1.26E+ 01 NA NA NA 1.29E+ 012.10E−012

3/– 2.09E−01 2.83E−01
4/– 1/+

+/–/= 1/13/0 2/7/0 4/8/2 6/7/1 2/7/0 1/8/0 1/8/0 –

Mr/Final rank 4.5714/6 4.6667/7 2.8571/3 2.7143/2 4.2222/4 4.4444/5 6.4444/8 2.0714/1

NA: Not Available.
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Figure 3. Continued.

Examining the table results, we find that although
CSBO has obtained inappropriate rankings (rank 4) for
the three functions 9, 27 and 29, it has a partial difference
with the best mean result. For example, for function 29,
the best mean result is 1.02E+ 03 obtained by the ultra-
modern genetic algorithm GL-25, while this result for
CSBO is 1.34E+ 03, which is acceptable. Although CSBO
did its worst performance with a rank of 5 for function 7,
it got the best solution for 16 test functions. Based on the
last three rows of the table, we can consider it a strong and
appropriate emerging algorithm.

Table 9 contains the simulation results for the LDW-
PSO, FIPSO, BLPSO, RCBBOG, GL-25, and GBABC in
(X. Chen et al., 2017) and CSBO (this study) algorithms
for D = 50. According to this table, the Mr value for a
dimension size of 30 is 1.8, while the value for a dimen-
sion of 50 is 2.0333. It demonstrates that increasing the
dimension reduces the performance of CSBO. Further-
more, it shows that the performance of CSBO partially
decreases by increasing the dimension. Nevertheless, it
still has the first ranking with the best functionality for
half of the test functions without any worst results.
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(7)

(11) (13)

(9)

(8)

(10)

(11)

(12)

(13)

Table 6. The parameter setting of different algorithms.

Algorithm Comparison

GL-25 PG = 25%, NFG = 250, NMG = 500, NFL = 5,
NML = 100.

HRCGA PG = 25%, NFG = 200, NMG = 400, NFL = 5,
NML = 100.

EPSDE Each member in the initial population is
assigned a mutation strategy and parameter
values randomly selected from the
respective pools. The mutation strategy and
parameter values produce better offspring
survive while those who fail to produce
better offspring are reinitialized.

SaDE The F values are randomly generated with a
mean and standard deviation of 0.5 and 0.3.
The mutation strategy and the parameter
CR are self-adapted based on their previous
performance.

SLPSO ω = 0.9− 0.5 ∗ Iter
Itermax

, η = 1.496, γ = 0.01.
APSO ω = [0.4, 0.9], η1 + η1 = [3, 4] with adapting

tuning and global star for population
topology.

FIPS χ = 0.7298,
∑

ci = 4.1 with local URing for
population topology.

3.2.2. A comparison of CSBOwith the state-of-the-art
PSO algorithms (PSOs)
In this section, to better demonstrate the performance
of the proposed CSBO, we compare our results with a
novel example of PSO called promotional particle swarm

Table 7. Parameters of some competitors for CEC2014 test func-
tions.

Algorithm Parameter settings

LDWPSO Npop = 40, inertia weight w linearly
decreasing from 0.9 to 0.4, acceleration
coefficients c1 = c2 = 2, Global topology

FIPSO Npop = 40, χ = 0.729,
∑

ci = 4.1 with local
URing for population topology.

BLPSO Npop = 40, inertia weight w linearly
decreasing from 0.9 to 0.2, acceleration
coefficients c1 = c2 = 1.496, the maximum
possible immigration and emigration rates I
= E = 1.

GL-25 PG = 25%, NFG = 250, NMG = 500, NFL = 5,
NML = 100.

RCBBOG Npop = 100, maximum habitat probability
mmax = 0.005, maximum possible
immigration and emigration rates I = E =
1, linear migration model

GBABC Npop = 60, limit= 100, crossover probability
CR = 0.3.

optimizer (PPSO) (L. Zhang et al., 2021), which has
been recently introduced, as well as ten other modern
and basic algorithms. The ten state-of-the-art PSO algo-
rithms (L. Zhang et al., 2021) are included: GPSO (global
version PSO with inertia weight) (Eberhart & Kennedy,
1995), FIPS-URing (FIPSwithURing topology) (Mendes
et al., 2004), DMS-PSO (a dynamic multiswarm PSO)
(J.-J. Liang & Suganthan, 2005), CLPSO (a comprehen-
sive learning PSO) (J. J. Liang et al., 2006), MLPSO
(a multilayer PSO) (L. Wang et al., 2014), SLPSO (a
social learning PSO) (R. Cheng & Jin, 2015), DTTPSO (a
dynamic tournament topology strategy in PSO) (L.Wang
et al., 2016), HFPSO (a hybrid firefly and PSO algorithm)
(Aydilek, 2018), PhaPSO (a phasor PSO) (Ghasemi et al.,
2019), and XPSO (an expanded PSO) (Xia et al., 2020).

The results for dimension 30 are given in Table 10
based on the mean value and standard deviation. The
winning sign is defined by +, indicating the CSBO has
won over the competitor algorithm in that function. In
addition, the minus sign – and equity sign = show the
failure and the same performance of CSBO compared
to the corresponding algorithm. Total statistical results
are given in Figures 4 and 5. As can be seen from the
results of the first three unimodal functions and sim-
ple multimodal function F4, CSBO results are significant
and superior to PSOs. On the other hand, the perfor-
mance of the proposed algorithm for the last three test
functions, F28, F29 and F30, which are composition test
functions, is average and relatively poor compared to
PSOs. CSBO scored the worst ranking of 7 for these three
test functions.

Looking at Figure 4, where Sr is the sum of the total
rank of the algorithm, CSBO, with an average rank of
2.6333, is the decisive winner of this comparative study.
Its closest algorithm is PPSO, with an average rank of
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Table 8. Summary of the results for CEC2014 test functions for different algorithms with D = 30 and NFEs = 3.00E+ 05.

LDWPSO FIPSO BLPSO RCBBOG GL-25 GBABC CSBO
Function MeanStd.R/Win MeanStd.R/Win MeanStd.R/Win MeanStd.R/Win MeanStd.R/Win MeanStd.R/Win MeanStd.R

F1 Unimodal 3.41E+ 06 1.01E+ 07 2.99E+ 06 3.77E+ 06 8.52E+ 05 9.61E+ 06 1.06E+ 04
3.69E+ 06 3.81E+ 067/− 1.10E+ 06 2.16E+ 065/− 9.84E+ 05 2.90E+ 06 1.06E+ 04

4/− 3/− 2/− 6/− 1
F2 3.02E+ 01 3.08E+ 03 5.09E+ 03 9.36E+ 03 3.37E+ 03 2.03E+ 01 8.72E−143.64E−14

5.14E+ 01 2.97E+ 034/− 4.25E+ 03 1.08E+ 047/− 5.27E+ 03 5.97E+ 01 1
3/− 6/− 5/− 2/−

F3 9.31E+ 01 1.85E+ 03 3.67E+ 00 1.53E+ 04 2.18E−01 9.70E+ 01 4.60E−3
1.04E+ 02 9.64E+ 026/− 1.16E+ 01 1.19E+ 047/− 6.56E−01 1.42E+ 02 1.56E−21

4/− 3/− 2/− 5/−
F4 Simplemultimodal 1.39E+ 02 1.99E+ 02 2.68E+ 01 7.70E+ 01 9.17E+ 01 3.52E+ 01 4.43E+ 00

3.72E+ 01 2.36E+ 017/− 3.47E+ 01 3.37E+ 014/− 1.02E+ 01 3.32E+ 01 1.67E+ 01
6/− 2/− 5/− 3/− 1

F5 2.09E+ 01 2.09E+ 01 2.08E+ 01 2.00E+ 01 2.10E+ 01 2.04E+ 01 2.04E+ 01
8.97E−02 5.66E−024/− 7.01E−02 4.44E−031/+ 3.45E−02 3.44E−02 4.98E−022

4/− 3/− 5/− 2/=
F6 1.08E+ 01 6.25E+ 00 9.37E−06 2.09E+ 01 7.25E+ 00 5.74E+ 00 6.05E+ 00

2.50E+ 00 2.56E+ 00 3.20E−05 2.94E+ 00 3.61E+ 00 2.07E+ 00 6.61E+ 00
6/− 4/− 1/+ 7/− 5/− 2/+ 3

F7 1.50E−02 1.25E−04 9.47E−14 1.98E−02 1.70E−11 2.77E−13 2.62E−3
1.33E−02 6.15E−04 4.31E−14 2.75E−02 4.41E−11 9.76E−14 8.33E−3

6/− 4/+ 1/+ 7/− 3/+ 2/+ 5
F8 1.93E+ 01 4.97E+ 01 2.32E−01 2.83E+ 01 2.38E+ 01 1.78E−13 6.63E−02 2.27E−01

4.58E+ 00 1.04E+ 01 5.65E−01 7.33E+ 00 6.23E+ 00 6.46E−14 2
4/− 7/− 3/− 6/− 5/− 1/+

F9 5.75E+ 01 1.45E+ 02 3.54E+ 01 5.54E+ 01 5.39E+ 01 4.86E+ 01 5.45E+ 01
1.73E+ 01 1.16E+ 01 6.93E+ 00 1.51E+ 01 5.34E+ 01 1.03E+ 01 7.29E+ 00

6/− 7/− 1/+ 5/− 3/+ 2/+ 4
F10 4.59E+ 02 2.13E+ 03 8.83E+ 01 1.61E+ 02 1.11E+ 03 1.01E+ 00 9.55E+ 00

2.16E+ 02 5.09E+ 02 6.48E+ 01 1.22E+ 02 4.57E+ 02 7.56E−01 3.00E+ 00
5/− 7/− 3/− 4/− 6/− 1/+ 2

F11 2.93E+ 03 6.11E+ 03 2.08E+ 03 3.22E+ 03 5.55E+ 03 2.65E+ 03 2.51E+ 03
8.68E+ 02 3.63E+ 02 3.82E+ 02 5.42E+ 02 2.13E+ 03 2.73E+ 02 2.30E+ 03

4/− 7/− 1/+ 5/− 6/− 3/− 2
F12 1.75E+ 00 2.48E+ 00 8.83E−01 2.29E−01 2.96E+ 00 5.81E−01 5.01E−01

5.16E−01 2.73E−01 1.49E−01 1.17E−01 1.93E−01 7.65E−02 1.00E−01
5/− 6/− 4/− 1/+ 7/− 3/− 2

F13 4.81E−01 2.96E−01 2.21E−01 3.85E−01 3.22E−01 1.70E−01 1.62E−01
1.32E−01 3.33E−02 2.85E−02 9.87E−02 4.93E−02 2.59E−02 3.89E−02

7/− 4/− 3/− 6/− 5/− 2/− 1
F14 3.01E−01 2.85E−01 2.14E−01 4.77E−01 2.95E−01 9.57E−02 2.07E−01

4.65E−02 3.16E−02 2.88E−02 2.24E−01 2.80E−02 2.05E−02 3.15E−02
6/− 4/− 3/− 7/− 5/− 1/+ 2

F15 7.60E+ 00 1.50E+ 01 7.41E+ 00 4.37E+ 01 1.27E+ 01 5.43E+ 00 4.86E+ 00
2.56E+ 00 9.32E−01 8.49E−01 1.49E+ 01 5.13E+ 00 1.17E+ 00 7.73E−01

4/− 6/− 3/− 7/− 5/− 2/− 1
F16 1.08E+ 01 1.18E+ 01 9.67E+ 00 1.18E+ 01 1.21E+ 01 1.08E+ 01 1.08E+ 01

8.30E−01 3.17E−01 4.92E−01 7.54E−01 3.10E−01 3.42E−01 3.31E−01
2/= 3/− 1/+ 3/− 4/− 2/= 2

(continued)
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Table 8. Continued.

LDWPSO FIPSO BLPSO RCBBOG GL-25 GBABC CSBO
Function Mean Std.R/Win Mean Std.R/Win Mean Std.R/Win Mean Std.R/Win Mean Std.R/Win Mean Std.R/Win Mean Std.R

F17 Hybrid 3.07E+ 05 4.20E+ 05 1.86E+ 05 1.13E+ 06 1.68E+ 05 9.94E+ 05 1.64E+ 03
1.75E+ 05 2.19E+ 05 1.11E+ 05 7.61E+ 05 8.63E+ 04 4.81E+ 05 1.15E+ 03

4/− 5/− 3/− 7/− 2/− 6/− 1
F18 2.31E+ 03 2.94E+ 03 9.05E+ 02 3.67E+ 03 2.34E+ 02 2.24E+ 03 5.64E+ 01

2.30E+ 03 3.37E+ 03 1.20E+ 03 4.95E+ 03 2.28E+ 02 2.79E+ 03 4.16E+ 01
5/− 6/− 3/− 7/− 2/− 4/− 1

F19 6.98E+ 00 5.72E+ 00 3.74E+ 00 1.49E+ 01 5.01E+ 00 4.90E+ 00 4.45E+ 00
2.55E+ 006/− 1.45E+ 005/− 6.12E−011/+ 1.11E+ 017/− 5.63E−014/− 7.26E−013/− 9.81E−012

F20 4.87E+ 02 2.23E+ 03 3.12E+ 02 3.83E+ 04 1.62E+ 02 1.36E+ 03 2.80E+ 01
2.91E+ 02 1.28E+ 03 3.48E+ 02 1.81E+ 04 6.32E+ 01 7.13E+ 02 1.86E+ 01

4/− 6/− 3/− 7/− 2/− 5/− 1
F21 8.77E+ 04 9.08E+ 04 3.85E+ 04 4.35E+ 05 6.21E+ 04 1.11E+ 05 3.11E+ 02

6.75E+ 04 5.86E+ 04 3.19E+ 04 3.50E+ 05 2.82E+ 04 5.50E+ 04 1.05E+ 02
4/− 5/− 2/− 7/− 3/− 6/− 1

F22 1.99E+ 02 1.71E+ 02 1.16E+ 02 4.90E+ 02 1.53E+ 02 1.29E+ 02 1.05E+ 02
1.34E+ 02 9.30E+ 01 6.86E+ 01 1.97E+ 02 4.95E+ 01 7.45E+ 01 8.05E+ 01

6/− 5/− 2/− 7/− 4/− 3/− 1
F23 Composition 3.15E+ 02 3.16E+ 02 3.15E+ 02 3.15E+ 02 3.15E+ 02 3.12E+ 02 3.15E+ 02

1.46E−01 3.33E−01 6.11E−13 1.68E−02 2.68E−09 1.79E+ 01 8.22E−13
2/= 3/− 2/= 2/= 2/= 1/+ 2

F24 2.31E+ 02 2.24E+ 02 2.22E+ 02 2.47E+ 02 2.22E+ 02 2.03E+ 02 2.01E+ 02
7.12E+ 00 5.95E−01 7.39E−01 4.37E+ 00 4.75E−01 5.39E+ 00 4.51E+ 00

5/− 4/− 3/− 6/− 3/− 2/− 1
F25 2.08E+ 02 2.08E+ 02 2.05E+ 02 2.15E+ 02 2.07E+ 02 2.08E+ 02 2.03E+ 02

1.75E+ 00 1.08E+ 00 4.41E−01 6.88E+ 00 1.31E+ 00 9.34E−01 7.64E−01
4/− 4/− 2/− 5/− 3/− 4/− 1

F26 1.17E+ 02 1.00E+ 02 1.04E+ 02 1.01E+ 02 1.00E+ 02 1.00E+ 02 1.00E+ 02
3.79E+ 01 4.48E−02 1.82E+ 01 1.48E−01 4.36E−02 4.85E−02 6.71E−02

4/− 1/= 3/− 2/− 1/= 1/= 1

F27 5.46E+ 02 3.33E+ 02 3.08E+ 02 6.89E+ 02 3.02E+ 02 4.03E+ 02 3.14E+ 02
1.06E+ 02 4.96E+ 01 2.94E+ 01 2.20E+ 02 6.65E−01 1.01E+ 00 5.23E+ 01

6/− 3/+ 2/+ 7/− 1/+ 5/− 4
F28 1.20E+ 03 1.30E+ 03 7.87E+ 02 1.14E+ 03 8.92E+ 02 7.96E+ 02 7.43E+ 02

3.30E+ 02 7.72E+ 01 5.22E+ 01 2.44E+ 02 2.65E+ 01 4.57E+ 01 5.08E+ 015
6/− 7/− 2/− 5/− 4/− 3/− 1

F29 1.26E+ 03 4.01E+ 03 1.39E+ 03 1.50E+ 03 1.02E+ 03 1.12E+ 03 1.34E+ 03
8.50E+ 02 1.85E+ 03 1.39E+ 02 3.29E+ 02 1.06E+ 02 1.99E+ 02 3.00E+ 03

3/+ 7/− 5/− 6/− 1/+ 2/+ 4
F30 3.59E+ 03 4.40E+ 03 1.19E+ 03 4.20E+ 03 1.26E+ 03 2.02E+ 03 1.11E+ 03

1.68E+ 03 1.60E+ 03 2.49E+ 02 4.67E+ 03 2.66E+ 02 6.95E+ 02 9.41E+ 02
5/− 7/− 2/− 6/− 3/− 4/− 1

+/−/= 1/27/2 2/27/1 7/22/1 2/27/1 4/24/2 8/19/3 #
Nb/Nw/Mr 0/2/4.6667 1/10/5.1667 6/0/2.5333 2/15/5.4333 2/2/3.60 5/0/2.9333 16/0/1.80
Final rank 5 6 2 7 4 3 1
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Table 9. Summary of the results for CEC 2014 test functions for different algorithms with D= 50 and NFEs= 5.00E+ 05.

