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ABSTRACT The goal of the ‘‘2019 Automatic Speaker Verification Spoofing and Countermeasures
Challenge’’ (ASVspoof) was to make it easier to create systems that could identify voice spoofing attacks
with high levels of accuracy. However, model complexity and latency requirements were not emphasized
in the competition, despite the fact that they are stringent requirements for implementation in the real
world. The majority of the top-performing solutions from the competition used an ensemble technique that
merged numerous sophisticated deep learning models to maximize detection accuracy. Those approaches
struggle with real-world deployment restrictions for voice assistants which would have restricted resources.
We merged skip connection (from ResNet) and max feature map (from Light CNN) to create a compact
system, and we tested its performance using the ASVspoof 2019 dataset. Our single model achieved a
replay attack detection equal error rate (EER) of 0.30% on the evaluation set using an optimized constant Q
transform (CQT) feature, outperforming the top ensemble system in the competition, which scored an EER
of 0.39%. We experimented using depthwise separable convolutions (from MobileNet) to reduce model
sizes; this resulted in an 84.3 percent reduction in parameter count (from 286K to 45K), while maintaining
similar performance (EER of 0.36%). Additionally, we usedGrad-CAM to clarifywhich spectrogram regions
significantly contribute to the detection of fake data.

INDEX TERMS Voice assistant security, voice spoofing attack, voice synthesis attack, voice presentation
attack detection.

I. INTRODUCTION
As voice assistants continue to rapidly improve to support
security- and privacy-sensitive tasks, such as sending and
receiving emails, processing payments, taking pictures, and
posting on social media, they become highly desirable tar-
gets for attackers. The most straightforward and accessible
approach for attackers to take advantage of voice assistants
is probably through ‘‘voice replay attacks.’’ These attacks
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leverage voice assistant usage recordings to circumvent voice
biometric verification features on the victim’s target devices
by simply playing them back loudspeaker-to-loudspeaker.
Advanced attacks known as ‘‘voice synthesis (or conversion)
attacks’’ entail gathering voice samples from the target, using
machine learning to train the victim’s voice biometricmodels,
and then creating new voice attack samples. To train voice
models, you can use free resources like Google’s Wavenet,
and Tacotron [1], [2], [3].

‘‘Automatic speaker verification spoofing and coun-
termeasures challenge’’ (ASVspoof) has been organized
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since 2015 to encourage researchers to develop voice spoof-
ing attack detection systems and to compete for the improve-
ment of voice detection accuracy. Competitions took place in
2015, 2017, 2019, and 2021 [4], [5], [6], [7].

In this study, we evaluate the performance of our solution
to the top-performing ones from the competition using the
ASVspoof 2019 dataset. ASVspoof 2019 offers two distinct
attack sets: (1) a physical access (PA) attack set produced
by playing back recorded voices through loudspeakers and
intended to thwart ‘‘voice replay attacks,’’ and (2) a logical
access (LA) attack set, which is intended to prevent ‘‘voice
synthesis attacks,’’ and synthetic generation by training vic-
tims’ voice. The trained voice models directly played to the
target voice assistant system. The generation of the second
set does not involve recording or replaying. The model that
performed the best in comparison to the ASVspoof 2019 PA
set had an equal error rate (EER) of 0.39 %.

Many participants in the competition used an ensemble
approach involving the use of multiple deep learning models.
One ensemble solution that combined multiple light convo-
lutional neural network (LCNN) models achieved an EER
of 0.54% on the PA set, and an EER of 1.86% on the LA
set [8]. An ensemble solution that used multiple residual
network (ResNet) models with the squeeze and excitation
(SE) technique achieved an EER of 0.59% for the PA set, and
6.7% for the LA set [9].

The complexity and latency demand that businesses place
on models might make such ensemble (multi-model) solu-
tions difficult to use, despite their competitive accuracy
outcomes (low EERs). Businesses often need model sizes
to be fewer than a few megabytes (including taking into
account on-device deployment situations), and the detection
(prediction) time to be less than 100 ms due to consumers’
expectations of rapid responses and difficulties with balloon-
ing server costs.

To satisfy those business requirements, Kwak et al. propose
a deep learning architecture called ‘‘ResMax’’ that com-
bines the skip connection concept from ResNet with the
max feature map concept from LCNN [10]. By using opti-
mized constant Q transform (CQT) feature, ResMax achieved
an EER of 0.37% on the PA set and 2.19% on the LA
set. Compared with the top-performing solutions from the
ASVspoof 2019 competition that used ensemble approaches
(multiple heavy and complex deep learning models), a sin-
gle ResMax model is capable of achieving the top EER on
the PA set and would be ranked third among the LA set
solutions.