Function LDWPSO FIPSO BLPSO RCBBOG GL-25 GBABC CSBO

F1 Unimodal 6.54E+ 06 3.43E+ 07 5.10E+ 06 3.35E+ 06 2.14E+ 06 8.82E+ 06 1.86E+ 05
5.07E+ 06 9.04E+ 06 1.28E+ 06 1.39E+ 06 2.03E+ 06 1.85E+ 06 9.81E+ 04

5/− 7/− 4/− 3/− 2/− 6/− 1
F2 3.32E+ 03 2.97E+ 04 3.44E+ 03 3.52E+ 03 2.29E+ 03 5.74E+ 03 2.20E+ 03

4.67E+ 03 3.10E+ 04 2.35E+ 03 4.81E+ 03 1.17E+ 03 7.08E+ 03 3.06E+ 03
3/− 7/− 4/− 5/− 2/− 6/− 1

F3 2.93E+ 03 1.15E+ 04 4.23E+ 01 3.41E+ 04 3.41E+ 02 1.35E+ 03 1.06E+ 02
2.16E+ 03 2.39E+ 03 8.97E+ 01 1.66E+ 04 4.32E+ 02 1.02E+ 03 1.48E+ 02

5/− 6/− 1/+ 7/− 3/− 4/− 2
F4 Simple 1.89E+ 02 2.68E+ 02 8.64E+ 01 9.76E+ 01 9.54E+ 01 8.75E+ 01 3.00E+ 01

Multimodal 5.58E+ 01 3.70E+ 01 5.04E+ 00 3.40E+ 01 1.55E+ 00 2.68E+ 01 3.25E+ 01
6/− 7/− 2/− 5/− 4/− 3/− 1

F5 2.11E+ 01 2.11E+ 01 2.09E+ 01 2.00E+ 01 2.12E+ 01 2.06E+ 01 2.03E+ 01
7.13E−02 3.65E−02 5.07E−02 5.33E−05 2.01E−02 3.93E−02 2.63E−02

5/− 5/− 4/− 1/+ 6/− 3/− 2
F6 2.60E+ 01 2.02E+ 01 9.22E−02 4.13E+ 01 3.80E+ 00 1.38E+ 01 2.27E+ 01

4.37E+ 00 5.56E+ 00 3.21E−01 5.60E+ 00 3.26E+ 00 3.83E+ 00 2.71E+ 00
6/− 4/+ 1/+ 7/− 2/+ 3/+ 5

F7 9.11E−03 6.07E−05 2.92E−13 1.42E−02 1.57E−08 8.53E−13 4.93E−05
9.46E−03 1.72E−04 6.46E−14 7.10E−03 4.57E−08 5.12E−13 1.91E−04

6/− 5/− 1/+ 7/− 3/+ 2/+ 4

F8 4.79E+ 01 1.60E+ 02 4.97E−01 5.78E+ 01 5.09E+ 01 4.17E−13 2.61E+ 01
1.17E+ 01 1.70E+ 01 8.16E−01 1.07E+ 01 9.19E+ 00 6.89E−14 2.53E+ 00

4/− 7/− 2/+ 6/− 5/− 1/+ 3
F9 1.38E+ 02 3.25E+ 02 7.10E+ 01 1.06E+ 02 1.12E+ 02 1.11E+ 02 1.08E+ 02

2.28E+ 01 1.80E+ 01 9.02E+ 00 2.48E+ 01 1.06E+ 02 1.83E+ 01 9.95E+ 00
6/− 7/− 1/+ 2/+ 5/− 4/− 3

F10 1.09E+ 03 6.63E+ 03 3.63E+ 02 5.54E+ 02 2.52E+ 03 3.75E+ 00 9.28E+ 02
4.06E+ 02 5.84E+ 02 1.81E+ 02 2.92E+ 02 8.26E+ 02 2.30E+ 00 1.07E+ 02

5/− 7/− 2/+ 3/+ 6/− 1/+ 4
F11 6.12E+ 03 1.26E+ 04 4.46E+ 03 5.79E+ 03 1.29E+ 04 5.92E+ 03 5.57E+ 03

2.42E+ 03 3.03E+ 02 4.77E+ 02 8.05E+ 02 1.51E+ 03 3.86E+ 02 3.80E+ 02
5/− 6/− 1/+ 3/− 7/− 4/− 2

F12 2.65E+ 00 3.36E+ 00 8.77E−01 2.49E−01 3.81E+ 00 6.96E−01 1.03E+ 00
5.62E−01 2.69E−01 1.18E−01 8.51E−02 2.06E−01 6.71E−02 7.71E−02

5/− 6/− 3/+ 1/+ 7/− 2/+ 4
F13 5.83E−01 4.41E−01 2.86E−01 5.26E−01 4.54E−01 2.21E−01 2.15E−01

1.19E−01 4.78E−02 3.72E−02 1.20E−01 5.48E−02 3.42E−02 4.52E−02
7/− 4/− 3/− 6/− 5/− 2/− 1

F14 4.07E−01 3.48E−01 2.65E−01 5.47E−01 3.45E−01 1.12E−01 3.31E−01
1.91E−01 3.81E−02 2.42E−02 2.50E−01 2.89E−02 1.55E−02 3.56E−02

6/− 5/− 2/+ 7/− 4/− 1/+ 3
F15 1.88E+ 01 3.22E+ 01 1.48E+ 01 9.56E+ 01 2.29E+ 01 1.27E+ 01 1.22E+ 01

6.07E+ 00 1.41E+ 00 1.33E+ 00 1.96E+ 01 1.22E+ 01 2.73E+ 00 1.19E+ 00
3/− 6/− 2/− 7/− 5/− 4/− 1

F16 2.08E+ 01 2.15E+ 01 1.82E+ 01 2.13E+ 01 2.16E+ 01 1.99E+ 01 2.03E+ 01
8.41E−01 3.10E−01 4.73E−01 6.47E−01 3.34E−01 3.26E−01 2.85E−01

4/− 6/− 1/+ 5/− 7/− 2/+ 3

(continued)
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Table 9. Continued.

Function LDWPSO FIPSO BLPSO RCBBOG GL-25 GBABC CSBO

F17 Hybrid 5.52E+ 05 1.78E+ 06 5.97E+ 05 9.61E+ 05 4.50E+ 05 2.52E+ 06 8.36E+ 03
4.48E+ 05 7.18E+ 05 2.10E+ 05 5.13E+ 05 2.06E+ 05 1.14E+ 06 3.70E+ 03

3/− 6/− 4/− 5/− 2/− 7/− 1
F18 5.38E+ 02 1.18E+ 03 3.73E+ 02 1.33E+ 03 5.04E+ 02 1.21E+ 03 2.80E+ 02

4.59E+ 02 9.53E+ 02 3.68E+ 02 1.28E+ 03 2.72E+ 02 1.08E+ 03 2.91E+ 02
4/− 5/− 2/− 7/− 3/− 6/− 1

F19 4.37E+ 01 6.51E+ 01 2.16E+ 01 2.27E+ 01 3.44E+ 01 1.36E+ 01 1.21E+ 01
2.82E+ 01 1.91E+ 01 9.78E+ 00 5.28E+ 00 5.67E+ 00 2.93E+ 00 1.60E+ 00

6/− 7/− 3/− 4/− 5/− 2/− 1
F20 1.52E+ 03 1.86E+ 03 2.57E+ 02 7.82E+ 04 4.30E+ 02 5.24E+ 03 1.05E+ 02

7.99E+ 02 6.23E+ 02 1.41E+ 02 3.66E+ 04 2.34E+ 02 1.63E+ 03 4.26E+ 01
4/− 5/− 2/− 7/− 3/− 6/− 1

F21 3.51E+ 0 1.19E+ 06 3.80E+ 0 1.42E+ 06 3.55E+ 0 1.64E+ 0 1.97E+ 03
52.56E+ 05 4.72E+ 05 51.44E+ 05 7.65E+ 05 51.56E+ 05 65.15E+ 05 1.88E+ 03

2/− 5/− 4/− 6/− 3/− 7/− 1
F22 8.20E+ 02 1.02E+ 03 2.64E+ 02 1.11E+ 03 6.00E+ 02 4.10E+ 02 3.98E+ 02

2.65E+ 02 2.84E+ 02 1.30E+ 02 3.82E+ 02 4.25E+ 02 1.74E+ 02 1.64E+ 02
5/− 6/− 1/+ 7/− 4/− 3/− 2

F23 Composition 3.45E+ 02 3.51E+ 02 3.44E+ 02 3.44E+ 02 3.44E+ 02 3.39E+ 02 3.44E+ 02
7.79E−01 1.26E+ 00 2.56E−13 2.60E−04 2.07E−09 2.63E+ 01 3.80E−13

3/− 4/− 2/= 2/= 2/= 1/+ 2
F24 2.76E+ 02 2.58E+ 02 2.58E+ 02 2.98E+ 02 2.60E+ 02 2.49E+ 02 2.54E+ 02

3.71E+ 00 4.02E+ 00 4.07E+ 00 7.16E+ 00 4.97E+ 00 1.64E+ 01 2.15E+ 00
5/− 3/− 3/− 6/− 4/− 1/+ 2

F25 2.19E+ 02 2.21E+ 02 2.10E+ 02 2.27E+ 02 2.18E+ 02 2.17E+ 02 2.08E+ 02
3.29E+ 00 2.16E+ 00 7.36E−01 9.51E+ 00 2.86E+ 00 1.85E+ 00 4.36E+ 00

5/− 6/− 2/− 7/− 4/− 3/− 1
F26 1.37E+ 02 1.39E+ 02 1.47E+ 02 1.40E+ 02 1.17E+ 02 1.00E+ 02 1.00E+ 02

4.91E+ 01 5.11E+ 01 5.08E+ 01 4.96E+ 01 3.78E+ 01 8.14E−02 4.21E−02
3/− 4/− 6/− 5/− 2/− 1/= 1

F27 1.01E+ 03 6.99E+ 02 3.24E+ 02 1.33E+ 03 3.33E+ 02 6.18E+ 02 2.71E+ 02
8.97E+ 01 1.80E+ 02 2.85E+ 01 9.56E+ 01 2.79E+ 01 1.71E+ 02 6.51E+ 01

6/− 5/− 2/− 7/− 3/− 4/− 1
F28 2.26E+ 03 2.88E+ 03 1.14E+ 03 1.84E+ 03 1.29E+ 03 1.23E+ 03 1.11E+ 03

6.77E+ 02 2.18E+ 02 4.20E+ 01 2.47E+ 02 8.01E+ 01 9.26E+ 01 6.12E+ 01
6/− 7/− 2/− 5/− 4/− 3/− 1

F29 1.36E+ 07 2.62E+ 04 1.36E+ 03 2.39E+ 03 1.41E+ 03 1.32E+ 03 6.50E+ 03
4.24E+ 07 1.31E+ 04 1.82E+ 02 7.93E+ 02 1.22E+ 02 2.69E+ 02 1.83E+ 04

7/− 6/− 2/+ 4/+ 3/+ 1/+ 5
F30 3.17E+ 04 5.20E+ 04 9.09E+ 03 1.33E+ 04 9.91E+ 03 9.41E+ 03 8.95E+ 03

1.04E+ 04 1.10E+ 04 3.05E+ 02 2.03E+ 03 3.17E+ 02 5.36E+ 02 4.96E+ 02
6/− 7/− 2/− 5/− 4/− 3/− 1

+/−/= 0/30/0 1/29/0 12/17/1 5/24/1 3/26/1 10/19/1 #
Nb/Nw/Mr 0/2/4.8667 0/10/5.7000 7/1/2.3667 2/11/5.0667 0/4/3.9667 7/2/3.2000 15/0/2.0333
Final rank 5 7 2 6 4 3 1
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Table 10. A comparison of CSBO with the state-of-the-art PSOs for CEC 2014 functions with NFEs= 3.00E+ 05.

F1 F2 F3

Optimizer Mean Std. R/Win Mean Std. R/Win Mean Std. R/Win

GPSO 1.85E+ 06 1.17E+ 06 8/+ 8.87E+ 02 1.69E+ 03 5/+ 8.74E+ 01 1.24E+ 02 6/+
FIPS-URing 6.27E+ 07 2.08E+ 07 12/+ 4.05E+ 04 3.30E+ 04 11/+ 5.47E+ 04 2.46E+ 04 12/+
DMS-PSO 1.34E+ 07 3.76E+ 06 11/+ 2.09E+ 05 7.68E+ 05 12/+ 4.07E+ 03 1.25E+ 03 9/+
CLPSO 7.62E+ 06 3.93E+ 06 10/+ 2.09E+ 03 2.62E+ 03 7/+ 1.08E+ 01 9.35E+ 00 4/+
MLPSO 5.32E+ 05 3.74E+ 05 6/+ 6.00E−01 2.12E+ 00 2/+ 8.20E+ 00 1.79E+ 01 3/+
SLPSO 5.09E+ 05 3.84E+ 05 5/+ 1.08E+ 04 1.09E+ 04 10/+ 7.14E+ 03 7.36E+ 03 11/+
DTTPSO 1.05E+ 05 5.20E+ 04 2/+ 8.38E+ 03 3.54E+ 03 9/+ 4.30E+ 03 1.89E+ 03 10/+
HFPSO 3.98E+ 05 2.80E+ 05 4/+ 2.34E+ 03 8.74E+ 03 8/+ 1.89E+ 00 4.00E+ 00 2/+
PhaPSO 1.31E+ 06 1.70E+ 06 7/+ 1.16E+ 03 6.29E+ 03 6/+ 1.61E+ 03 8.81E+ 03 8/+
XPSO 3.69E+ 06 4.85E+ 06 9/+ 3.21E+ 02 5.99E+ 02 4/+ 1.72E+ 01 2.06E+ 01 5/+
PPSO 2.47E+ 05 1.32E+ 05 3/+ 3.00E+ 01 3.65E+ 01 3/+ 1.67E+ 02 2.05E+ 02 7/+
CSBO 1.06E+ 04 1.06E+ 04 1/# 8.72E−14 3.64E−14 1/# 4.60E−03 1.56E−02 1/#

F4 F5 F6

GPSO 2.82E+ 01 1.09E+ 01 7/+ 2.08E+ 01 7.55E−02 6/+ 6.74E+ 00 2.00E+ 00 5/+
FIPS-URing 2.66E+ 01 4.98E−01 5/+ 2.10E+ 01 5.21E−02 8/+ 3.81E+ 01 1.60E+ 00 12/+
DMS-PSO 2.79E+ 01 8.03E−01 6/+ 2.06E+ 01 6.24E−02 4/+ 8.70E+ 00 1.39E+ 00 7/+
CLPSO 9.01E+ 01 4.54E+ 01 11/+ 2.04E+ 01 1.26E−01 3/= 5.45E+ 00 3.26E+ 00 2/−
MLPSO 1.26E+ 01 1.15E+ 01 2/+ 2.07E+ 01 2.27E−01 5/+ 1.50E+ 01 4.03E+ 00 10/+
SLPSO 3.17E+ 01 2.83E+ 01 9/+ 2.09E+ 01 5.08E−02 7/+ 8.54E−01 9.31E−01 1 /−
DTTPSO 1.61E+ 01 2.22E+ 01 3/+ 2.09E+ 01 5.42E−02 7/+ 8.84E+ 00 1.87E+ 00 8/+
HFPSO 2.94E+ 01 4.42E+ 01 8/+ 2.00E+ 01 2.22E−02 1 /− 9.73E+ 00 3.96E+ 00 9/+
PhaPSO 7.67E+ 01 4.15E+ 01 10/+ 2.01E+ 01 1.79E−01 2/− 2.68E+ 01 3.44E+ 00 11/+
XPSO 1.21E+ 02 4.89E+ 01 12/+ 2.09E+ 01 1.17E−01 7/+ 5.48E+ 00 2.41E+ 00 3/−
PPSO 2.14E+ 01 1.03E+ 01 4/+ 2.04E+ 01 3.50E−01 3/= 7.60E+ 00 2.01E+ 00 6/+
CSBO 4.43E+ 00 1.67E+ 01 1 /# 2.04E+ 01 4.98E−02 3/# 6.05E+ 00 6.61E+ 00 4/#

F7 F8 F9

GPSO 1.35E−02 1.58E−02 10/+ 2.35E+ 01 5.71E+ 00 5/+ 6.11E+ 01 1.76E+ 01 6/+
FIPS-URing 8.99E−05 2.95E−04 1 /− 8.75E+ 01 1.21E+ 01 12/+ 1.66E+ 02 1.14E+ 01 11/+
DMS-PSO 2.01E−01 1.65E−01 12/+ 5.55E+ 01 5.64E+ 00 9/+ 7.82E+ 01 9.22E+ 00 8/+
CLPSO 1.90E−03 5.23E−03 5/− 3.58E+ 00 1.95E+ 00 2/+ 3.89E+ 01 1.09E+ 01 2/−
MLPSO 5.58E−03 7.64E−03 7/+ 4.22E+ 01 8.59E+ 00 7/+ 7.06E+ 01 2.06E+ 01 7/+
SLPSO 1.56E−03 4.41E−03 4/− 1.66E+ 01 3.51E+ 00 3/+ 1.78E+ 01 5.38E+ 00 1 /−
DTTPSO 7.38E−04 4.04E−03 2/− 7.99E+ 01 1.12E+ 01 11/+ 7.88E+ 01 1.02E+ 01 9/+
HFPSO 1.11E−02 1.13E−02 9/+ 5.37E+ 01 1.87E+ 01 8/+ 7.91E+ 01 2.54E+ 01 10/+
PhaPSO 1.65E−02 1.90E−02 11/+ 7.01E+ 01 1.79E+ 01 10/+ 1.72E+ 02 2.87E+ 01 12/+
XPSO 9.67E−03 1.31E−02 8/+ 2.59E+ 01 9.44E+ 00 6/+ 4.17E+ 01 1.27E+ 01 3/−
PPSO 8.22E−04 2.53E−03 3/− 2.21E+ 01 6.99E+ 00 4/+ 4.80E+ 01 1.14E+ 01 4/−
CSBO 2.62E−03 8.33E−03 6/# 6.63E−02 2.27E−01 1 /# 5.45E+ 01 7.29E+ 00 5/#