To extend our prior work, we included three additional
experiments in this paper. First, to highlight regions in spec-
trograms that are significantly contributing to spoof attack
detection, we applied gradient-weighted class activationmap-
ping (Grad-CAM [11]) to our models. The three key obser-
vations were: 1) Vertically extracted frequency features are
activated in PA models, 2) horizontally extracted time-series
features are activated in LA models, and 3) the human voice
(low) frequency region is activating important features for

both PA and LA models but is more significantly impacting
the performance of LA models.

Second, we applied depthwise separable convolutions to
train a lighter model: We reduced the number of parameters
used in the original ResMax model from 286K to 45K while
maintaining 0.36% EER on the PA data. The EER increased
slightly from 0.30% to 0.36%. Similarly, the EER for the LA
data increased slightly from 2.19% to 2.55%.

Third, our revised ‘‘ResMax’’ architecture, which com-
bines the ideas of skip connection and max feature map
achieved state-of-the art performance (0.30%EER) on the PA
set. The best ensemble model from the competition achieved
an EER of 0.39%, and the top-performing single model
solution that used the LCNN architecture with fast Fourier
transform as the feature achieved an EER of 0.5% on the PA
set [6]. In the LA set, our ‘‘ResMax’’ model achieved 2.19%
EER. It was 3rd place after T05 and T45 systems, and 1st
place among single models.

II. METHODOLOGY AND MATERIALS
A. FEATURE ENGINEERING
First, we tested with the constant Q transform (CQT) and the
short time Fourier transform (STFT), two of the most popular
spectral features in the ASVspoof 2017 and 2019 compe-
titions [5], [6], [12]. After a few attempts and monitoring
model accuracy, we discovered that the CQT was substan-
tially more accurate and more in line with the suggested
model. To increase the model’s accuracy, we concentrated on
fine-tuning the CQT parameters. By breaking the signal up
into smaller frames and evaluating the audio in the frequency
domain, the CQT investigates an audio signal x[n] in a time-
frequency representation.

The discrete form of CQT output is as follows:

Xl =

Nl−1∑
n=0

Wl,nxne−j2πQn/Nl , (1)

where l is a frequency bin’s index, ranging from 1 to the total
number of frequency bins (L);Nl is the size of the bin’s frame;
W is a windowing function used to taper each frame, andQ is
a quality factor that affects the resolution of features.

The CQT uses filters like the center frequency fl and band-
width ofBl to the lth frequency domain to convert a given data
series into a frequency domain. The centre frequency of the
lth filter is fl = (21/C )l−1fmin, where fmin is the bandwidth of
the lowest frequency, and C is the number of octaves in each
filter. We calculate Q by using fl/Bl .
We attempted frequency adjustments in the fmin and

L parameters for CQT optimization. The highest centre fre-
quency, fL , was determined using (21/C )L−1fmin. To examine
the consequences of changing low-frequency components,
we examined two fmin values, 1Hz and 32Hz. In order to
study the effects of high-frequency components, we also
experimented with different L values to try fL values at 323Hz
and 1024Hz. We fixed the number of bins per octave and the
hop size to 12 and 512, respectively, to provide an accurate
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FIGURE 1. ResMax architecture descriptions: (a) represents an MFM
layer; (b) describes the entire model architecture; (c) and (d) represent
ResMaxLA and ResMaxPA, building blocks for the entire model on PA and
LA data respectively. The blocks have four parameters: f is the number of
ResMax filters, k is the kernel size (k , k) in the convolution layer. l is 1 if
a ResMax block has an additional convolution layer followed by an MFM
layer (dotted Conv and MFM blocks in (c) and (d)), and otherwise is 0. m
is 1 if a ResMax block has an additional max pooling layer (dotted
MaxPool block in (c) and (d)), and otherwise is 0.

comparison with constant resolution in the time and fre-
quency domains. The windowing function that we employed
was the Hann window.

The duration of each sample was fixed to nine seconds.
Any samples longer than nine seconds were truncated after
the first nine seconds, while samples shorter than nine sec-
onds were extended by appending audio from the beginning.
No normalization techniques were utilized.

B. ResMax: RESIDUAL NETWORK WITH MAX FEATURE
MAP
When tested against the ASVspoof 2017 and ASVspoof
2019 evaluation datasets, both LCNN and ResNet-based
models demonstrated excellent results with regard to
EERs [8], [9], [13], [14].