F10 F11 F12

GPSO 6.41E+ 02 1.91E+ 02 6/+ 2.69E+ 03 6.26E+ 02 6/+ 1.25E+ 00 7.00E−01 8/+
FIPS-URing 6.57E+ 03 2.44E+ 02 12/+ 7.68E+ 03 2.66E+ 02 12/+ 2.41E+ 00 2.21E−01 11/+
DMS-PSO 2.00E+ 03 3.03E+ 02 11/+ 3.42E+ 03 2.48E+ 02 10/+ 8.51E−01 1.82E−01 6/+
CLPSO 3.46E+ 01 4.93E+ 01 2/+ 2.12E+ 03 5.02E+ 02 2/− 4.22E−01 9.48E−02 2/−
MLPSO 9.48E+ 02 3.11E+ 02 7/+ 3.28E+ 03 6.92E+ 02 9/+ 1.22E+ 00 6.02E−01 7/+
SLPSO 2.96E+ 02 1.89E+ 02 3/+ 8.72E+ 02 4.50E+ 02 1 /− 2.38E+ 00 3.45E−01 10/+
DTTPSO 1.42E+ 03 3.64E+ 02 9/+ 2.40E+ 03 3.81E+ 02 3/− 2.46E+ 00 2.57E−01 12/+
HFPSO 1.13E+ 03 3.25E+ 02 8/+ 2.88E+ 03 7.25E+ 02 7/+ 2.95E−01 1.33E−01 1 /−
PhaPSO 1.64E+ 03 6.92E+ 02 10/+ 3.80E+ 03 5.69E+ 02 11/+ 6.77E−01 3.77E−01 4/+
XPSO 5.58E+ 02 2.07E+ 02 5/+ 2.43E+ 03 8.79E+ 02 4/− 1.80E+ 00 6.92E−01 9/+
PPSO 5.28E+ 02 2.52E+ 02 4/+ 2.89E+ 03 6.88E+ 02 8/+ 7.52E−01 3.01E−01 5/+
CSBO 9.55E+ 00 3.00E+ 00 1 /# 2.51E+ 03 2.30E+ 03 5/# 5.01E−01 1.00E−01 3/#

F13 F14 F15

GPSO 4.00E−01 9.24E−02 11/+ 4.03E−01 2.65E−01 10/+ 6.51E+ 00 2.40E+ 00 7/+
FIPS-URing 3.74E−01 5.25E−02 10/+ 3.14E−01 4.46E−02 6/+ 1.55E+ 01 8.97E−01 11/+
DMS-PSO 2.93E−01 4.76E−02 7/+ 2.64E−01 1.47E−01 4/+ 1.52E+ 01 1.52E+ 00 10/+
CLPSO 2.56E−01 4.59E−02 6/+ 2.50E−01 3.56E−02 3/+ 6.63E+ 00 1.24E+ 00 8/+
MLPSO 3.20E−01 9.57E−02 8/+ 3.69E−01 1.68E−01 9/+ 5.38E+ 00 2.11E+ 00 5/+
SLPSO 1.68E−01 2.92E−02 2/+ 4.16E−01 7.44E−02 11/+ 8.08E+ 00 4.88E+ 00 9/+
DTTPSO 2.10E−01 4.49E−02 3/+ 2.68E−01 3.83E−02 5/+ 2.77E+ 00 7.56E−01 1 /−
HFPSO 3.67E−01 9.58E−02 9/+ 4.35E−01 2.65E−01 12/+ 5.79E+ 00 1.85E+ 00 6/+
PhaPSO 5.43E−01 1.25E−01 12/+ 3.35E−01 1.37E−01 8/+ 3.28E+ 01 1.32E+ 00 12/+
XPSO 2.53E−01 6.01E−02 5/+ 3.19E−01 1.79E−01 7/+ 4.17E+ 00 1.16E+ 00 3/−
PPSO 2.23E−01 6.73E−02 4/+ 2.48E−01 4.08E−02 2/+ 4.09E+ 00 1.40E+ 00 2/−
CSBO 1.62E−01 3.89E−02 1 /# 2.07E−01 3.15E−02 1 /# 4.86E+ 00 7.73E−01 4/#

(continued)



1502 M. GHASEMI ET AL.

Table 10. Continued.

F16 F17 F18

Optimizer Mean Std. R/Win Mean Std. R/Win Mean Std. R/Win

GPSO 1.09E+ 01 7.37E−01 5/+ 2.69E+ 05 1.87E+ 05 9/+ 5.85E+ 03 7.73E+ 03 11/+
FIPS-URing 1.33E+ 01 1.51E−01 12/+ 1.62E+ 06 3.98E+ 05 12/+ 1.62E+ 05 1.29E+ 05 12/+
DMS-PSO 1.07E+ 01 4.32E−01 3/− 3.24E+ 05 1.98E+ 05 10/+ 1.49E+ 03 2.08E+ 03 7/+
CLPSO 1.05E+ 01 5.52E−01 2/− 6.81E+ 05 4.45E+ 05 11/+ 1.22E+ 03 1.47E+ 03 6/+
MLPSO 1.17E+ 01 4.78E−01 9/+ 8.81E+ 04 8.08E+ 04 5/+ 4.72E+ 03 5.28E+ 03 10/+
SLPSO 1.20E+ 01 3.05E−01 10/+ 1.07E+ 05 6.27E+ 04 8/+ 7.38E+ 02 8.67E+ 02 4/+
DTTPSO 1.12E+ 01 4.13E−01 7/+ 2.88E+ 04 1.22E+ 04 2/+ 3.45E+ 02 3.26E+ 02 3/+
HFPSO 1.13E+ 01 6.52E−01 8/+ 7.12E+ 04 5.30E+ 04 4/+ 3.83E+ 03 6.38E+ 03 8/+
PhaPSO 1.22E+ 01 5.35E−01 11/+ 8.99E+ 04 3.70E+ 05 6/+ 1.17E+ 02 5.44E+ 01 2/+
XPSO 1.03E+ 01 8.41E−01 1 /− 1.05E+ 05 9.82E+ 04 7/+ 3.99E+ 03 3.90E+ 03 9/+
PPSO 1.09E+ 01 5.63E−01 5/+ 5.09E+ 04 2.99E+ 04 3/+ 1.02E+ 03 1.22E+ 03 5/+
CSBO 1.08E+ 01 3.31E−01 4/# 1.64E+ 03 1.15E+ 03 1 /# 5.64E+ 01 4.16E+ 01 1 /#

F19 F20 F21

GPSO 1.02E+ 01 2.40E+ 00 9/+ 4.13E+ 02 1.63E+ 02 4/+ 9.27E+ 04 7.66E+ 04 11/+
FIPS-URing 1.75E+ 01 7.88E−01 11/+ 2.68E+0 4 7.75E+ 03 12/+ 6.46E+ 05 2.68E+ 05 12/+
DMS-PSO 1.29E+ 01 1.00E+ 00 10/+ 9.03E+ 02 3.22E+ 02 6/+ 8.66E+ 04 4.13E+ 04 9/+
CLPSO 6.57E+ 00 1.75E+ 00 3/+ 9.24E+ 02 5.74E+ 02 7/+ 9.10E+ 04 8.53E+ 04 10/+
MLPSO 7.34E+ 00 3.40E+ 00 7/+ 1.06E+ 03 1.03E+ 03 8/+ 4.82E+ 04 4.54E+ 04 7/+
SLPSO 7.16E+ 00 1.21E+ 00 6/+ 2.35E+ 04 1.38E+ 04 11/+ 7.36E+ 04 6.03E+ 04 8/+
DTTPSO 6.89E+ 00 1.57E+ 00 5/+ 1.34E+ 04 3.38E+ 03 10/+ 3.73E+ 04 1.63E+ 04 5/+
HFPSO 9.44E+ 00 1.99E+ 00 8/+ 3.65E+ 02 4.24E+ 02 3/+ 2.99E+ 04 2.04E+ 04 4/+
PhaPSO 1.92E+ 01 1.48E+ 01 12/+ 4.17E+ 02 1.39E+ 03 5/+ 2.47E+ 04 1.15E+ 05 3/+
XPSO 6.78E+ 00 1.33E+ 00 4/+ 2.43E+ 02 8.77E+ 01 2/+ 3.94E+ 04 4.05E+ 04 6/+
PPSO 6.38E+ 00 2.31E+ 00 2/+ 1.76E+ 03 1.34E+ 03 9/+ 2.11E+ 04 1.42E+ 04 2/+
CSBO 4.45E+ 00 9.81E−01 1 /# 2.80E+ 01 1.86E+ 01 1 /# 3.11E+ 02 1.05E+ 02 1 /#

F22 F23 F24

GPSO 3.12E+ 02 1.13E+ 02 8/+ 3.14E+ 02 9.70E−13 2/− 2.27E+ 02 8.35E+ 00 9/+
FIPS-URing 4.53E+ 02 1.29E+ 02 10/+ 3.14E+ 02 1.18E−02 2/− 2.24E+ 02 6.49E−01 6/+
DMS-PSO 1.52E+ 02 6.79E+ 01 2/+ 3.14E+ 02 4.75E−02 2/− 2.30E+ 02 1.90E+ 00 11/+
CLPSO 1.86E+ 02 9.18E+ 01 3/+ 3.15E+ 02 2.22E−12 3/= 2.25E+ 02 2.70E+ 00 7/+
MLPSO 2.40E+ 02 1.45E+ 02 6/+ 3.14E+ 02 8.06E−13 2/− 2.36E+ 02 7.73E+ 00 12/+
SLPSO 2.08E+ 02 1.06E+ 02 5/+ 3.15E+ 02 1.28E−12 3/= 2.29E+ 02 5.78E+ 00 10/+
DTTPSO 4.96E+ 02 1.48E+ 02 11/+ 3.14E+ 02 5.47E−13 2/− 2.23E+ 02 9.48E−01 5/+
HFPSO 4.14E+ 02 1.28E+ 02 9/+ 3.15E+ 02 8.61E−13 3/= 2.16E+ 02 1.13E+ 01 3/+
PhaPSO 5.85E+ 02 2.36E+ 02 12/+ 3.08E+ 02 2.94E+ 01 1 /− 2.00E+ 02 3.69E−02 1 /−
XPSO 2.90E+ 02 9.98E+ 01 7/+ 3.16E+ 02 1.71E−01 4/+ 2.22E+ 02 7.06E+ 00 4/+
PPSO 2.03E+ 02 9.58E+ 01 4/+ 3.14E+ 02 4.85E−13 2/− 2.26E+ 02 1.93E+ 00 8/+
CSBO 1.05E+ 02 8.05E+ 01 1 /# 3.15E+ 02 8.22E−13 3/# 2.01E+ 02 4.51E+ 00 2/#

F25 F26 F27

GPSO 2.01E+ 02 3.11E−01 2/− 1.37E+ 02 4.89E+ 01 6/+ 4.71E+ 02 7.57E+ 01 6/+
FIPS-URing 2.10E+ 02 2.65E+ 00 8/+ 1.00E+ 02 4.44E−02 1 /= 1.29E+ 03 3.39E+ 01 11/+
DMS-PSO 2.05E+ 02 7.13E−01 4/+ 1.04E+ 02 1.83E+ 01 3/+ 4.71E+ 02 6.68E+ 01 6/+
CLPSO 2.08E+ 02 1.21E+ 00 7/+ 1.04E+ 02 1.83E+ 01 3/+ 4.02E+ 02 2.53E+ 01 3/+
MLPSO 2.00E+ 02 1.25E−01 1− 1.00E+ 02 8.15E−02 1 /= 6.81E+ 02 1.56E+ 02 9/+
SLPSO 2.06E+ 02 1.82E+ 00 5/+ 1.17E+ 02 3.79E+ 01 5/+ 3.70E+ 02 6.17E+ 01 2/+
DTTPSO 2.00E+ 02 8.44E−14 1 /− 1.95E+ 02 1.60E+ 01 8/+ 5.73E+ 02 9.43E+ 01 7/+
HFPSO 2.07E+0 2 3.81E+ 00 6/+ 1.47E+ 02 5.05E+ 01 7/+ 6.48E+ 02 1.50E+ 02 8/+
PhaPSO 2.00E+ 02 1.53E−08 1 /− 1.01E+ 02 1.36E−01 2/+ 8.99E+ 02 4.45E+ 02 10/+
XPSO 2.08E+ 02 2.11E+ 00 7/+ 1.10E+ 02 5.07E+ 01 4/+ 4.52E+ 02 7.58E+ 01 4/+
PPSO 2.00E+ 02 4.13E−02 1 /− 1.00E+ 02 5.85E−02 1 /= 4.67E+ 02 5.58E+ 01 5/+
CSBO 2.03E+ 02 7.64E−01 3/# 1.00E+ 02 6.71E−02 1 /# 3.14E+ 02 5.23E+ 01 1 /#

F28 F29 F30

GPSO 4.06E+ 02 2.81E+ 01 4/− 2.11E+ 02 2.29E+ 00 3/− 7.22E+ 02 2.08E+ 02 3/−
FIPS-URing 3.98E+ 02 2.88E+ 00 2/− 2.25E+ 02 1.77E+ 00 5/− 8.88E+ 02 2.09E+ 02 6/−
DMS-PSO 3.96E+ 02 1.89E+ 01 1 /− 2.15E+ 02 1.13E+ 00 4/− 7.67E+ 02 1.76E+ 02 4/−
CLPSO 8.17E+ 02 4.10E+ 01 8/+ 1.38E+ 03 3.14E+ 02 8/+ 2.94E+0 3 8.83E+ 03 8/+
MLPSO 4.13E+ 02 1.46E+ 01 5/− 2.09E+ 02 3.01E+ 00 2/− 6.14E+ 02 2.47E+ 02 2 /−
SLPSO 9.30E+ 02 1.41E+ 02 9/+ 1.73E+ 03 4.91E+ 02 9/+ 3.23E+ 03 1.06E+ 03 11/+
DTTPSO 5.97E+ 02 3.86E+ 02 6/− 6.59E+ 02 4.44E+ 02 6/− 7.87E+ 02 2.74E+ 02 5/−
HFPSO 1.61E+ 03 4.57E+ 02 11/+ 7.41E+ 06 8.60E+ 06 11/+ 2.95E+ 03 1.82E+ 03 9/+
PhaPSO 1.98E+ 03 6.27E+ 02 12/+ 9.13E+ 07 6.38E+ 07 12/+ 3.49E+ 04 5.85E+ 04 12/+
XPSO 1.32E+ 03 3.49E+ 02 10/+ 5.63E+ 05 3.08E+ 06 10/+ 3.11E+ 03 1.59E+ 03 10/+
PPSO 4.05E+ 02 6.26E+ 00 3/− 2.06E+ 02 9.70E−01 1 /− 4.62E+ 02 1.24E+ 02 1 /−
CSBO 7.43E+ 02 5.08E+ 01 7/# 1.34E+ 03 3.00E+ 03 7/# 1.11E+ 03 9.41E+ 02 7/#
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Figure 4. The competitive results of CSBO and PSOs CEC 2014 test functions.

3.80, which is a significant difference. This Figure shows
that FIPS-URing is the weakest algorithm. Figure 5 also
lists the top-down algorithms based on the number of
functions with the best value or rank 1 (Nbest) and the
number of times they have the weakest rank (Nworst).
CSBO has a rank of 1 for 16 functions, while its nearest
competitor, PPSO, ranks 1 in only four functions. In addi-
tion,GPSOandCLPSOdid not get the best value orworst
value for any function. The proposed CSBO, SLPSO, and
PPSO algorithms never got the worst value, which is a
great advantage for these algorithms.Moreover, although
FIPS-Uring obtained the best value for two functions; it
got the worst value 14 times, which shows its deficiency.

We use Wilcoxon’s test to determine whether two
algorithms behave significantly differently (Ghosh et al.,
2012). The p-values for applying Wilcoxon’s test on
CSBO and PSOs are shown in Table 11. The p-values less
than 0.05 (the significance level) are in boldface. Because
of the data, it is clear that CSBO outperforms the other
eleven PSO algorithms. Furthermore, although CSBO is
not significantly superior to PPSO, it outperforms it on
an average ranking basis.

In addition, by looking closely at Table 11, we can see
that CSBO has defeated all PSOs for most of the test
functions. The most important competitor of CSBO is

Table 11. The competitive results of Wilcoxon’s test and perfor-
mance of CLBO versus PSOs.

The optimization performance of CSBO is CSBO versus

Corresponding
algorithm

Worse (−)
than

better (+)
than

Similar
(= ) with p-values

GPSO 5 25 0 4.1889E−07
FIPS-URing 5 24 1 7.1008E−08
DMS-PSO 5 25 0 1.3208E−06
CLPSO 6 22 2 1.5075E−04
MLPSO 5 24 1 1.3244E−05
SLPSO 4 25 1 1.9634E−05
DTTPSO 8 22 0 4.6240E−05
HFPSO 2 27 1 9.1531E−07
PhaPSO 4 26 0 2.8199E−06
XPSO 5 25 0 7.0172E−06
PPSO 8 20 2 0.0167

the PPSO algorithm, which is a very modern algorithm
introduced in 2021. Although CSBO has a worse result
than DTTPSO for 8 test functions, it has succeeded in 22
functions instead, which is a significant difference.