However, most of the top-performing solutions have com-
binedmany deep learningmodels into an ensemble in order to
reduce error rates. Such models do not take into account the
criteria for model latency and complexity. Kwak et al. [10]
suggested the ‘‘Residual network with Max feature map’’
(ResMax) blocks that integrate the max feature map (MFM)
ideas from LCNN and the skip connection concept from
ResNet.

TABLE 1. Ensemble solutions from ASVspoof 2019 and the models used.

The top-performing ensemble models [8], [15], [16], [17],
[18] that competed in the ASVspoof 2019 are listed in
Table 1. The T10 model with ResNet architecture has 36 lay-
ers and employs the data augmentation strategy that ranks
fourth on the PA data. The T10 model was an ensemble
model composed of six ResNet models with distinct char-
acteristics such as STFT, IMFCC, LFCC, GD gram, and
Joint gram [15]. Using the CQCC and logspectogram features
with ResNet, SENet, and Dilated ResNet architectures, the
T44 model came in third place on the PA data. In the T44
model, five models were ensembled, and the best model
used the logspectogram feature with SENet34 [16]. Using
an ensemble method with features such as FFT, CQT, and
LFCC, the T45 model came in second for both the PA and LA
data. Among all their models, FFT-LCNN and CQT-LCNN
models performed the best on the LA data and PA data,
respectively [8]. The T50 model came in fifth on the LA data
and attempted data augmentation on the CQT feature using
variational autoencoder [17]. The T60 model, which came in
third place on the LA data, combined the FFT feature with
CNN, CRNN, 1D-CNN, andWave-U-Net, as well as shallow
models of ivector-SVM and IMFCC-GMM [18].

According to the common characteristics of the models
that performed well in the competition, there are numerous
ResNet models that use skip connection and LCNN models
that use MFM activation.

Wu et al [19] suggested using MFM activation as shown in
Fig. 1(a) instead of relu activation after the convolution layer,
and proposed LCNN architecture. As shown in Fig. 1(a), the
MFM layer initializes two tensors with the same dimensions
and selects one larger item from the same position in the two
tensors.

Figure 1 (b) illustrates the complete model structure con-
sisting of nine ResMax blocks. After the final ResMax block,
there is a global average pooling layer followed by a dense
layer with softmax activation. To avoid increasing the num-
ber of parameters, we skipped using fully connected layers
(a series of dense layers) and directly attached the output layer
after the convolution layer.

The Fig. 1 (c) and (d) represent ResMaxLA and ResMaxPA,
building blocks for the entire model on PA and LA data
respectively. The second convolution layer inside of the skip
connection network has 1×1 for LA data, and k×k filter for
PA data.

A skip connection adds original input to a processed net-
work, F(x), where output = input + F(input). Here, training
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the weight parameters in F(input) imply training the residual
(output − input). This residual part would often have val-
ues close to zero and helps to solve the vanishing gradient
problem during back-propagation. Furthermore, the 2 × 2
MaxPooling layer used in a ResMax block consequently
reduces the number of parameters and the model complexity.

FIGURE 2. ResMaxSep architecture descriptions: (a) compares
convolution filters with depthwise separable convolution filters;
(b) represents the entire ResMaxSep model architecture. In the ResMaxS
block, the convolution layers in the ResMax block are replaced by
depthwise separable convolution layers. All other parameters are the
same.

C. ResMaxSep: ResMax WITH DEPTHWISE SEPARABLE
CONVOLUTION
Depthwise separable convolutions have been proposed as a
method for making traditional convolution layers lighter [20],
[21], [22]. The main idea behind depthwise separable convo-
lution is the separation of the traditional convolution into the
depthwise and pointwise convolutions – the effect is a signif-
icant reduction in the number of parameters used in a model
and overall computational overheads. Fig. 2 (a) compares the
traditional convolution and the depthwise separable convolu-
tion. Traditional convolutions use a nw × nh × nc dimension
filter as seen in Fig. 2 (a). If we use nf numbers of filters, the
total number of parameters for a convolution layer becomes
nw × nh × nc × nf . However, if we use depthwise separable
convolution, a depthwise convolution would need nw×nh×nf
number of parameters, and a pointwise convolution would
need nc × nf number of parameters. Consequently, we can
dramatically reduce the number of parameters that a model
needs as well as the model training and prediction overheads.
If we are using a 3 × 3 convolution filter, for example, the
computational cost can be reduced by about eight to nine
times [20].