3.2.3. A comparison of CSBOwith the popular
inspired optimization algorithms (IOAs):
In this section, to identify CSBO compared to inspi-
rational algorithms as well as their improved versions,
the results of several other algorithms published in
recent articles with conditions similar to CSBO with
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Figure 5. The number of the best and worst results of CSBO and PSOs.

dimension 30 for the same cec2014 have been demon-
strated as shown in Table 12, and the comparative study
has been accomplished. These algorithms are included:
mTLBO (a modified TLBO) (X. Chen et al., 2018; Sat-
apathy & Naik, 2014), m-SCA (a hybrid self-adaptive
sine cosine algorithm with opposition based learning)
(Gupta & Deep, 2019), MG-SCA (a memory guided
SCA) (Gupta et al., 2020), NIWTLBO (a nonlinear iner-
tia weighted TLBO) (X. Chen et al., 2018; Wu et al.,
2015), CBSA (a new constraint backtracking search
optimization algorithm) (Dai et al., 2020), TOGPEAe
(an improved grey prediction evolution algorithm based
on topological opposition based learning) (Dai et al.,
2020), HMCTLBO (hierarchical multi-swarm coopera-
tive TLBO) (F. Zou et al., 2017), DIRECT-L (determin-
istic global search optimization algorithms with locally-
biased version) (Gablonsky & Kelley, 2001), OptBees
(Bee-inspired algorithm) (Maia et al., 2014), SOO +
BOBYQA (simultaneous optimistic optimization with
BOBYQA) (Preux et al., 2014), NRGA (non-uniform
mapping in real-coded GAs) (Yashesh et al., 2014),WOA
(whale optimization algorithm) (Mirjalili & Lewis, 2016),
GWO (Grey wolf optimizer) (Mirjalili et al., 2014), MFO
(Mirjalili, 2015), and LJA (Jaya with Levy flight) (Iacca

et al., 2021) In addition, the parameter settings of some
of these algorithms are given in Table 13.

As in the previous section, CSBO has impressive per-
formance for the first four test functions compared to
other algorithms or IOAs. The worst rank obtained,
which is a middle rank, is 7 for the test function 12 or
Shifted and rotated Katsuura function, which is equal to
5.01E − 01, and the best value and the second-best value
for this test function are obtained by SOO + BOBYQA
and NRGA, respectively, which are equal to 3.00 E − 02
and 1.51E − 01. On the other hand, the worst solutions
obtained by m-SCA, NIWTLBO, LJA and mTLBO were
1.76E + 00, 1.93E + 00, 2.49E + 00 and 2.50E + 00.
Given these results, it can be said that the solutions
obtained by CSBO are acceptable results. At the same
time, it can become a more robust algorithm with some
modifications.

Note for Table 12: The ‘–’, ‘+’, and ‘= ’ denote that
the performance of CSBO is worse than, better than,
and similar to that of the corresponding algorithm,
respectively.

Summary of statistical results from CSBOs and IOAs
are given in Figures 6 and 7. A quick look at Figure 6
reveals that CSBOdeservedly is the best andmost reliable
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Table 12. A comparison of CSBO with the state-of-the-art IOAs for CEC 2014 functions with NFEs= 3.00E+ 05.

F1 F2 F3

Optimizer Mean Std. R/Win Mean Std. R/Win Mean Std. R/Win

mTLBO 6.46E+ 07 4.03E+ 07 13/+ 1.18E+ 09 1.52E+ 09 12/+ 4.68E+ 00 1.73E+ 01 3/+
m-SCA 2.26E+ 07 6.35E+ 06 8/+ 8.11E+ 07 5.59E+ 07 9/+ 2.59E+ 04 6.43E+ 03 12/+
MG-SCA 2.92E+ 07 2.07E+ 07 9/+ 2.26E+ 09 1.69E+ 09 14/+ 1.77E+ 04 6.63E+ 03 11/+
NIWTLBO 4.95E+ 05 3.70E+ 05 3/+ 1.78E+ 02 2.49E+ 02 5/+ 2.52E+ 01 5.73E+ 01 5/+
CBSA 4.12E+ 07 1.19E+ 07 11/+ 3.20E+ 08 6.61E+ 07 10/+ 2.37E+ 03 1.03E+ 03 6/+
TOGPEAe 6.54E+ 06 3.49E+ 06 7/+ 1.79E+ 07 2.26E+ 07 8/+ 5.47E+ 03 4.07E+ 03 8/+
HMCTLBO 1.11E+ 06 2.39E+ 05 5/+ 1.93E−13 3.71E−14 2/+ 9.47E+ 00 1.27E+ 01 4/+
DIRECT-L 1.99E+ 08 1.19E−07 16/+ 3.62E+ 08 5.98E−08 11/+ 1.10E+ 04 9.09E−12 10/+
OptBees 8.57E+ 04 3.01E+ 05 2/+ 3.21E−12 1.13E−11 3/+ 8.41E−03 3.73E−02 2/+
SOO+ BOBYQA 2.67E+ 06 0.00E+ 00 6/+ 9.96E+ 01 3.41E−13 4/+ 7.84E+ 03 9.09E−12 9/+
NRGA 5.74E+ 05 2.87E+ 05 4/+ 9.28E+ 03 3.91E+ 03 6/+ 4.58E+ 03 3.76E+ 03 7/+
WOA 3.16E+ 07 1.38E+ 07 10/+ 3.10E+ 06 2.12E+ 06 7/+ 3.52E+ 04 2.18E+ 04 14/+
GWO 6.90E+ 07 5.38E+ 07 14/+ 2.18E+ 09 2.47E+ 09 13/+ 3.12E+ 04 8.60E+ 03 13/+
MFO 7.59E+ 07 9.77E+ 07 15/+ 1.36E+ 10 8.42E+ 09 16/+ 8.99E+ 04 4.98E+ 04 16/+
LJA 6.31E+ 07 1.87E+ 07 12/+ 4.77E+ 09 6.03E+ 08 15/+ 6.91E+ 04 1.07E+ 04 15/+
CSBO 1.06E+ 04 1.06E+ 04 1 /# 8.72E−14 3.64E−14 1 /# 4.60E−03 1.56E−02 1 /#

F4 F5 F6

mTLBO 3.85E+ 02 1.17E+ 02 14/+ 2.09E+ 01 5.60e–02 4/+ 2.42E+ 01 2.27E+ 00 12/+
m-SCA 1.83E+ 02 2.58E+ 01 10/+ 2.09E+ 01 7.07E−02 4/+ 1.46E+ 01 3.35E+ 00 6/+
MG-SCA 2.76E+ 02 6.55E+ 01 13/+ 2.04E+ 01 1.44E−01 2/= 1.94E+ 01 2.89E+ 00 9/+
NIWTLBO 9.32E+ 01 3.17E+ 01 7/+ 2.09E+ 01 4.68e–02 4/+ 2.88E+ 01 3.01E+ 00 13/+
CBSA 1.56E+ 02 2.13E+ 01 9/+ 4.14E+ 01 9.01E+ 00 5/+ 9.93E+ 01 1.09E+ 01 16/+
TOGPEAe 1.44E+ 02 4.37E+ 01 8/+ 2.05E+ 01 3.56E−01 3/+ 2.16E+ 01 3.46E+ 00 10/+
HMCTLBO 5.91E+ 01 3.06E+ 01 4/+ 2.00E+ 01 1.38E+ 02 1 /– 1.41E+ 01 1.19E−05 5/+
DIRECT-L 8.90E+ 01 2.27E−13 6/+ 2.00E+ 01 3.41E−13 1 /– 9.00E+ 00 5.68E−13 3/+
OptBees 1.26E+ 01 1.36E+ 01 2/+ 2.00E+ 01 1.01E−05 1 /– 1.64E+ 01 3.41E+ 00 7/+
SOO+ BOBYQA 3.68E+ 01 0.00E+ 00 3/+ 2.00E+ 01 0.00E+ 00 1 /– 1.91E+ 00 5.68E−13 1 /–
NRGA 8.06E+ 01 3.10E+ 01 5/+ 2.00E+ 01 1.10E−04 1 /– 1.78E+ 01 2.18E+ 00 8/+
WOA 1.95E+ 02 4.74E+ 01 11/+ 2.04E+ 01 1.64E−01 2/= 3.60E+ 01 4.05E+ 00 15/+
GWO 2.62E+ 02 8.96E+ 01 12/+ 2.09E+ 01 4.80E−02 4/+ 1.39E+ 01 2.24E+ 00 4/+
MFO 1.14E+ 03 1.13E+ 03 16/+ 2.04E+ 01 1.75E−01 2/= 2.40E+ 01 3.33E+ 00 11/+
LJA 4.08E+ 02 5.38E+ 01 15/+ 2.09E+ 01 4.97e–02 4/+ 3.39E+ 01 1.29E+ 00 14/+
CSBO 4.43E+ 00 1.67E+ 01 1 /# 2.04E+ 01 4.98E−02 2/# 6.05E+ 00 6.61E+ 00 2/#

F7 F8 F9

mTLBO 6.00E+ 01 2.36E+ 01 15/+ 1.16E+ 02 2.46E+ 01 10/+ 1.25E+ 02 2.89E+ 01 7/+
m-SCA 2.01E+ 00 4.62E−01 10/+ 1.10E+ 02 1.24E+ 01 9/+ 1.31E+ 02 9.81E+ 00 8/+
MG-SCA 1.99E+ 01 1.18E+ 01 14/+ 1.07E+ 02 2.14E+ 01 8/+ 1.39E+ 02 2.56E+ 01 11/+
NIWTLBO 3.15E−01 1.42E+ 00 5/+ 1.42E+ 02 1.96E+ 01 12/+ 1.72E+ 02 2.15E+ 01 13/+
CBSA 4.00E+ 00 6.84E−01 11/+ 1.86E+ 01 1.86E+ 00 3/+ 9.56E+ 01 9.56E+ 00 5/+
TOGPEAe 1.40E+ 00 3.12E−01 9/+ 5.89E+ 01 1.80E+ 01 5/+ 7.22E+ 01 2.17E+ 01 4/+
HMCTLBO 2.21E−02 1.02E−13 3/+ 1.24E+ 02 0.00E+ 00 11/+ 1.66E+ 02 2.82E−11 12/+
DIRECT-L 9.33E−01 4.55E−13 7/+ 5.89E+ 01 5.68E−13 5/+ 1.32E+ 02 6.82E−13 9/+
OptBees 3.75E−02 3.78E−02 4/+ 1.14E−13 2.70E−13 1 /− 1.37E+ 02 3.21E+ 01 10/+
SOO+ BOBYQA 4.09E−01 2.27E−13 6/+ 9.25E+ 01 3.41E−13 7/+ 5.97E+ 01 0.00E+ 00 3/+
NRGA 1.59E−02 1.59E−02 2/+ 2.66E+ 01 7.72E+ 00 4/+ 4.57E+ 01 1.33E+ 01 1 /−
WOA 9.99E−01 7.38E−02 8/+ 1.93E+ 02 4.43E+ 01 14/+ 2.26E+ 02 5.27E+ 01 15/+
GWO 1.84E+ 01 1.44E+ 01 13/+ 7.77E+ 01 1.86E+ 01 6/+ 9.62E+ 01 2.59E+ 01 6/+
MFO 1.17E+ 02 6.91E+ 01 16/+ 1.43E+ 02 3.81E+ 01 13/+ 2.23E+ 02 6.06E+ 01 14/+
LJA 1.58E+ 01 2.80E+ 00 12/+ 2.24E+ 02 9.93E+ 00 15/+ 2.61E+ 02 1.47E+ 01 16/+
CSBO 2.62E−03 8.33E−03 1 /# 6.63E−02 2.27E−01 2/# 5.45E+ 01 7.29E+ 00 2/#

F10 F11 F12

mTLBO 2.87E+ 03 6.57E+ 02 8/+ 3.28E+ 03 5.48E+ 02 7/+ 2.50E+ 00 2.66E−01 16/+
m-SCA 3.58E+ 03 4.72E+ 02 12/+ 4.93E+ 03 4.71E+ 02 15/+ 1.76E+ 00 2.89E−01 13/+
MG-SCA 2.82E+ 03 6.83E+ 02 7/+ 3.30E+ 03 6.26E+ 02 8/+ 6.33E−01 3.36E−01 8/+
NIWTLBO 3.15E+ 03 4.38E+ 02 9/+ 3.05E+ 03 7.21E+ 02 6/+ 1.93E+ 00 6.19e–01 14/+
CBSA 1.35E+ 02 2.35E+ 01 2/+ 2.80E+ 03 2.58E+ 02 4/+ 4.72E−01 6.66E−02 6/−
TOGPEAe 3.79E+ 03 1.91E+ 03 13/+ 4.53E+ 03 1.45E+ 03 13/+ 7.74E−01 1.10E+ 00 9/+
HMCTLBO 1.63E+ 03 1.14E−02 5/+ 4.46E+ 03 7.13E+ 01 12/+ 8.83E−01 2.04E−02 10/+
DIRECT-L 3.17E+ 03 4.55E−12 10/+ 3.98E+ 03 2.73E−12 10/+ 1.92E−01 1.36E−12 4/−
OptBees 1.04E+ 03 2.50E+ 02 3/+ 2.72E+ 03 5.63E+ 02 3/+ 1.81E−01 6.06E−02 3/−
SOO+ BOBYQA 2.13E+ 03 9.09E−13 6/+ 2.09E+ 03 9.09E−13 1 /− 3.00E−02 6.82E−13 1 /−
NRGA 1.07E+ 03 4.56E+ 02 4/+ 3.41E+ 03 6.43E+ 02 9/+ 1.51E−01 7.04E−02 2/−
WOA 4.04E+ 03 6.57E+ 02 14/+ 4.82E+ 03 9.06E+ 02 14/+ 1.63E+ 00 4.22E−01 12/+
GWO 2.13E+ 03 6.62E+ 02 6/+ 2.81E+ 03 9.41E+ 02 5/+ 1.52E+ 00 1.19E+ 00 11/+
MFO 3.47E+ 03 8.85E+ 02 11/+ 4.15E+ 03 6.90E+ 02 11/+ 4.33E−01 2.64E−01 5/−
LJA 5.68E+ 03 3.95E+ 02 15/+ 6.88E+ 03 3.12E+ 02 16/+ 2.49E+ 00 2.73e–01 15/+
CSBO 9.55E+ 00 3.00E+ 00 1 /# 2.51E+ 03 2.30E+ 03 2/# 5.01E−01 1.00E−01 7/#

(continued)
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Table 12. Continued.

F13 F14 F15

Optimizer Mean Std. R/Win Mean Std. R/Win Mean Std. R/Win

mTLBO 1.77E+ 00 9.83E−01 15/+ 2.04E+ 01 8.51E+ 00 12/+ 1.20E+ 03 1.46E+ 03 15/+
m-SCA 3.86E−01 5.92E−02 5/+ 2.65E−01 2.94E−02 6/+ 1.52E+ 01 1.47E+ 00 4/+
MG-SCA 5.51E−01 8.94E−02 11/+ 2.34E+ 00 3.31E+ 00 13/+ 8.72E+ 01 1.01E+ 02 12/+
NIWTLBO 5.93E−01 1.44E−01 13/+ 2.91E−01 1.67E−01 10/+ 1.74E+ 02 2.96E+ 02 14/+
CBSA 3.89E−01 5.27E−02 6/+ 2.83E−01 3.87E−02 9/+ 1.99E+ 01 2.08E+ 00 5/+
TOGPEAe 4.93E−01 1.15E−01 8/+ 2.63E−01 5.02E−02 5/+ 2.43E+ 01 7.54E+ 00 7/+
HMCTLBO 3.45E−01 6.36E−03 4/+ 2.15E−01 1.18E−03 3/+ 2.63E+ 01 1.48E+ 01 8/+
DIRECT-L 5.16E−01 9.09E−13 9/+ 2.81E−01 9.09E−13 8/+ 3.91E+ 01 0.00E+ 00 9/+
OptBees 5.61E−01 1.46E−01 12/+ 4.00E−01 2.29E−02 11/+ 1.27E+ 01 6.86E+ 00 2/+
SOO+ BOBYQA 3.40E−01 1.59E−12 3/+ 2.80E−01 3.15E−13 7/+ 2.17E+ 01 1.14E−12 6/+
NRGA 2.81E−01 5.59E−02 2/+ 1.87E−01 2.64E−02 1 /− 1.37E+ 01 4.78E+ 00 3/+
WOA 5.27E−01 1.26E−01 10/+ 2.55E−01 4.84E−02 4/+ 7.00E+ 01 1.99E+ 01 11/+
GWO 4.42E−01 2.94E−01 7/+ 4.54E+ 00 8.41E+ 00 16/+ 1.25E+ 02 3.19E+ 02 13/+
MFO 2.21E+ 00 1.34E+ 00 16/+ 3.54E+ 01 2.47E+ 01 14/+ 2.23E+ 05 5.77E+0 5 16/+
LJA 1.08E+ 00 1.19E−01 14/+ 4.33E+ 00 1.70E+ 00 15/+ 5.05E+ 01 9.36E+ 00 10/+
CSBO 1.62E−01 3.89E−02 1 /# 2.07E−01 3.15E−02 2/# 4.86E+ 00 7.73E−01 1 /#