From the original ResMax blocks, convolution layers
are converted to depthwise separable convolution layers,
as shown in Fig. 1 (b); this new block is referred to
as the ‘‘ResMaxS’’ block. Fig. 2 (b) illustrates the entire
ResMaxSep model architecture using the ResMaxS block.
We added one convolution layer with a 3 × 3 filter at
the beginning of the architecture; the rest of the architec-
ture and layout shapes are identical to the original shown
in Fig. 1 (c).

D. GRAD-CAM FOR SPOOFING DETECTION
Grad-CAM is a popular technique used to visualize specific
regions in given images that are significantly contributing to
the performance of CNN models [11]. It is a generalized ver-
sion of the previously released technique called CAM [23].

We state our proposed ResMax model as f (x; θ̂ ): x is
the input CQT feature, and θ̂ is the estimated parameter
vector that minimizes the total cost, C(θ;X ,Y ), where X is
a set of CQT features from the training data, and Y is the
corresponding binary classification label in the training set.
To apply the Grad-CAM on a specific convolution layer,
one separates the ResMax model (f (·)) with h(·) and g(·)–
f (x; θ ) = h(g(x; θg); θh), where A = g(x; θg) is the output of
a specific convolution layer, θ is a parameter vector for model
f (·), θg is a subset of θ that is used for function g(·), and θh is
a subset of θ that is used for function h(·). Our aim in using
Grad-CAM is to visually highlight parts of a given convolu-
tion layer output (A = g(x; θg)) that are significantly affecting
the prediction performance. To achieve this, we differentiate
h(A; θ̂h) with respect to A (i.e., dhA = ∂h(A)/∂A ). Here,
dhA is a three dimensional array: parts that are contributing
more to the classification performance would have higher
values. Next, we calculate channel wise importance,wc, using
channel wise average pooling dhA. By taking wc as weights
for channel information in A, we can calculate Grad-CAM as
follows:

LGrad-CAM = ReLU (
∑
c

wcAc)

where Ac is a two dimensional matrix from the cth channel
of three dimensional layer output matrix A, and ReLU is a
rectified linear unit. The view of LGrad-CAM over the input
image x is known as the Grad-CAM visualization [11].
One of the objectives of Grad-CAM analysis is to identify

frequency ranges that are important in detecting voice spoof-
ing attacks. To use the entire duration of a given sample for
spoofing attack detection, we aggregate information on the
frequency axis by averaging the Grad-CAM results over the
time axis – this aggregation allows identification of important
frequency ranges over an entire sample.

E. HYPER PARAMETER TUNING
We utilized the cost-sensitive learning technique [24] to
address the imbalanced distribution of attack and genuine
samples in the ASVspoof 2019 training set. Our primary met-
ric for evaluationwas the equal error rate (EER), which assign
equal importance to spoofing attack and genuine data. There-
fore, we multiplied weights to the minority class (genuine
samples) to ensure their equal influence on the classification
model as the majority class (spoofing attack samples). This
approach did not alter the overall training time as it simply
multiplied weights in the loss function.

We used the grid search method to find the best parameter
set for minimizing the EER on the development set. The opti-
mal collection of hyperparameters included feature extraction
parameters, cost-sensitive learning parameters, classification
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algorithm-specific parameters, and regularization parameters
for distinguishing genuine samples from spoofed samples.
We used binary cross entropy error loss with ADAM opti-
mizer [25]. Initial weights were set using glorot’s uniform
initializer [26].

III. EXPERIMENTS
A. EXPERIMENTAL SETUP
To illustrate the ResMax model’s performance, it must
be compared to existing models that performed well in
the ASVspoof 2019 challenge. We used the ASVspoof
2019 competition data for development and evaluation to
compare the performance of the ResMax and ResMaxSep
models with the ensemble models specified in Table 1.

We used LA and PA data from the ASVspoof 2019 com-
petition to evaluate the performance [6]. There was a training
set, a development set, and an evaluation set for each LA and
PA data. Using the training sets, we trained the ResMax and
ResMaxSep models and tested them on the development and
evaluation sets. We utilized the EER metric as the primary
measure of accuracy for detecting spoofing, in accordance
with the regulations of the ASVspoof 2019 competition.
FRR represented the loudspeaker’s misclassification rate,
while FAR represented the rate at which human voices were
misclassified as legitimate. Our binary classifiers generated
scores indicating the likelihood of a command being spoken
through a loudspeaker, and scores for each command in an
evaluation set were calculated. There was a trade-off between
FAR and FRR since reducing one error rate increased the
other. The EER for a model was determined by the point at
which FAR equaled FRR for a given command set. Addition-
ally, we employed the minimum normalized tandem detec-
tion cost function (t-DCF) [27], which was also used (and
reported) in the competition. The t-DCF values were obtained
using a fixed automatic speaker verification method provided
by the competition.