F16 F17 F18

mTLBO 1.11E+ 01 7.48E−01 5/+ 6.56E+ 05 1.24E+ 06 9/+ 1.92E+ 04 8.10E+ 04 10/+
m-SCA 1.20E+ 01 2.89E−01 8/+ 5.99E+ 05 3.59E+ 05 8/+ 1.61E+ 05 8.25E+ 04 12/+
MG-SCA 1.16E+ 01 6.91E−01 7/+ 9.56E+ 05 7.62E+ 05 10/+ 1.48E+ 05 9.00E+ 05 11/+
NIWTLBO 1.16E+ 01 4.92e–01 7/+ 2.52E+ 04 3.08E+ 04 2/+ 2.06E+ 03 2.34E+ 03 5/+
CBSA 1.05E+ 01 3.26E−01 2/− 3.46E+ 06 1.54E+ 06 14/+ 4.54E+ 06 1.89E+ 06 13/+
TOGPEAe 1.23E+ 01 6.54E−01 10/+ 7.12E+ 04 5.59E+ 04 6/+ 3.07E+ 03 3.05E+ 03 6/+
HMCTLBO 1.16E+ 01 2.52E−05 7/+ 6.10E+ 04 5.48E+ 04 5/+ 3.43E+ 03 2.23E+ 01 7/+
DIRECT-L 1.22E+ 01 1.36E−12 9/+ 1.73E+ 07 0.00E+ 00 16/+ 3.96E+ 03 5.46E−12 8/+
OptBees 1.09E+ 01 6.84E−01 4/+ 2.74E+ 04 4.00E+ 04 3/+ 1.96E+ 02 4.72E+ 02 3/+
SOO+ BOBYQA 9.81E+ 00 1.14E−12 1 /− 4.21E+ 04 1.46E−11 4/+ 4.16E+ 01 1.59E−12 1 /−
NRGA 1.15E+ 01 6.67E−01 6/+ 2.35E+ 05 1.18E+ 05 7/+ 5.50E+ 02 7.09E+ 02 4/+
WOA 1.25E+ 01 4.48E−01 11/+ 3.56E+ 06 2.52E+ 06 15/+ 1.50E+ 04 5.01E+ 04 9/+
GWO 1.09E+ 01 5.81E−01 4/+ 1.40E+ 06 1.56E+ 06 11/+ 9.21E+ 06 1.98E+ 07 15/+
MFO 1.27E+ 01 5.33E−01 12/+ 3.39E+ 06 4.07E+ 06 13/+ 5.19E+ 06 3.61E+ 07 14/+
LJA 1.28E+ 01 1.78E−01 13/+ 2.63E+ 06 9.76E+0 5 12/+ 1.26E+ 07 1.06E+ 07 16/+
CSBO 1.08E+ 01 3.31E−01 3/# 1.64E+ 03 1.15E+ 03 1 /# 5.64E+ 01 4.16E+ 01 2/#

F19 F20 F21

mTLBO 8.02E+ 01 3.50E+ 01 16/+ 2.72E+ 02 1.21E+ 02 2/+ 3.18E+ 04 2.86E+ 04 7/+
m-SCA 1.93E+ 01 5.95E+ 00 7/+ 1.22E+ 04 3.70E+ 03 11/+ 1.10E+ 05 5.66E+ 04 8/+
MG-SCA 2.28E+ 01 1.43E+ 01 9/+ 4.24E+ 03 3.82E+ 03 7/+ 2.35E+ 05 2.39E+ 05 10/+
NIWTLBO 2.30E+ 01 1.40E+ 01 10/+ 3.75E+ 02 1.56E+ 02 3/+ 1.44E+ 04 8.91E+ 03 3/+
CBSA 2.04E+ 01 5.81E+ 00 8/+ 6.95E+ 03 3.35E+ 03 8/+ 6.64E+ 05 2.63E+ 05 11/+
TOGPEAe 1.60E+ 01 1.80E+ 01 5/+ 3.31E+ 03 3.67E+ 03 6/+ 1.73E+ 04 1.74E+ 04 5/+
HMCTLBO 8.97E+ 00 3.52E−03 3/+ 4.81E+ 02 4.61E+ 01 4/+ 4.81E+ 02 4.61E+ 01 2/+
DIRECT-L 4.77E+ 01 9.09E−13 13/+ 4.90E+ 04 3.64E−11 15/+ 4.85E+ 06 4.66E−09 16/+
OptBees 7.90E+ 00 1.86E+ 00 2/+ 8.53E+ 02 7.71E+ 02 5/+ 1.74E+ 04 1.80E+ 04 6/+
SOO+ BOBYQA 1.63E+ 01 1.82E−12 6/+ 3.44E+ 04 2.18E−11 14/+ 1.54E+ 04 0.00E+ 00 4/+
NRGA 1.37E+ 01 1.29E+ 00 4/+ 1.14E+ 04 5.56E+ 03 10/+ 1.81E+ 05 9.42E+ 04 9/+
WOA 5.07E+ 01 3.83E+ 01 14/+ 2.29E+ 04 1.95E+ 04 13/+ 1.17E+ 06 9.72E+ 05 15/+
GWO 4.34E+ 01 2.62E+ 01 12/+ 1.34E+ 04 9.03E+ 03 12/+ 7.16E+ 05 1.26E+ 06 13/+
MFO 7.36E+ 01 5.32E+ 01 15/+ 5.67E+ 04 4.34E+ 04 16/+ 7.83E+ 05 1.18E+ 06 14/+
LJA 3.78E+ 01 3.45E+ 01 11/+ 9.92E+ 03 3.69E+ 03 9/+ 6.94E+ 05 2.03E+ 05 12/+
CSBO 4.45E+ 00 9.81E−01 1 /# 2.80E+ 01 1.86E+ 01 1 /# 3.11E+ 02 1.05E+ 02 1 /#

F22 F23 F24

mTLBO 5.32E+ 02 2.09E+ 02 8/+ 3.53E+ 02 1.98E+ 01 9/+ 2.00E+ 02 7.93E−04 1 /−
m-SCA 2.57E+ 02 5.71E+ 01 3/+ 3.21E+ 02 1.58E+ 00 5/+ 2.00E+ 02 4.29E−02 1 /−
MG-SCA 3.39E+ 02 1.78E+ 02 4/+ 3.29E+ 02 4.03E+ 00 6/+ 2.00E+ 02 1.56E−03 1 /−
NIWTLBO 6.41E+ 02 2.93E+ 02 11/+ 2.00E+ 02 0.00E+ 00 1 /− 2.00E+ 02 1.99E−05 1 /−
CBSA 4.19E+ 02 1.04E+ 02 7/+ 2.26E+ 02 4.77E+ 01 3/− 2.00E+ 02 5.57E−04 1 /−
TOGPEAe 6.87E+ 02 1.65E+ 02 12/+ 2.16E+ 01 3.46E+ 00 2/− 3.17E+ 02 1.93E+ 00 8/+
HMCTLBO 6.23E+ 02 4.32E−02 10/+ 2.00E+ 02 0.00E+ 00 1 /− 2.00E+ 02 5.69E−04 1 /−
DIRECT-L 1.04E+ 03 4.55E−12 16/+ 2.00E+ 02 0.00E+ 00 1 /− 2.00E+ 02 0.00E+ 00 1 /−
OptBees 2.32E+ 02 9.16E+ 01 2/+ 3.15E+ 02 6.59E−02 4/= 2.36E+ 02 5.42E+ 00 5/+
SOO+ BOBYQA 9.56E+ 02 4.55E−13 15/+ 2.00E+ 02 0.00E+ 00 1 /− 2.00E+ 02 0.00E+ 00 1 /−
NRGA 4.07E+ 02 1.29E+ 02 6/+ 3.15E+ 02 1.35E−03 4/= 2.28E+ 02 4.21E+ 00 4/+
WOA 8.13E+ 02 2.70E+ 02 13/+ 3.35E+ 02 9.16E+ 00 7/+ 2.06E+ 02 5.12E+ 00 3/+
GWO 3.78E+ 02 1.65E+ 02 5/+ 3.35E+ 02 1.04E+ 01 7/+ 2.00E+ 02 8.23E−04 1 /−
MFO 8.67E+ 02 2.29E+ 02 14/+ 3.71E+ 02 3.98E+ 01 10/+ 2.76E+ 02 2.73E+ 01 7/+
LJA 5.47E+ 02 1.05E+ 02 9/+ 3.43E+ 02 3.41E+ 00 8/+ 2.57E+ 02 4.04E+ 00 6/+
CSBO 1.05E+ 02 8.05E+ 01 1 /# 3.15E+ 02 8.22E−13 4/# 2.01E+ 02 4.51E+ 00 2/#

(continued)
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Table 12. Continued.

F25 F26 F27

Optimizer Mean Std. R/Win Mean Std. R/Win Mean Std. R/Win

mTLBO 2.04E+ 02 7.51E+ 00 4/+ 1.41E+ 02 4.93E+ 01 5/+ 9.40E+ 02 2.48E+ 02 14/+
m-SCA 2.01E+ 02 3.19E+ 00 2/− 1.00E+ 02 5.40E−02 1 /= 4.33E+ 02 2.01E+ 01 7/+
MG-SCA 2.11E+ 02 2.82E+ 00 7/+ 1.01E+ 02 1.53E−01 2/+ 8.19E+ 02 9.17E+ 01 11/+
NIWTLBO 2.00E+ 02 0.00E+ 00 1 /− 1.90E+ 02 3.03E+ 01 7/+ 5.24E+ 02 2.76E+ 02 8/+
CBSA 2.00E+ 02 8.04E−09 1 /− 1.00E+ 02 4.88E−02 1 /= 3.62E+ 02 9.59E+ 01 5/+
TOGPEAe 2.09E+ 02 7.21E+ 00 5/+ 1.04E+ 02 1.83E+ 01 4/+ 9.26E+ 02 8.92E+ 01 13/+
HMCTLBO 2.00E+ 02 0.00E+ 00 1 /− 1.00E+ 02 9.73E−03 1 /= 2.80E+ 02 1.10E+ 02 2/−
DIRECT-L 2.00E+ 02 0.00E+ 00 1 /− 2.00E+ 02 0.00E+ 00 8/+ 2.00E+ 02 0.00E+ 00 1 /−
OptBees 2.01E+ 02 1.67E−01 2/− 1.01E+ 02 1.71E−01 2/+ 4.02E+ 02 9.67E−01 6/+
SOO+ BOBYQA 2.00E+ 02 0.00E+ 00 1 /− 2.00E+ 02 0.00E+ 00 8/+ 2.00E+0 2 0.00E+ 00 1 /−
NRGA 2.11E+ 02 1.68E+ 00 7/+ 1.00E+ 02 9.24E−02 1 /= 5.88E+ 02 1.70E+ 02 9/+
WOA 2.16E+ 02 1.60E+ 01 9/+ 1.00E+ 02 1.10E−01 1 /= 1.08E+ 03 3.71E+ 02 16/+
GWO 2.10E+ 02 5.34E+ 00 6/+ 1.47E+ 02 5.02E+ 01 6/+ 6.16E+ 02 1.20E+ 02 10/+
MFO 2.14E+ 02 7.65E+ 00 8/+ 1.03E+ 02 1.50E+ 00 3/+ 9.21E+ 02 2.23E+ 02 12/+
LJA 2.16E+ 02 2.58E+ 00 9/+ 1.01E+ 02 1.02E−01 2/+ 9.86E+ 02 2.48E+ 02 15/+
CSBO 2.03E+ 02 7.64E−01 3/# 1.00E+ 02 6.71E−02 1 /# 3.14E+ 02 5.23E+ 01 3/#

F28 F29 F30

mTLBO 2.36E+ 03 5.34E+ 02 13/+ 5.45E+ 06 1.21E+ 07 16/+ 8.61E+ 04 6.81E+ 04 14/+
m-SCA 1.05E+ 03 2.74E+ 02 6/+ 4.44E+ 04 1.77E+ 04 8/+ 3.48E+ 04 1.05E+ 04 10/+
MG-SCA 9.68E+ 02 1.06E+ 02 5/+ 1.19E+ 06 3.25E+ 06 11/+ 1.92E+ 04 8.25E+ 03 9/+
NIWTLBO 1.88E+ 03 3.98E+ 02 12/+ 9.18E+ 05 3.58E+ 06 9/+ 2.93E+ 03 7.84E+ 02 6/+
CBSA 5.74E+ 02 4.65E+ 02 3/− 3.37E+ 04 1.09E+ 04 7/+ 1.38E+ 04 3.52E+ 03 8/+
TOGPEAe 1.58E+ 03 2.22E+ 02 10/+ 2.09E+ 03 5.16E+ 02 6/+ 1.09E+ 04 6.80E+ 03 7/+
HMCTLBO 2.00E+ 02 0.00E+ 00 1 /− 1.97E+ 06 3.68E−10 13/+ 1.43E+ 03 1.70E−03 4/+
DIRECT-L 2.00E+ 02 0.00E+ 00 1 /− 2.00E+ 02 0.00E+ 00 1 /− 2.00E+ 02 0.00E+ 00 1 /−
OptBees 4.31E+ 02 1.51E+ 01 2/− 2.16E+ 02 1.16E+ 00 2/− 5.93E+ 02 9.77E+ 01 2/−
SOO+ BOBYQA 2.00E+ 02 0.00E+ 00 1 /− 2.00E+ 02 0.00E+ 00 1 /− 2.00E+ 02 0.00E+ 00 1 /−
NRGA 1.59E+ 03 5.70E+ 02 11/+ 1.32E+ 03 2.08E+ 02 4/+ 2.89E+ 03 5.43E+ 02 5/+
WOA 2.38E+ 03 4.88E+ 02 14/+ 4.85E+ 06 4.82E+0 6 15/+ 8.38E+ 04 6.11E+ 04 13/+
GWO 1.20E+ 03 2.62E+ 02 9/+ 1.29E+ 06 4.28E+ 06 12/+ 5.20E+ 04 3.15E+ 04 11/+
MFO 1.12E+ 03 1.57E+ 02 7/+ 3.06E+ 06 3.62E+ 06 14/+ 5.89E+ 04 5.40E+ 04 12/+
LJA 1.13E+ 03 6.63E+ 01 8/+ 9.82E+ 05 2.07E+ 06 10/+ 1.09E+ 04 4.24E+ 03 7/+
CSBO 7.43E+ 02 5.08E+ 01 4/# 1.34E+ 03 3.00E+ 03 5/# 1.11E+ 03 9.41E+ 02 3/#

algorithm. The closest algorithm to CSBO is the OptBees
algorithm, with an average value of 3.8667, a difference
of 1.8 from the average value of CSBO, which is a consid-
erable difference. WOA, LJA and MFO (three new and
trendy algorithms) are the worst rankings, with averages
of 10.9667, 11.6667 and 12.1000, which are difficult to
accept in a few conditions.

On the other hand, looking carefully at Figure 7,
it can be seen that CSBO got the best solutions for
14 test functions here and never got the worst rank-
ing. As mentioned, the worst ranking was 7, which was
within acceptable limits. The modern algorithms SOO+
BOBYQA and DIRECT-L obtained the best solutions for
13 and 8 functions in this study. At the same time, SOO
+ BOBYQA once and DIRECT-L five times got the worst
solutions, which indicates the valuable functionality of
our proposed CSBO.

It is clear from the figure that the two algorithms, LJA
and MFO, which have never had the best solution, are
in the red. Their solution has been the worst for most
functions compared to other algorithms.

Table 14 compares the p-values of CSBO with fifteen
other modern optimization techniques whenWilcoxon’s
test is used. The p-values less than 0.05 (the significance

Table 13. The parameters of some state-of-the-art IOAs for CEC
2014 test functions.

Algorithm Parameter settings with NFEs= 3.00E+ 05

mTLBO Npop = 50
m-SCA Npop = 30, jumping rate= 0.1, Self-adaptation rate=

[0, 1].
NIWTLBO Npop = 50, inertia weightw = 0∼ 1.0
CBSA Npop = 50.
TOGPEAe Npop = 50, δ = [0.001, 0.1].
HMCTLBO Npop = 50, the subswarm size was empirically set to

5, the regrouping period P was also empirically set to
5, the sampling size was set to 10, and the range of
each hypercube dimension was twice the range of the
corresponding dimension of the learners.

DIRECT-L tolerance = 0:0, volper = 0:0, sigmaper = 0:0,maxDim
= 64,maxDivs = 3; 000,maxDepth = 600.

WOA Npop = 30, a1= [2 0]; a2= [−2−1]; b = 1
GWO Npop = 30, convergence constant a = [2 0] (linear

reduction)
MFO Npop = 30, a = [−2−1]; b = 1
LJA Npop = 150, β = 1.8

level) are in boldface. As a result of the data, it is clear that
CSBO outperforms other algorithms. Although CSBO
is not statistically superior to the rest of the SOO +
BOBYQA, it exceeds this on an average ranking basis.
Furthermore, this table demonstrates that CSBO signif-
icantly outperforms all other algorithms. The most com-
parable strategy is SOO+ BOBYQA, which achieved the



1508 M. GHASEMI ET AL.

Figure 6. The competitive results of CLBO and IOAs on CEC 2014 test functions.

Figure 7. The competitive results of CLBO and IOAs according to the Nbest and Nworst .
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Table 14. The competitive results of Wilcoxon’s test and perfor-
mance of CLBO versus IOAs.

The performance of CSBO is CSBO versus

Corresponding
algorithm

worse (−)
than

better (+)
than

similar (= )
with p-values

mTLBO 1 29 0 2.7481E−09
m-SCA 2 27 1 2.4574E−08
MG-SCA 1 28 1 3.4868E−09
NIWTLBO 3 27 0 3.9661E−07
CBSA 6 23 1 1.0287E−06
TOGPEAe 1 29 0 7.3761E−10
HMCTLBO 6 23 1 3.6196E−04
DIRECT-L 9 21 0 1.1745E−04
OptBees 7 22 1 6.7900E−04
SOO+ BOBYQA 13 17 0 0.0677
NRGA 4 24 2 1.8467E−05
WOA 0 28 2 1.4888E−09
GWO 1 29 0 1.0465E−09
MFO 1 28 1 1.5008E−10
LJA 0 30 0 1.0172E−10

Table 15. The parameter settings of some competitors for CEC
2017 test functions.

Algorithm Parameter settings with NFEs= 3.00E+ 05

AWPSO w= [0.9 0.4] (linear reduction), a= 0.000035,
b= 0.5, c= 0, d= 1.5

GSA Npop = 100, G0 = 100, α = 20
GWO Npop = 100, convergence constant a = [2 0]

(linear reduction)
SCA a = 2, r1 = a – Iter × (a / Itermax), r2 = 2×

π × rand(), r3 = 2× rand(), r4 = rand()
EHO clan = 5, α = 0.5, β = 0.1
BOA p = 0.8, α = 0.1, c = 0.01
BA Npop = 50, the pulse rate (r), the factors

updating α and γ are set to 0.9.
HHO Npop = 30, C = [0, 2], E = [−2,2]
GOMGBO Npop = 30,
HGS Npop = 50.

most significant outcomes in 13 situations but failed in 17
cases compared to CSBO.

3.3. CEC 2017 benchmark functions

In order to verify the performance of the proposed
CSBO algorithm compared to other algorithms, we have
selected the CEC2017 functions in this section. These are
real-world modeled optimization functions. CEC 2017
functions (unimodal, simple multimodal, hybrid, and
composition benchmark tests) (Wu et al., 2017) have
been used successfully in many recent articles and, there-
fore, in this paper to test the performance of the proposed
CSBO algorithm, we have used them.

In this section, we have selected 30-dimension with 30
runs for each test function. The number of evolutions in
all parts of the article is 300,000. Also, the population and
NR set at 45 and 15, respectively. The parameter settings
of some competitors, in this case, are given in Table 15.

The simulation results for D = 30 are given in
Table 16, compared to the robust andmodern algorithms

in the recent literature, e.g. AWPSO (a sigmoid-function-
based adaptive weighted particle swarm optimizer PSO)
(Wei et al., 2020), GSA and GWO (Lei et al., 2020), SCA,
EHO and BOA (Li & Wang, 2021), BA (Alsalibi et al.,
2021),HHO (Hu et al., 2022), GOMGBO (Gaussian bare-
bonesmechanismGBO) (Qiao et al., 2021) andHGS (Izci
et al., 2022). From both tables, it is clear that CSBO has
defeated all other algorithms for most functions (F1, F3,
F4, F6, F7, F9, F11, F12, F13, F14, F15, F17, F18, F19,
F21, F23, F24, F27, F28, and F30). Interestingly, CSBO
never had the worst performance and rank for CEC 2017
among the algorithms, indicating the robustness and reli-
ability of theCSBO.Nevertheless, tomention that the two
algorithms,HGS andGOMGBO, overcame the CSBO for
the 8 and 2 functions of CEC 2017, which is normal.

Although CSBO obtained indicates inappropriate
rankings (rank 3) for the two functions, 10 and 22, the
last three rows of Table 16 reveal that CSBO is a robust
and appropriate emerging algorithm.

3.4. CSBO complexity

The CSBO method was applied in MATLAB 7.6, and
the simulation was performed on a Pentium IV E5200
PC equipped with 2 GB of RAM. The CSBO algorithm
was used to evaluate all test functions in the CEC 2014
competition (J. J. Liang et al., 2013). The algorithm was
executed 30 times for each test problem for a total num-
ber of 10,000×D function evaluations. The convergence
speed of the CSBO algorithm is determined according to
the procedure provided in (J. J. Liang et al., 2013). T0
denotes the execution time of the following scheme in
Table 17:

for i = 1:1000000
x = 0.55 + (

double()i; x + x
2
√
x
)

x = log(x); x = ex; x = x
(x+2) ;

end

T1 is the time required to compute F18 for 200 000 eval-
uations, whereas T2 denotes the time required to run
the suggested technique for 200 000 evaluations. T2 is
assessed five times, and the mean of the five evaluations
is represented by

�

T2. As a final point, the complexity of
the algorithm is represented as

�

T2, T1, and (
�

T2−T1)/T0.
In addition, the computational cost of CSBO is mainly

determined by three processes: blood particle initializa-
tion, fitness assessment, and blood particle update. The
computing complexity of the initialization procedure isO
(Npop), whereNpop is the number of blood particles. The
updatingCSBOhas a computational cost ofO (Itermax×
Npop)+O (Itermax×Npop×D), which is comprised of
searching for the optimal position and updating the loca-
tion vectors of all the blood particles, where Itermax is the
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Table 16. Summary of the results for CEC2017 test functions for different algorithms with D = 30 and NFEs = 3.00E+ 05.

AWPSO GSA GWO SCA EHO BOA BA HHO GOMGBO HGS CSBO

Function
MeanStd.
R/Win

MeanStd.
R/Win

MeanStd.
R/Win

MeanStd.
R/Win

MeanStd.
R/Win

MeanStd.
R/Win

MeanStd.
R/Win

MeanStd.
R/Win

MeanStd.
R/Win

MeanStd.
R/Win MeanStd. R

F1 2.46E+ 09 1.90E+ 03 1.72E+ 03 1.25E+ 10 2.68E+ 10 4.47E+ 10 3.37E+11 1.04E+ 07 6.28E+ 01 6.92E+ 03 3.13E−09
2.67E+ 09 1.03E+ 03 8.91E+ 08 2.94E+ 09 5.87E+ 09 6.73E+ 09 3.48E+ 09 1.87E+06 1.13E+ 02 4.50E+ 03 1.40E−08

7/+ 4/+ 3/+ 8/+ 9/+ 10/+ 11/+ 6/+ 2/+ 5/+ 1
F3 1.00E+ 04 8.27E+ 04 2.82E+ 04 3.47E+ 04 7.23E+ 04 6.48E+ 04 2.85E+ 09 4.85E+ 03 1.40E−01 4.07E+ 00 2.93E−13

2.12E+ 04 4.33E+ 03 9.70E+ 03 7.52E+ 03 9.76E+ 03 9.30E+ 03 4.62E+ 08 1.70E+ 03 3.00E−01 4.14E−01 1.28E−13
5/+ 10/+ 6/+ 7/+ 9/+ 8/+ 11/+ 4/+ 2/+ 3/+ 1

F4 2.81E+ 02 1.42E+ 02 1.70E+ 02 1.05E+ 03 4.60E+ 03 1.94E+ 04 3.54E+ 04 1.25E+ 02 6.93E+ 01 1.63E+ 01 1.26E+ 01
1.76E+ 02 1.59E+ 01 4.98E+ 01 3.75E+ 02 3.91E+ 02 3.77E+ 03 1.36E+ 03 2.36E+ 01 3.42E+ 01 1.75E+ 01 1.50E+ 01

7/+ 5/+ 6/+ 8/+ 9/+ 10/+ 11/+ 4/+ 3/+ 2/+ 1
F5 8.15E+01 2.26E+ 02 9.20E+ 01 2.73E+ 02 3.34E+ 02 3.71E+ 02 5.26E+ 03 2.30E+ 02 8.06E+ 01 3.11E+ 01 6.55E+ 01

2.75E+ 01 2.01E+ 01 2.63E+ 01 2.24E+ 01 1.80E+ 01 2.33E+ 01 2.13E+ 01 2.98E+ 01 2.01E+ 01 8.25E+ 00 8.00E+ 00
4/+ 6/+ 5/+ 8/+ 9/+ 10/+ 11/+ 7/+ 3/+ 1/− 2

F6 4.12E+ 00 5.00E+ 01 4.00E+ 00 4.90E+ 01 7.10E+ 01 7.00E+ 01 6.85E+ 02 6.34E+ 01 3.60E−01 8.60E−01 2.79E−13
3.05E+ 00 2.75E+ 00 2.33E+ 00 5.20E+ 00 6.00E+ 00 9.54E+ 00 6.55E+ 00 5.40E+ 00 7.83E−01 5.88E−01 6.88E−14

5/+ 7/+ 4/+ 6/+ 10/+ 9/+ 11/+ 8/+ 2/+ 3/+ 1
F7 1.12E+ 02 8.70E+ 01 1.35E+ 02 4.40E+ 02 7.30E+ 02 6.10E+ 02 1.80E+ 03 5.30E+ 02 1.02E+ 02 3.92E+ 01 3.86E+ 01

2.23E+ 01 1.19E+ 01 4.95E+ 01 4.15E+ 01 4.43E+ 01 5.58E+ 01 1.63E+ 02 8.35E+ 01 2.43E+ 01 1.06E+ 01 6.39E+ 00
5/+ 3/+ 6/+ 7/+ 10/+ 9/+ 11/+ 8/+ 4/+ 2/+ 1

F8 8.02E+ 01 1.51E+ 02 8.10E+ 01 2.50E+ 02 3.00E+ 02 3.00E+ 02 1.65E+ 04 1.69E+ 02 7.76E+ 01 1.95E+ 01 6.70E+ 01
2.33E+ 01 1.31E+ 01 1.25E+ 01 1.62E+ 01 2.15E+ 01 1.85E+ 01 3.98E+ 01 2.33E+ 01 2.30E+ 01 6.80E+ 00 8.11E+ 00

4/+ 6/+ 5/+ 8/+ 9/+ 9/+ 10/+ 7/+ 3/+ 1/− 2
F9 3.52E+ 02 2.03E+ 03 2.80E+ 02 4.81E+ 03 8.48E+ 03 8.45E+ 03 1.01E+ 04 5.86E+ 03 6.89E+ 01 7.60E−01 9.95E−02

4.08E+ 02 3.92E+ 02 1.39E+ 02 1.43E+03 1.20E+ 03 1.03E+ 03 1.69E+ 03 5.95E+ 02 6.47E+ 01 2.63E+ 00 1.79E−01
5/+ 6/+ 4/+ 7/+ 10/+ 9/+ 11/+ 8/+ 3/+ 2/+ 1

F10 2.85E+ 03 3.87E+ 03 2.73E+ 03 7.04E+ 03 7.15E+ 03 7.49E+ 03 9.88E+ 04 4.39E+ 03 3.04E+ 03 6.08E+ 02 2.76E+ 03
6.26E+ 02 4.34E+ 02 5.49E+ 02 3.42E+ 02 3.14E+ 02 2.75E+ 02 7.65E+ 03 6.57E+ 02 6.73E+ 02 2.82E+ 02 2.66E+ 02

4/+ 6/+ 2/− 8/+ 9/+ 10/+ 11/+ 7/+ 5/+ 1/− 3
F11 2.00E+ 02 3.50E+ 02 4.10E+ 02 1.05E+ 03 1.03E+ 03 4.51E+ 03 3.46E+ 04 1.52E+ 02 4.83E+ 01 4.26E+ 01 3.96E+ 01

1.11E+ 02 8.92E+ 01 4.42E+ 02 2.65E+ 02 1.46E+ 02 1.83E+ 03 3.37E+ 03 3.99E+ 01 2.18E+ 01 4.52E+ 01 3.22E+ 01
5/+ 6/+ 7/+ 9/+ 8/+ 10/+ 11/+ 4/+ 3/+ 2/+ 1

F12 1.61E+ 08 1.03E+ 07 3.31E+ 07 1.13E+ 09 3.17E+ 09 1.05E+ 10 3.95E+ 09 9.24E+ 06 3.32E+ 04 1.89E+ 04 1.69E+ 04
3.26E+ 08 1.93E+ 07 3.81E+ 07 2.52E+ 08 5.20E+ 08 3.41E+09 9.45E+ 07 5.95E+ 06 3.77E+ 04 2.05E+ 04 1.15E+ 04

7/+ 5/+ 6/+ 8/+ 9/+ 11/+ 10/+ 4/+ 3/+ 2/+ 1
F13 3.91E+ 07 2.97E+ 04 6.63E+ 06 3.87E+ 08 1.06E+ 09 6.52E+ 09 4.17E+ 09 3.14E+ 05 1.12E+ 04 1.03E+ 04 1.04E+ 02

1.93E+ 08 6.45E+ 03 2.33E+ 07 1.24E+ 08 2.71E+ 08 3.65E+ 09 6.17E+ 08 1.17E+ 05 1.71E+ 04 6.78E+ 03 1.03E+ 02
7/+ 4/+ 6/+ 8/+ 9/+ 11/+ 10/+ 5/+ 3/+ 2/+ 1

F14 1.79E+ 04 4.73E+ 05 7.96E+ 04 1.42E+ 05 1.79E+ 05 9.60E+ 05 1.35E+ 07 5.19E+ 04 1.09E+ 03 1.15E+ 03 3.81E+ 01
3.34E+04 1.31E+ 05 1.76E+ 05 8.76E+ 04 7.54E+ 04 1.84E+ 06 1.65E+ 06 1.03E+ 05 1.23E+ 03 1.63E+ 03 9.38E+ 00

4/+ 9/+ 6/+ 7/+ 8/+ 10/+ 11/+ 5/+ 2/+ 3/+ 1
F15 4.20E+ 04 1.02E+ 04 2.43E+ 05 1.19E+ 07 2.60E+ 07 1.35E+ 08 1.73E+ 08 6.89E+ 04 3.91E+ 03 2.79E+ 03 2.49E+ 01

6.34E+ 04 1.93E+ 03 5.82E+ 05 1.07E+ 07 1.04E+ 07 1.80E+ 08 6.11E+ 07 6.59E+ 04 6.88E+ 03 2.78E+ 03 1.98E+ 01
5/+ 4/+ 7/+ 8/+ 9/+ 10/+ 11/+ 6/+ 3/+ 2/+ 1

F16 8.18E+ 02 1.58E+ 03 7.20E+ 02 2.01E+ 03 2.57E+ 03 4.58E+ 03 4.46E+ 04 1.60E+ 03 8.85E+ 02 1.60E+ 02 4.17E+ 02
2.88E+ 02 2.84E+ 02 2.39E+ 02 3.47E+ 02 1.94E+ 02 1.38E+ 03 2.96E+ 02 3.65E+ 02 2.64E+ 02 1.36E+ 02 1.62E+ 02

4/+ 6/+ 3/+ 8/+ 9/+ 10/+ 11/+ 7/+ 5/+ 1/− 2

(continued)
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Table 16. Continued.

AWPSO GSA GWO SCA EHO BOA BA HHO GOMGBO HGS CSBO

Function
MeanStd.
R/Win

MeanStd.
R/Win

MeanStd.
R/Win

MeanStd.
R/Win

MeanStd.
R/Win

MeanStd.
R/Win

MeanStd.
R/Win

MeanStd.
R/Win

MeanStd.
R/Win

MeanStd.
R/Win MeanStd. R

F17 3.11E+ 02 1.20E+ 03 2.30E+ 02 7.10E+ 02 8.90E+ 02 6.17E+ 03 3.07E+ 04 9.54E+ 02 3.56E+ 02 6.05E+ 01 5.40E+ 01
1.58E+ 02 1.70E+ 02 1.16E+ 02 1.88E+ 02 1.65E+02 5.38E+ 03 1.82E+ 02 2.84E+ 02 1.65E+ 02 4.70E+ 01 1.85E+ 01

4/+ 9/+ 3/+ 6/+ 7/+ 10/+ 11/+ 8/+ 5/+ 2/+ 1

F18 5.66E+ 05 3.18E+ 05 7.73E+ 05 3.92E+ 06 1.38E+ 06 1.08E+ 07 2.26E+ 09 8.29E+ 05 5.42E+ 04 2.22E+ 04 1.46E+ 02
1.02E+ 06 1.76E+ 05 1.40E+ 06 2.66E+ 06 6.64E+ 05 1.50E+ 07 1.98E+ 07 7.16E+ 05 3.69E+ 04 1.44E+ 04 1.34E+ 02

5/+ 4/+ 6/+ 9/+ 8/+ 10/+ 11/+ 7/+ 3/+ 2/+ 1
F19 2.47E+ 05 1.23E+ 04 2.04E+ 05 2.13E+ 07 6.23E+ 07 2.64E+ 08 1.66E+ 09 2.41E+ 05 4.40E+ 03 9.80E+ 03 1.29E+ 01

7.76E+ 05 5.13E+ 03 3.88E+ 05 1.10E+ 07 2.53E+ 07 2.69E+ 08 6.24E+ 07 1.77E+ 05 9.07E+ 03 1.11E+ 04 4.28E+ 00
7/+ 4/+ 5/+ 8/+ 9/+ 10/+ 11/+ 6/+ 2/+ 3/+ 1

F20 2.99E+ 02 1.03E+ 03 3.30E+ 02 6.30E+ 02 5.80E+ 02 8.40E+ 02 3.96E+ 03 7.37E+ 02 3.33E+ 02 2.16E+ 01 1.15E+ 02
1.27E+ 02 2.36E+ 02 1.66E+ 02 1.01E+ 02 7.75E+ 01 1.04E+ 02 1.36E+ 02 2.12E+ 02 1.74E+ 02 1.13E+ 01 6.21E+ 01

3/+ 10/+ 4/+ 7/+ 6/+ 9/+ 11/+ 8/+ 5/+ 1/− 2
F21 2.94E+ 02 4.60E+ 02 2.70E+ 02 4.50E+ 02 5.00E+ 02 3.90E+ 02 2.87E+ 03 4.60E+ 02 2.67E+ 02 2.71E+ 02 2.63E+ 02

1.75E+ 01 1.95E+ 01 1.85E+ 01 1.50E+ 01 1.60E+ 01 1.51E+ 02 2.55E+ 01 5.25E+ 01 2.01E+ 01 3.40E+ 01 6.46E+ 00
6/+ 9/+ 3/+ 8/+ 10/+ 7/+ 5/+ 9/+ 2/+ 4/+ 1

F22 2.12E+ 03 4.19E+ 03 2.27E+ 03 5.98E+ 03 2.99E+ 03 2.20E+ 03 5.33E+ 04 4.23E+ 03 4.40E+ 02 1.13E+ 02 7.36E+ 02
1.46E+ 03 1.69E+ 03 1.45E+ 03 2.36E+ 03 3.14E+ 02 7.00E+ 02 1.70E+ 03 1.77E+ 03 1.05E+ 03 1.07E+ 02 1.55E+ 03

4/+ 8/+ 6/+ 10/+ 7/+ 5/+ 11/+ 9/+ 2/− 1/− 3
F23 5.90E+ 02 1.26E+ 03 4.30E+ 02 6.80E+ 02 9.90E+ 02 9.00E+ 02 3.37E+ 04 8.07E+ 02 4.45E+ 02 3.24E+ 02 3.10E+ 02

7.49E+ 01 1.23E+ 02 3.04E+ 01 2.64E+ 01 5.15E+ 01 1.23E+ 02 4.95E+ 02 1.05E+ 02 3.05E+ 01 6.42E+ 00 6.04E+ 00
5/+ 10/+ 3/+ 6/+ 9/+ 8/+ 11/+ 7/+ 4/+ 2/+ 1