We trained the proposed models using 100 epochs and
10 training and evaluation sessions because the models con-
verged to slightly different parameters with each run.

B. EXPERIMENTAL RESULTS
Table 2 compares our ResMax models to the top five per-
formers from ASVspoof 2019 (including multi-model and
single-model solutions) in terms of EERs derived from the
evaluation set. In the last few rows, we additionally give the
EERs of the top-performing single-model solutions; these do
not have ranks and are in italics. According to the results,
CQT-ResMax outperformed all other single models in terms
of both EERs and t-DCFs for both the LA and PA evaluation
sets. It has a statistically significant EER advantage over the
best performing PA and LA single models (p < 0.0001, one
sample t-test). The development set evaluation also revealed
that the CQT-ResMax model performs best for the PA data in
terms of EERs among all single models; however, the T45’s
single model performed better in LA data.

On the PA evaluation set, CQT-1_120-ResMax surpassed
all ensemble solutions in terms of both EERs and t-DCFS,
achieving an EER of 0.30%. Its EER advantage over T28
(the top-performing ensemble solution) was statistically sig-
nificant (p < 0.0001, one sample t-test). With an EER of
0.16 percent, the CQT-1_120-ResMax model scored third
among all ensemble models on the development set. All other
models had lower EERs on the development set than the
ResMax model, which had higher EERs on the evaluation
set, implying that the other models might be overfitted to the
development set.

As for the LA set, CQT-1_100-ResMax rated third on
the evaluation set with an EER of 2.19%, and fourth on the
development set with an EER of 0.56% among all ensemble
solutions. It did not have a statistically significant advantage
over the 4th ensemble solution (T60) in terms of EERs,
but it did have a statistically significant advantage over the
5th ensemble solution (T24) in the evaluation set
(p < 0.0001, one sample t-test).

In the case of ensemble solutions, we added the number of
parameters utilized across all models; we present the num-
bers of parameters only for those available published papers.
Given that CQT-ResMax is a single model solution with
considerably fewer parameters (indicating model complexity
and computational latency) than ensemble solutions, both LA
and PA accuracy results are competitively high and represent
major achievements.

C. ResMaxSep RESULTS
In the ResMaxSep model architecture, we applied depthwise
separable convolutions to lighten the ResMax model. Fig. 3
shows the number of parameters used in different classifica-
tion models and their EERs on the LA and PA datasets. The
original ResMax model used 262K and 286K parameters for
the LA and PA datasets, and it was the lightest model among
the models presented in the ASVspoof 2019 competition.
Impressively, ResMaxSep is approximately six times lighter
than the original ResMaxmodel, and it uses just 44K and 45K
parameters for LA and PA data, respectively. The ResMaxSep
model also performs competitively well: the average EER
on the PA set was 0.36%, which is 0.06% greater than the
EER of the original ResMax model; however, this difference
was not statistically significant (p > 0.1, two sample t-test).
For the LA dataset, it achieved an average EER of 2.55%,
which is 0.12% higher than EER of the original; however,
this difference was not statistically significant (p > 0.2, two
sample t-test). The LA model performance is also slightly
better than that of the T60 system (2.64%), which ranked
fourth overall (see Table 2); however, this difference was not
statistically significant (p > 0.3, one sample t-test). In sum-
mary, the ResMaxSep model produced similar or slightly
poorer performance than ResMax. Significantly, however, the
model’s weight was reduced by 1/6.

D. TIME RELATED ISSUES
We conducted experiments related to the required time
in practical applications of the ResMax and ResMaxSep
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TABLE 2. ResMax performance on the ASVspoof 2019 development sets and evaluation sets. The EERs and t-DCF results are compared against the top
five models from each dataset; models are sorted based on the EER in a descending order. Systems that use a single model are in italic. #Mo describes
the number of models used in an ensemble system. Two top performing single model systems are also shown at the end of each table. #Params
represents the number of parameters contained in the models. (Results that are not public are denoted as hyphens).