F24 7.13E+ 02 8.90E+ 02 5.00E+ 02 7.60E+ 02 1.08E+ 03 1.37E+ 03 5.77E+ 04 1.05E+ 03 5.14E+ 02 3.79E+ 02 3.65E+ 02
1.18E+ 02 5.57E+ 01 4.70E+ 01 2.46E+ 01 6.37E+ 01 1.67E+ 02 5.19E+ 05 1.47E+ 02 2.84E+ 01 1.26E+ 01 1.42E+ 01

5/+ 7/+ 3/+ 6/+ 9/+ 10/+ 11/+ 8/+ 4/+ 2/+ 1
F25 4.11E+ 02 4.30E+ 02 4.60E+ 02 6.70E+ 02 2.22E+ 03 3.15E+ 03 4.95E+ 05 4.10E+ 02 3.78E+ 02 4.33E+ 02 3.89E+ 02

7.28E+ 01 1.22E+ 01 2.69E+ 01 7.39E+ 01 5.33E+ 02 4.64E+ 02 4.86E+ 07 2.02E+ 01 2.15E+ 00 3.37E+ 01 8.53E+ 00
5/+ 6/+ 7/+ 8/+ 9/+ 10/+ 11/+ 4/+ 1/− 3/+ 2

F26 2.29E+ 03 4.26E+ 03 1.83E+ 03 4.33E+ 03 6.00E+ 03 7.80E+ 03 7.85E+ 04 3.75E+ 03 1.90E+ 03 6.38E+ 02 1.65E+ 03
7.62E+ 02 8.95E+ 02 2.45E+ 02 3.06E+ 02 5.87E+ 02 1.17E+ 03 6.76E+ 02 2.12E+ 03 5.09E+ 02 4.37E+ 02 1.49E+ 02

5/+ 7/+ 3/+ 8/+ 9/+ 10/+ 11/+ 6/+ 4/+ 1/− 2
F27 6.09E+ 02 1.97E+ 03 5.30E+ 02 6.90E+ 02 1.23E+ 03 1.06E+ 03 3.65E+ 04 6.31E+ 02 5.00E+ 02 3.96E+ 02 3.06E+ 02

9.38E+ 01 3.21E+ 02 1.78E+ 01 2.60E+ 01 9.38E+ 01 1.35E+ 02 6.75E+ 01 6.78E+ 01 1.37E−04 1.74E+ 01 8.64E+ 00
5/+ 10/+ 4/+ 7/+ 9/+ 8/+ 11/+ 6/+ 3/+ 2/+ 1

F28 6.06E+ 02 5.10E+ 02 5.30E+ 02 1.03E+ 03 2.29E+ 03 5.05E+ 03 5.64E+ 04 4.52E+ 02 4.71E+ 02 4.56E+ 02 3.51E+ 02
1.60E+ 02 4.94E+ 01 4.83E+ 01 1.63E+ 02 3.00E+ 02 5.08E+ 02 4.33E+ 02 2.65E+ 01 5.64E+ 01 1.45E+ 02 6.60E+ 01

7/+ 5/+ 6/+ 8/+ 9/+ 10/+ 11/+ 2/+ 4/+ 3/+ 1
F29 5.19E+ 02 1.81E+ 03 8.10E+ 02 1.69E+ 03 2.30E+ 03 6.47E+ 03 5.46E+ 04 1.37E+ 03 6.93E+ 02 3.37E+ 02 4.20E+ 02

1.70E+ 02 2.10E+ 02 1.26E+ 02 2.52E+ 02 2.14E+ 02 2.74E+ 03 3.57E+ 02 2.96E+ 02 1.88E+ 02 5.64E+ 01 7.66E+ 01
3/+ 8/+ 5/+ 7/+ 9/+ 10/+ 11/+ 6/+ 4/+ 1/− 2

F30 5.15E+ 05 1.67E+ 05 3.90E+ 06 7.06E+ 07 8.97E+ 07 5.74E+ 08 1.65E+ 09 1.65E+ 06 4.59E+ 03 3.56E+ 05 2.11E+ 03
9.02E+ 05 1.24E+ 05 3.10E+ 06 3.47E+ 07 3.04E+ 07 3.63E+ 08 6.31E+ 07 8.27E+ 05 3.39E+ 03 5.45E+ 05 1.64E+ 02

5/+ 3/+ 7/+ 8/+ 9/+ 10/+ 11/+ 6/+ 2/+ 4/+ 1
+/−/= 29/0/0 29/0/0 28/1/0 29/0/0 29/0/0 29/0/0 29/0/0 29/0/0 27/2/0 21/8/0
Nb/Nw/Mr 0/0/5.0690 0/0/6.4483 0/0/4.8621 0/0/7.6207 0/1/8.7931 0/2/9.4138 0/26/10.6897 0/0/6.2759 1/0/3.1379 8/0/2.1724 20/0/1.3793
Final rank 5 7 4 8 9 10 11 6 3 2 1
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Table 17. CSBO Complexity.

D T0 T1
�

T2 (
�

T2−T1)/T0

30 0.2503 2.5411 3.4201 3.5118
50 0.2504 5.0096 6.6204 6.4329

maximumnumber of iterations andD is the dimension of
the particular issues. As a result, CSBO’s computational
complexity is O (Npop × (Itermax + Itermax × D + 1)).

4. Application of CSBO algorithm for
engineering optimization problems

In the second phase study, some experiments were
accomplished to compare the proposed CSBO algorithm
with other obtained optimal best results for solving var-
ious manufacturing parameter optimization problems
such as the engineering design optimization, the param-
eter estimation for frequency-modulated (FM) sound
waves, and the maximizing of the reliability in the engi-
neering systems.

Over the last few years, population-based swarm intel-
ligence based on various EAs has attracted much interest
among researchers in the related fields for the optimal
solutions such as the optimal solutions of various types of
manufacturing parameters and engineering design opti-
mization problems in order to improve the system’s fea-
tures like performance and cost. A variety of manufac-
turing topics can be defined as optimization problems
with many nonlinear characteristics and the inequality
(or equality) and nonlinear (or linear) optimization con-
straints. Product and process design, tuningmanufactur-
ing parameters, scheduling and production planning are
some examples of this area.

Therefore, to attain desired product quality with high
efficiency, it is urgent to use optimization methods to
handle the manufacturing development. Since manufac-
turing processes are going to be more complicated and
also the products’ quality must satisfy high standards,
the investigation of improved methods for solving these
problems is highly explored, and it is still an ongoing sub-
ject in the current competitive market (G. Zhang et al.,
2013).

In the recent years, various optimization heuristic
techniques and EAs have been applied to solve manufac-
turing parameter and engineering design optimization
problems, such as harmony search (HS) (Lee & Geem,
2005), genetic algorithms (GAs) (Coello & Montes,
2002); (Dhadwal et al., 2014); (Pasandideh et al., 2013),
the various optimization heuristic techniques of the dif-
ferential evolution (DE) algorithm for constrained opti-
mization such as the hybrid DE algorithms (Liao, 2010),
a cultural DE (CDE) (Becerra & Coello, 2006), the

DE with dynamic stochastic selection (DSS-MDE) (M.
Zhang et al., 2008), the co-evolutionary DE (CoDE) (F.
Huang et al., 2007), a modified DE (COMDE) (A. W.
Mohamed & Sabry, 2012), the evaluating DE (de Melo &
Carosio, 2012), a new hybrid DE (Yildiz, 2013a), a DE
and tissue membrane systems (DETPS) algorithm (C. Li
et al., 2011), an improved constrained DE (Gong et al.,
2014), a dual-populationDEwith coevolution (Gao et al.,
2014), the various techniques of PSO algorithm for con-
strained manufacturing parameter optimization such as
a unified PSO (UPSO) algorithm (Parsopoulos & Vra-
hatis, 2005), a co-evolutionary PSO (CPSO) algorithm
(Q. He & Wang, 2007b), a hybrid algorithm of PSO
with DE (PSO-DE) (Liu et al., 2010), an improved vector
PSO (Sun et al., 2011), the ABC optimization algorithms
((Brajevic et al., 2011); (G. Li et al., 2012); (Tsai, 2014);
(Brajevic & Tuba, 2013); (A. Singh& Sundar, 2011); (Bra-
jevic, 2015)), the TLBO optimization algorithm ((Yildiz,
2013b); (Yu et al., 2016); (Maity&Mishra, 2018)), cuckoo
search (CS) algorithm (Gandomi, Yang, and Alavi, 2013),
Jaya algorithm (R. V. Rao &Waghmare, 2017) and etc.

4.1. The constrained engineering design
optimization using CSBO

In order to verify the results of the proposed CSBO
algorithm on the constrained engineering design appli-
cations, three problems from the competitive study are
chosen: optimal design of a tension/compression spring,
the three-bar truss and the pressure vessel to minimize
the total cost of the manufacturing and design. The pop-
ulation size and the maximum number of iterations have
been chosen to be 45, 400 for three-bar truss, and 5000
for pressure vessel and tension/compression spring opti-
mal design problems, respectively, with 30 independent
runs for the CSBO algorithm, which are summarized as
follows. In recent years, it should be noted that many
researchers have examined these engineering problems
in different studies. Thus, we just investigated the cases
considering all the limitations and conditions.

4.1.1. Problem 1: the tension/compression spring
design problem
The tension/compression problem aims to minimize
the tension/compression spring’s weight regarding con-
straints on the minimum deflection, shear stress, surge
frequency, diameter, and design variables, as shown in
Figure 8 (Arora, 2004). This problem includes one lin-
ear and three nonlinear inequality constraints and three
continuous design variables. In addition, tre are three
continuous variables, including the wire diameter x1(d)
with region 0.05 ≤ x1 ≤2, the mean coil diameter x2(D)
with region 0.25 ≤ x2 ≤1.3, and the number of active
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Figure 8. The optimal design of tension/compression spring problem.

coils x3 (P) with region 2 ≤ x3 ≤15 (Akay & Karaboga,
2012; Coello & Montes, 2002).

The mathematical formulation of the tension/
compression spring optimal design problem can be given
as follows (Q. He &Wang, 2007b) and (Yu et al., 2016):

Minimize:

F1(X) = (x3 + 2)x2x21. (14)

Subject to:

g1(X) = 1 − x32x3
71785x41

≤ 0, (15)

g2(X) = 4x22 − x1x2
12566(x31x2 − x41)

+ 1
5108x21

− 1 ≤ 0, (16)

g3(X) = 1 − 140.45x1
x22x3

≤ 0, (17)

g4(X) = x1 + x2
1.5

− 1 ≤ 0. (18)

The simulation results achieved by the proposed
CSBO algorithm compared to GA (Coello & Montes,
2002), CPSO (Q. He & Wang, 2007b), CDE (F. Huang
et al., 2007), DELC (L. Wang & Li, 2010), ABC (Akay &
Karaboga, 2012), UABC (Brajevic & Tuba, 2013), ITLBO
(Yu et al., 2016), CSA (Askarzadeh, 2016), EO (Faramarzi
et al., 2020), water cycle algorithm (WCA) (Eskandar
et al., 2012), Bat algorithm (BA) (Gandomi, Yang, Alavi,
and Talatahari, 2013), HEA-ACT (Y. Wang et al., 2009),
spotted hyena optimizer (SHO) (Dhiman et al., 2021),
chaotic water cycle algorithm (CWCA III) (Heidari et al.,
2017), and virus colony search (VCS) (Jain et al., 2019)
algorithms are listed in Table 18. The simulation results
show that the proposed CSBO algorithm is better and
more robust for the tension/compression spring optimal
design problem.

In fact, CSBO could obtain the standard deviation
of 4.38E −14, which is an outstanding result. Although

other algorithms could result in an optimal global solu-
tion, they all have the worse Std. compared to CSBO.

4.1.2. Problem 2: the three-bar truss design problem
The three-bar truss structure design, as shown in
Figure 9, is a continuous constrained nonlinear opti-
mization problem in which the objective is to minimize
structure volume by using two continuous design vari-
ables x1 and x2 with region 0 ≤ x1 ≤1, and 2 with region
0 ≤ x2 ≤1, along with three nonlinear inequality con-
straints. The mathematical formulation of the three-bar
truss structure optimal design problem can be defined as
follows (Brajevic & Tuba, 2013):

Minimize:

F2(X) = 100 ×
(
2
√
2x1 + x2

)
. (19)

Subject to:

g1(X) = P ×
√
2x1 + x2√

2x21 + 2x1x2
− σ ≤ 0, (20)

g2(X) = P × x2√
2x21 + 2x1x2

− σ ≤ 0, (21)

g3(X) = P × 1√
2x2 + x1

− σ ≤ 0, (22)

The best-obtained simulation results from the pro-
posed CSBO algorithm are listed in Table 19, which are
compared to various earlier algorithms including SBO
(Ray & Liew, 2003), DSS-MDE (M. Zhang et al., 2008),
HEA-ACT (Y. Wang et al., 2009), PSO-DE (Liu et al.,
2010), COMDE (F. Huang et al., 2007), UABC (Brajevic
& Tuba, 2013), CSA (Askarzadeh, 2016), WCA (Eskan-
dar et al., 2012), water strider algorithm (WSA) (Kaveh
& Eslamlou, 2020), ICA (Atashpaz-Gargari & Lucas,
2007), (Kaveh & Eslamlou, 2020), salp swarm algorithm
(SSA) (Kaveh & Eslamlou, 2020), (Mirjalili et al., 2017),
neural network algorithm (NNA) (Kaveh & Eslamlou,
2020), (Sadollah et al., 2018), and biogeography-based
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Table 18. Comparison of the best results for tension/compression spring problem by algorithms.

Variable GA CPSO CDE DELC ABC UABC ITLBO CSBO

x1(d) 0.051989 0.051728 0.051609 0.3567177413 0.051749 0.051691 0.051689 0.0517303564
x2(D) 0.363965 0.357644 0.354714 0.0516890611 0.358179 0.356769 0.356723 0.357710461
x3 (P) 10.890522 11.244543 11.410831 11.2889656626 11.203763 11.285988 11.288662 11.231171877
g1(X) −0.000013 −0.000845 −0.000039 NA 0.0 0.0 0.0 −1.0154E−05
g2(X) −0.000021 −1.260E−05 −0.000183 NA 0.0 0.0 0.0 −3.4846E−06
g3(X) −4.061338 −4.051300 −4.048627 NA −4.056663 −4.053886 −4.053796 −4.05567
g4(X) −0.722698 −0.727090 −0.729118 NA −0.726713 −0.727694 −0.727725 −0.72704
Best 0.0126810 0.0126747 0.0126702 0.012665233 0.012665 0.012665 0.012665 0.012665
Mean 0.0127420 0.012730 0.012703 0.012665267 0.012709 0.012683 0.012666224 0.012665
Worst 0.012973 0.012924 0.012790 0.012665575 NA NA 0.012673454 0.012666
Std. 5.90E−05 5.1985E−05 2.70E−05 1.3E−07 0.012813 3.31E−05 2.12E−06 4.38E−14
Variable CSA EO WCA HEAA BA CWCA III VCS SHO
x1(d) 0.0516890284 0.05161991 0.051680 0.051689 0.05169 0.0517091014 0.051685684 0.051144
x2(D) 0.3567169544 0.355054381 0.356522 0.356729 0.35673 0.3571073363 0.3566365087 0.343751
x3 (P) 11.2890117993 11.38796759 11.30041 11.288293 11.2885 11.2708257743 1.293729668245 12.0955
g1(X) −4.441E−16 NA −1.65E−13 −3.96E−10 0.0 NA −5.2916E−11 NA
g2(X) −4.1078E−15 NA −7.9E−14 −3.59E−10 0.0 NA −2.672E−11 NA
g3(X) −4.05378408 NA −4.0534 −4.053808 −4.0538 NA −4.0536252 NA
g4(X) −0.72772934 NA −0.7279 −0.727720 −0.7277 NA −0.727785 NA
Best 0.012665 0.012666 0.012665 0.012665 0.012665 0.012671577 0.012665 0.0126740
Mean 0.012666 0.013017 0.012746 0.012665 0.013501 0.013401730 0.012720 0.012684106
Worst 0.012667 0.013997 0.012952 0.012665 0.016895 0.016810785 0.012996 0.012715185
Std. 1.36E−06 3.91E−04 8.06E−05 1.4E−09 0.001420 0.4578E−03 6.527E−05 0.000027

Figure 9. The three-bar truss structure optimal design problem.

optimization (BBO) (Kaveh & Eslamlou, 2020), (Simon,
2008) algorithms. The results indicate that the CSBO
algorithm is quite competitive and effective for opti-
mal design of the three-bar truss structure. It is worth
mentioning that this is a simple problem with only
two dimensions and could be solved easily by most
algorithms.

4.1.3. Problem 3: the pressure vessel optimization
problem
In the pressure vessel optimal design, as shown in
Figure 10, the optimization problem objective function
is to minimize the total cost (F3(X)), containing the

material cost, forming and welding of a cylindrical ves-
sel structure. There are two discrete design variables, the
thickness of the shell (x1 or Ts ) with region 1 ≤ x1 ≤99
and the thickness of the head (x2 or Th ) with region 1
≤ x2 ≤99, in which the design variables x1 and x2 are
integer multiples of 0.0625. In addition, two continuous
design variables, including the inner radius (x3 orR )with
region 10 ≤ x3 ≤200, and the length of the cylindrical
section of the vessel, not including the head (x4 or L )
with region 10 ≤ x4 ≤200 are the other variables (Q. He
&Wang, 2007b) and (Brajevic & Tuba, 2013). Therefore,
the optimal design problem can be expressed as follows
(Q. He &Wang, 2007b):
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Figure 10. The pressure vessel optimal design problem.

Table 19. Comparison of the best results for the three-bar truss structure optimal design problem.

Variable SBO DSS-MDE HEA-ACT PSO-DE COMDE UABC CSBO

x1 0.7886210370 0.7886751359 0.7886803456 0.788675134746 NA 0.788675 0.788675107937
x2 0.4084013340 0.4082482868 0.4082335517 0.408248290037 NA 0.408248 0.408248365867
g1(X) NA NA NA NA NA 0.000 −2.5199842
g2(X) NA NA NA NA NA −1.464102 −1.4641015
g3(X) NA NA NA NA NA −0.535898 −0.5358985
Best 263.8958466 263.8958434 263.895843 263.89584338 263.8958434 263.895843 263.895843377
Mean 263.90335672 263.8981518 263.895843 263.89584338 263.8958434 263.895843 263.895843377
Worst 263.96975638 263.95226 263.895843 263.89584338 263.8958434 NA 263.895843382
Std. NA 9.19E−03 8.3E−12 4.5E−10 5.34E−13 0.0 6.83E−18
Variable CSA WCA WSA ICA SSA NNA BBO
x1 0.7886751284 0.788651 0.788683 0.788625 0.788683 0.788639 0.789066
x2 0.4082483080 0.408316 0.408227 0.408389 0.408265 0.40835 0.408227
g1(X) −1.6875E−14 0.0000 NA NA NA NA NA
g2(X) −1.46410 −1.464024 NA NA NA NA NA
g3(X) −0.5358984 −0.535975 NA NA NA NA NA
Best 263.895843377 263.895843 263.89584340 263.89584519 263.89584346 263.89584432 263.89665288
Mean 263.895843377 263.895903 263.89606687 263.89932689 263.89635079 263.89739164 264.50214578
Worst 263.895843377 263.896201 263.89743217 263.91413326 263.90188334 263.90537191 267.74884623
Std. 1.0123E−10 8.71E−05 0.00031196 0.00411693 0.00093128 0.00245495 0.88058464

Minimize:

F3(X) = 0.6224x1x3x4 + 1.7781x2x23
+ 3.1661x21x4 + 19.84x21x3. (23)

Subject to:

g1(X) = −x1 + 0.0193x3 ≤ 0, (24)

g2(X) = −x2 + 0.00954x3 ≤ 0, (25)

g3(X) = −πx23x4 − 4
3
πx33 + 1296000 ≤ 0, (26)

g4(X) = x4 − 240 ≤ 0, (27)

The best-achieved simulation results by the pro-
posed CSBO algorithm in comparison with GA (Coello
& Montes, 2002), CPSO (Q. He & Wang, 2007b),

CDE (F. Huang et al., 2007), CB-ABC (Brajevic, 2015),
ABC (Akay & Karaboga, 2012), UABC (Brajevic &
Tuba, 2013), CSA (Askarzadeh, 2016), EO (Faramarzi
et al., 2020), BA (Gandomi, Yang, Alavi, & Talatahari,
2013), Gaussian quantum-behaved particle swarm opti-
mization (G-QPSO) (Eskandar et al., 2012), (dos San-
tos Coelho, 2010), hybrid particle swarm optimization
(HPSO) (Eskandar et al., 2012), (Q. He & Wang, 2007a),
moth-flame optimization (MFO) (Mirjalili, 2015), and
GSA (Mirjalili, 2015), (Rashedi et al., 2009) algorithms
are listed in Table 20. The simulation results demonstrate
that the proposed CSBO algorithm is quite competi-
tive and robust for different optimal design problems.
The CSBO algorithm could obtain the same best, worst,
and mean values for different cases, which leads to opti-
mal global solutions. On the other hand, although other
methods could result in the best solution, they suffer from
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Table 20. Comparison of the best results for the pressure vessel optimal design problem.

Variable GA CPSO CDE CB-ABC ABC UABC CSBO

x1 0.8125 0.8125 0.8125 NA 0.8125 0.8125 0.8125
x2 0.4375 0.4375 0.4375 NA 0.4375 0.4375 0.4375
x3 42.097398 42.091266 42.098411 NA 42.098446 42.098446 42.098445596
x4 176.654050 176.746500 176.63769 NA 176.636596 176.636596 1.76636595842
g1(X) −0.000020 −0.000139 −6.677E−07 NA 0.000 −0.000 0.0
g2(X) −0.035891 −0.035949 −0.035881 NA −0.035881 −0.035881 −0.035881
g3(X) −27.886075 −116.3827 −3.683016 NA −0.000226 −0.000 −3.4924E−010
g4(X) −63.345953 −63.2535 −63.36231 NA −63.363404 −63.363404 −63.3634
Best 6059.9463 6061.0777 6059.7340 6059.714335 6059.714339 6059.714335 6059.714335
Mean 6177.2533 6147.1332 6085.2303 6126.623676 6245.308144 6192.116211 6059.714335
Worst 6469.3220 6363.8041 6371.0455 NA NA NA 6059.714335
Std. 130.9297 86.4545 43.0130 1.14E+ 02 2.05E+ 02 2.04E+ 02 6.68E−16
Variable CSA EO G-QPSO HPSO BA MFO GSA
x1 0.8125 0.8125 0.8125 0.8125 0.8125 0.8125 1.1250
x2 0.4375 0.4375 0.4375 0.4375 0.4375 0.4375 0.6250
x3 42.09844539 42.0984456 42.0984 42.0984 42.0984456 42.098445 55.988659
x4 176.63659855 176.636596 176.6372 176.6366 176.6365958 176.636596 84.4542025
g1(X) −4.0241E−09 NA −8.79E−07 −8.80E−07 NA NA NA
g2(X) −0.03588083 NA −3.58E−02 −3.58E−02 NA NA NA
g3(X) −7.1227E−04 NA −0.2179 −3.1226 NA NA NA
g4(X) −63.3634015 NA −63.3628 −63.3634 NA NA NA
Best 6059.7143634 6059.7143 6059.7208 6059.7143 6059.714335 6059.7143 8538.8359
Mean 6342.4991 6668.114 6440.3786 6099.9323 6179.1300 NA NA
Worst 7332.8416 7544.4925 7544.4925 6288.6770 6318.95 NA NA
Std. 130.9297 566.24 448.4711 86.2000 137.223 NA NA

large Std., which affects their performance in different
circumstances.

4.2. Parameter estimation for FM soundwaves

In this section, the proposed CSBO algorithm with
Itermax = 5000 and the population size of Npop = 45 is
used to estimate the optimal parameters of an FM sound
wave synthesis.

The highly complex multimodal FM sound synthesis
optimization problem is significant in numerous recent
music systems (Das & Suganthan, 2010). Estimating the
optimal parameters of an FM sound wave synthesis is a
D-dimensional optimization problem. This paper con-
sidershe case of D = 6 based on (Das & Suganthan,
2010). The 6 dimensional vector has six components: X
= [x1(a1), x2(ω1), x3(a2), x4(ω2), x5(a3), x6(ω3)] with
region −6.5 ≤ X ≤ 6.35 for all variables. The equations
are given for the estimated and objective sound wave are
given as follows for 100 times (t = 1:100) (C. Li et al.,
2011):

y(t) = x1 sin(x2tθ + x3 sin(x4tθ + x5 sin(x6tθ)))

(28)

y0(t) = 1.0 × sin(0.5tθ − 1.5 ∗ sin(4.8tθ

+ 2.0 ∗ sin(4.9tθ))) (29)

Where θ = 2π
100 .

The optimization problem objective function is
defined as the summation of square errors between y(t)
(the estimated wave) and y0(t) (the target wave) as shown

below, with optimum value F4(X) = 0:

F4(X) =
100∑
t=0

(y(t) − y0(t))2. (30)

The comparison between the best results obtained from
the CSBO algorithm with the best results reported in (C.
Li et al., 2011), such as SLPSO, APSO, CLPSO, CPSOH,
FIPS, SPSO, JADE, HRCGA, HRCGA, FPSO, TRIBES-
D, and G-CMA-ES, is given in Table 21. As it is evi-
dent, the CSBO algorithm outperforms all other pro-
posed algorithms (for all four factors, i.e. Best, Worst,
Mean and Std.). Furthermore, test solution obtained from
the CSBO algorithm compared to very new algorithms
such as gorilla troops optimizer (GTO) (Abdollahzadeh
et al., 2021), and tunicate swarm algorithm (TSA) (Kaur
et al., 2020), is shown in Table 22, which confirms the
ability and efficient performance of the proposed CSBO
algorithm compared to TSA and GTO.

4.3. Reliability-redundancy allocation optimization
(RRAO) problem

The main purpose of reliability-redundancy constraint
and nonlinear optimization problems is to augment the
system reliability (maximization of the overall system
reliability) using component reliabilities (r = (r1, r2, . . . ,
rm)) and redundancy allocation number (n = (n1, n2, . . .
, nm)) optimization vectors for subsystems of the system,
X = [r, n]. The nonlinear mixed-integer programming
model of this problem can be formulated by selecting
the reliability of the system as the objective function to
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Table 21. Comparison of the CSBO best results with the best
results reported in (C. Li et al., 2011).

Algorithms Best Mean Worst Std.

SLPSO 0.0 4.18 13.79 26.99
APSO 0.0 11.33 34.22 41.13
CLPSO 0.007 3.82 14.08 23.53
CPSOH 3.45 27.08 42.52 60.61
FIPS 0.0 5.93 15.11 25.75
SPSO 0.0 9.88 18.27 33.85
JADE 0.0 7.55 13.92 26.18
HRCGA 0.0 8.41 17.59 32.54
FPSO 0.0 5.22 15.82 28.31
TRIBES-D 2.22 14.68 22.24 4.57
G-CMA-ES 3.326 38.75 55.09 16.77
CSBO 0.0 1.332 10.75 3.64

Table 22. The best solution results from the CSBO and state-of-
the-art algorithms for F4(X).

Variable CSBO

GTO
(Abdol-
lahzadeh
et al.,
2021)

TSA
(Abdol-
lahzadeh
et al.,
2021)

x1 1.0 −1.00 0.3415
x2 0.50 −5.0 4.7881
x3 −1.50 −1.5 1.4309
x4 4.80 4.80 0.1158
x5 2.0 2.0 0.0975
x6 4.90 4.90 0.5480
F4(X) = F4([x1, x2, x3, x4, x5, x6]) 0.0 2.2811E−27 25.1052

be maximized by considering multiple nonlinear con-
straints as expressed below:

Maximize Rs = F(r, n) (31)

subject to g(r, n) ≤ l
0 ≤ rd ≤ 1, nd ∈ Z+
(positive integer in the discrete space), 0 ≤ d ≤ m.

(32)

whereRs is the reliability of different systems,F(.) and g(.)
are the objective and constraint functions for the RRAO
problem of the overall parallel-series systems, respec-
tively. The g(.) is usually associated with system cost, vol-
ume andweight. r = (r1, r2, . . . , rm) and n = (n1, n2, . . . ,
nm) are the component reliabilities and redundancy allo-
cation number vectors for system subsystems, including
m subsystems, respectively, and l is the system resource
limitation.

4.3.1. A real-world example: themaximizing of the
reliability of the over-speed protection system of a gas
turbine
The over-speed detection has an important role in
mechanical and electrical systems. When an over-speed
happens, it is vital to halt the fuel source by utilizing a
few control valves (V1 to V4). The over-speed protection

Table 23. Data of the fourth test system (T.-C. Chen, 2006;
Ghavidel et al., 2018).

Stage 105 × αd βd wdv2d wd V C W

1 1.0 1.5 1 6 250 400 1000 h
2 2.3 1.5 2 6
3 0.3 1.5 3 8
4 2.3 1.5 2 7

system of a gas turbine for RRAP optimization mixed-
integer non-linear problem is depicted in Figure 11. The
input parameters of the over-speed protection system are
summarized in Table 23 (T.-C. Chen, 2006).

This reliability optimization (maximization) problem
can be formulated as follows:

Maximize F5(r, n) =
m∏
d=1

[1 − (1 − rd)nd]

0.5 ≤ rd ≤ (1 − 10−6), 0 ≤ d ≤ m

1 ≤ nd ≤ 10,∈ Z+

(positive integer in the discrete space). (33)

The system constraints include:

(1) The combination of weight, volume and redundancy
allocation constraints:

g1(r, n) =
m∑
d=1

v2dn
2
d ≤ V (34)

where, vd is the volume of dth subsystem for all
components, V is the upper volume limit of the
subsystem’s products.

(2) The system cost constraint:

g2(r, n) =
m∑
d=1

C(rd)[nd + e0.25nd] ≤ C,

C(rd) = αd

(
− T

ln rd

)βd
.

(35)

where,C parameter is the upper-cost limit of the sys-
tem and C(rd) is the cost for all components with
reliability rd at dth stage. T is the operating time in
which the components are working.

(3) The system weight constraint:

g3(r, n) =
m∑
d=1

wdnde0.25nd ≤ W (36)

In Table 24, the best results obtained from the CSBO
algorithm with Itermax = 3000 and the population size
of Npop = 45 compared to many previous reported
works are given. It is obvious from this table that the
CSBO algorithm outperforms in comparison with other
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Figure 11. The diagram block for the over-speed protection system of a gas turbine (T.-C. Chen, 2006; Ghavidel et al., 2018).

Table 24. Comparison of best results obtained of CSBO with some of the previously reported results.

Variable IA EGHS PSSO AR-ICA NAFSA GA-PSO CSBO

r1 0.903800 0.900925066 0.90166461 0.90148988 0.90160779120 0.901628 0.901614621
r2 0.874992 0.851636929 0.88817296 0.85003526 0.84993077684 0.888230 0.849921181
r3 0.919898 0.948079849 0.94821033 0.94812952 0.94814603278 0.948121 0.948141545
r4 0.890609 0.887654500 0.84987084 0.88823833 0.88821809379 0.849921 0.88822282
n1 5 5 5 5 5 5 5
n2 5 6 5 5 6 5 6
n3 5 4 4 4 4 4 4
n4 5 5 6 5 6 6 5
Best 0.999942 0.99995463 0.99995467 0.999954673 0.99995467467 0.99995467 0.99995468
g1 50 55 NA 55 55 55 55
g2 0.002152 0.00000105 NA 0.00213782 4.5195E−07 0.000006 2.3180E−009
g3 28.803701 24.80188272 NA 24.8018827 24.802 15.363463 24.80188
MPI (%) 21.853 9.847E−02 1.03E−02 3.699E−03 1.496E−05 1.03E−02 NA
Mean NA 0.99993588 0.9999416669 0.99993804 0.99995075542 0.99995467 0.99995468
Worst NA 0.99985315 0.99986938 0.99982276 NA 0.99995467 0.99995468
Std NA 2.2E−05 1.61E−5 0.00002204 4.43E−06 1.0E−16 3.38E−24

algorithms such as IA (Ghavidel et al., 2018), a novel
global harmony search (EGHS) (D. Zou et al., 2011),
a particle-based simplified swarm optimization (PSSO)
(C.-L. Huang, 2015), a new modified ICA based on
attraction and repulsion concepts (AR-ICA) (Afonso
et al., 2013), a new artificial fish optimizer (NAFSA)
(Q. He et al., 2015) and a novel hybrid of PSO and GA
(GA-PSO) (Sheikhalishahi et al., 2013) for maximization
optimization problems.

4.4. Discussions and prospect of the future

On the CEC 2005, CEC 2014 and CEC 2017 stan-
dard benchmarks and five popular real-world engi-
neering issues, the proposed CSBO algorithm is com-
pared to other well-known nature-inspired algorithms.
The statistical analysis of the benchmark functions
demonstrates that this method can produce promis-
ing and competitive outcomes. Additionally, it was dis-
covered that CSBO is capable of performing well in
exploration and exploitation in real-parameter (shifted)

multimodal and enlarged multimodal functions, as well
as in real-parameter unimodal functions. Additionally,
the findings of the real-parameter composite and hybrid
functions demonstrate that the CSBO strikes an appro-
priate balance between exploration and exploitation.
Additionally, CSBO’s average optimized outcomes and
standard deviation on average results are comparable to
those generated by other optimization methods. Conver-
gence speed comparisons further demonstrate the pro-
vided algorithm’s rapid convergence capability. It would
be fascinating to apply CSBO to other optimization
issues in many science and engineering sectors in the
future. Numerous study directions can be offered for
future works. First, we investigate various spirals’ influ-
ence Second, a binary implementation of CSBO may
be an intriguing future project. Finally, it is recom-
mended to provide certain operators for solving multi-
objective algorithms utilizing CSBO. Another intriguing
issue would be conducting additional research on the NR
parameter value to decide it automatically without user
control.
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5. Conclusion

In this article, we presented a new meta-heuristic opti-
mization algorithm inspired by the functionality of the
circulatory system in the human body named the Cir-
culatory System Based Optimization (CSBO) algorithm.
The performance and mathematical modeling of CSBO
and its functionality as an optimizer were presented.
CSBO was tested and optimized on a wide variety of
complex real-world functions compared with many well-
known optimization algorithms. Various test functions,
including unimodal, multimodal, hybrid, and composi-
tion standard benchmarks of the CEC 2005, CEC 2014
and CEC 2017 were used to test the performance of the
proposed algorithm. The results showed the higher per-
formance of CSBO compared to the state-of-the-art algo-
rithms in terms of exploration, exploitation, local optima
avoidance, and convergencemanner. Also, a dimensional
scalability analysis was conducted for CSBO, including
30 and 50 dimensions of the CEC2014, and the results
indicated that CSBO could efficiently search the feasi-
ble space to find the optimal or near-optimal solutions.
Finally, CSBO was applied to several different practi-
cal engineering problems. These engineering problems
are included: the tension/compression spring design,
the three-bar truss design, the pressure vessel design,
the parameter estimation for FM sound waves, and the
reliability-redundancy allocation optimization. The sim-
ulation results indicated that CSBO is quite competitive
and robust for optimal design problems compared with
many modern and advanced optimization algorithms in
the recent literature. Therefore, CSBO can be considered
a modern and robust algorithm for future studies and
optimization applications.
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