FIGURE 3. The ResMaxSep model has a smallest number of parameters
and their performance is not a big difference in LA and PA data.

models. The models are trained on Intel(R) Xeon(R)
Gold 6230R CPU clocked at 2.10GHz, and NVIDIA
RTX 8000 GPU. To confirm that the model evaluation
can be performed at a reasonable speed even on low-
spec devices, we also evaluated the model using only the
Intel i5-9400F CPU.

Table 3 displays the amount of time taken for training and
evaluation of the ResMax and ResMaxSep models on the

LA and PA datasets. The LA set and PA set had 25,380 and
54,000 training data, and 71,237 and 134,730 evaluation data,
respectively. On the LA and PA datasets, the ResMaxSep
model required an additional training time of about two and
five hours, respectively, compared to the ResMax model.
However, the time required for training is relatively less
important compared to the inference time, as it is only nec-
essary once at the beginning of model training. The infer-
ence time (evaluation time) using the GPU was between
48 to 53 seconds, which translates to approximately 0.67 to
0.74 milliseconds per sample. Assuming the situation where
the GPU cannot be used, an evaluation was performed using
the CPU, and the ResMax and ResMaxSep models took
302 and 472 seconds, respectively, for the LA dataset. When
calculated as processing speed per sample, theywere 4.24 and
6.49milliseconds, respectively. For the PA evaluation dataset,
ResMax and ResMaxSep models took 870 and 1352 sec-
onds, respectively, with processing speeds per sample of
6.45 and 10.03 milliseconds, respectively. The processing
speeds achieved by the ResMax and ResMaxSep models
using only the CPU, as described above, are sufficiently
low such that devices with low processing capabilities can
effectively handle themwithout encountering any difficulties.

E. ResMax VISUALIZATION WITH GRAD-CAM
To identify specific frequency regions that are significantly
affecting the model performance, we applied Grad-CAM to
the output of the second convolution layer in the first Res-
Max block. Fig. 4 shows eight randomly selected Grad-CAM
images from the LA and PA datasets for both genuine
and spoofed samples (two images for each category). The
lighter yellow and green colors indicate more significant
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TABLE 3. The time required for training and evaluation. The ‘‘evaluation’’
refers to the time taken to process each sample using a GPU or a CPU.

FIGURE 4. Grad-CAM visualization of eight randomly picked samples in
(a) spoof from LA data, (b) genuine from LA data, (c) spoof from PA data,
and (d) genuine from PA data. Two-samples are picked from each
category.

feature importance and activation. As for the PA samples,
the extracted features tend to use a wide frequency range
between 1 Hz to 966 Hz – i.e., both low and high frequency
ranges are exploited. We surmise that this is because, in gen-
eral, the fundamental frequency of human voice cannot fall
below 80 Hz whereas samples replayed through loudspeakers
may also utilize frequencies below 80 Hz; such differences
are examined for detection. Highlighted regions tend to flow
horizontally (along the time-axis) for some fixed frequency
ranges. In the case of LA samples, the human voice frequency
range (i.e., excluding frequencies lower than 80 Hz) tend
to have more significant impact on the model performance.
In contrast to the PA samples, highlighted regions tend to
drop vertically to cover a range of frequencies for a given
time information.

To conduct deeper analyses on the importance of different
frequency ranges, we performed average pooling on the time
axis to show how the activation amount (importance) changes
across different frequencies. We randomly selected 500 gen-
uine and 500 spoofed samples from LA and PA datasets

FIGURE 5. 500 frequency-wise information of spoof (left) and genuine
(right) samples for LA (upper row) and PA (lower row) datasets. The
500 individual information are expressed softly, and the averaged
frequency-wise information is expressed in bold (red colored).

each, and applied average pooling. The graphs in Fig. 5
show activation amount of the selected 500 samples across
frequencies range from 0 to 966Hz for the PA dataset, and
frequencies range from 0 to 304Hz for the LA dataset. Along
with individual sample plots, we also show the average values
with the bold red lines. For LA samples, the average lines
show more peaks as there are a smaller number of subjects
(voice types) available in the LA dataset compared with PA
samples. We further surmise that LA samples show higher
variances across all frequencies due to various types of voice
conversion (VC) and text to speech (TTS) techniques being
applied while generating the attack set – the LA model prob-
ably exploits a diverse frequency region to detect attack sam-
ples generated throughmultiple techniques. For both datasets,
the human voice frequency region (80Hz to 14KHz) shows
stronger activation for both genuine and spoofed samples.
In particular, we can observe the sudden pick at the human
voice frequency region for the PA data. In the PA scenario,
we are directly recording the genuine human voice of 80Hz to
14KHz, and replaying sounds from electronic speakers. Thus,
we can observe a sudden pick from the 80Hz region in the PA
graph, as shown in Fig. 4 (c) and (d). The PA model also
shows strong activation at lower frequencies to detect attacks
that are replayed through loudspeakers.

F. INCORRECTLY CLASSIFIED SAMPLES AND VISUALIZING
ACTIVATION AMOUNT
We observed the performance of the development set depen-
dent on environmental variables to investigate misclassified
samples utilizing CQT-1_120-ResMax on PA data. Table 4
shows how EER performance varies based on the develop-
ment set’s verification and recording conditions. We trained
ten CQT-1_120-ResMax models and measured the average
EER values in each setting. The most important factor was
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the replay device’s quality. When it was A (perfect), the
performance was the worst, with an average EER of 0.0067,
and it increased as the playback device’s quality decreased.
The more high-quality speakers attackers utilize in replay
assaults, the more difficult it is to detect the attacks. The
reverberation time (T60) and room size, which normally
induce the channel effect, had no effect on performance. Fur-
thermore, the EER was substantially greater at 0.0017 when
the T60 reverberation period was short, in the ranges
of 50-200 ms (A). Another intriguing finding is that when
the talker-to-ASV or attacker-to-talker distance is sufficient,
the model has a somewhat higher risk.

TABLE 4. Detection performance on the ASVspoof2019 Physical Access
evaluation sets in various environments. The A, B, C represent the classes
of each factor which is well described in [6]. All numerical values
represent the average of EER.

We randomly sampled 500 voice samples under each envi-
ronmental condition, and calculated the frequency-wise acti-
vation amount from their Grad-CAM results. The highest
differential frequency-wise activation amount was detected
from the replay device quality. The Fig. 6 shows the aver-
aged frequency-wise activation amount from each of the PA
device qualities. The range of the human voice extends from
80Hz to 14kHz, the speaker generated sounds possibly have
less activation amount from 80Hz. From the Fig. 6, we can
detect gradual degradation of activation amount from high
quality (A) to low quality (C) in the frequency range from
80Hz to 966Hz.

There are 17 attack types in the LA data, six of which are
used in the training and development sets and were deemed
the known attack set. The evaluation set includes two known
attacks (A16, A19) and 11 unknown assaults. The averaged
EER values for the 13 assault types in the evaluation set
are shown in Table 5 and Fig. 7. The assault types A08,
A17, A18, and A19 have high EERs. A17, A18, and A19
are assaults that exclusively use voice conversion. According
to [6], the variation in the mean EER is bigger than the varia-
tion in the other sets. Despite the fact that the audio samples
from A19 have previously been trained in the training set,
it has a considerably higher EER than other attacks.

FIGURE 6. The averaged activation amount of 500 random sample voices
from each of PA device qualities.

TABLE 5. Detection performance on the ASVspoof2019 logical access
evaluation sets in various attacks. Detailed description of each attack is
in [6]. All numerical values represent the average
of EER.

We randomly sampled 500 voice samples of each attack
system, and calculated the frequency-wise averaged activa-
tion amount from their Grad-CAM results. The Fig. 8 shows
the frequency-wise averaged activation amount of 500 voice
samples from the selected attack systems; A08 (TTS), A12
(TTS), A13 (TTS, VC) and A17 (VC). As these are synthetic
voice samples generated from diverseVC or TTS systems, the
difference is somewhat unpredictable unless we study each
system in detail.

Furthermore, the averaged voice samples confounded dif-
ferent patterns of each attack system. Thus, we visual-
ized each frequency wise activation amount using UMAP
in Fig. 9 [28], [29]. We can clearly detect the differences
between each attack system from the UMAP visualization.

There were also differences in the EER performance with
respect to gender. In the LA data, the EER for male and
female was 0.0389% and 0.0299%, respectively. In the PA
data, the EERs for males and females were 0.0040% and
0.0013%, respectively. The EER performances for the female
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FIGURE 7. The averaged EER for 13 attack types in the evaluation set. The
barplot indicates averaged EER with one standard deviation error bar.

FIGURE 8. The averaged activation amount for A08, A12, A13, A17 attack
types in evaluation set.

voice were approximately 1.3 and 3.1 times better than those
for themale voice for LA and PA evaluation sets, respectively.
One possible reason is that we have more females in the
training set (8 males and 12 females for both PA and LA data
sets).

The Fig. 10 represents the frequency-wise averaged acti-
vation amount of 500 voice samples from each gender for
LA (top-side) and PA (bottom-side) data sets. Interestingly,
the differences among males and females were only detected
for the frequency range 80–300Hz for both of LA and PA
datasets. The fundamental frequency of the male voice varies
from 80Hz to 400Hz, whereas that of the female voice ranges
from 120 Hz to 800 Hz [30].

IV. RELATED WORK
In modern society, various types of attacks are threatening
security [31]. In the field of voice, detecting voice spoofing
attacks is an important issue. Several strategies for detecting
speech replay or synthesis assaults employing loudspeakers
have been developed. Liu et al. [32] offered wearable tech-
nologies to detect voice liveness, such as spectacles, head-
phones, or necklaces. They reached about 97% accuracy in
identifying liveness when utilizing headphones. To test voice

FIGURE 9. UMAP visualization of four attack systems (A08, A12, A13 and
A17) in the evaluation set.

FIGURE 10. The frequency-wise averaged activation amount of 500 voice
samples from each gender for LA (top-side) and PA (bottom-side) data.

liveness, Zhang et al. [33] tracked unique articulatorymotions
using sound wave reflection techniques. They reached a
99.9% accuracy by having users physically hold their gad-
gets near their ears. Blue et al. [34] employ sub-bass over
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excitation and low frequency signal characteristics to detect
electronic speakers, obtaining 100% TAR and 1.72 FRR in
calm environments. These techniques, like any other speech
biometric-based technology, will all suffer considerable accu-
racy losses when subjected to background noise variations
and environmental changes. Furthermore, merging numerous
sophisticated models and characteristics necessitates exten-
sive computational resources that are unsuitable for practical
usage.

Several researchers offered machine learning-based live-
ness detection algorithms as part of the ASVspoof 2015,
2017 and 2019 competitions. The ASVspoof competition
have been held by every two years from 2015 and changed
train, validation and evaluation dataset in each competition.
As representative solution for ASVspoof challenge in 2015,
the Gausian Mixture Model (GMM) classifier with voice,
music related features are mostly proposed and used for
the baseline of later competition (2017, 2019). According
ASVspoof 2019 competition, EERs ranged from 0.22 to
92.36 percent for LA attacks and 0.39 to 92.64 percent for
PA attacks. For both the LA and PA datasets, the top five sys-
tems [8], [15], [16], [17], [18] all used an ensemble method
that combined numerous models.

This is because the competition focused solely on the accu-
racy aspects of developing a voice spoofing attack detection
system without taking into account real-world deployment
scenarios where lowering model complexity and detection
latency is critical. For example, In order for the voice spoofing
detection model to be implemented on device in Samsung
mobile phones, it is necessary to satisfy the requirements
such as model size and execution speed, etc. As a result,
the majority of the top-performing solutions investigated to
date would fail to meet these criteria. In comparison, even
with a single model and only 262K parameters, the proposed
ResMax models can perform comparably well. ResMaxSep,
only has 45K parameters, and is capable of achieving similar
level of performance compared to the original.

Many methods have used features that decompose
raw audio into frequency and time information, such as
STFT, Mel-spectrogram, and CQT. Some researchers have
employed an approach that utilizes raw audio directly, such
as RawNet, RawNet2, and AASIST [35], [36], [37]. These
methods are also interesting approaches, and in particular,
AASIST has achieved very high performance with an error
rate of around 1% in LA data.

V. DISCUSSIONS
A. IMPORTANT FREQUENCY REGIONS
The performance of deep learning models are difficult to
explain, and are often called ‘‘black boxes’’ because of
the model complexity and large number of parameters
trained [38]. To compensate for these shortcomings, studies
have been conducted to improve the explanatory power of
deep learning models [38], [39]. Attempts have been made to
explain the results and classification features from the voice

spoofing attack detection solutions [14], [40]. However, such
results identified and explained the highly activated parts for
only a few examples. Conversely, our Grad-CAM analyses
were performed onmuch larger datasets to identify more gen-
erally applicable explanations for detecting spoofing attacks.
To the best of our knowledge, this is the first attempt to
visualize and compare activated frequency regions between
genuine and spoofed samples. We observed that for both
the PA and LA samples, human voice frequency range is
an important region significantly contributing to the perfor-
mance of our classifiers. As for the PA model, the energy
differences in the lower frequency region also contributed to
the model performance – we surmise that samples replayed
through loudspeakers inherently produced sounds at lower
frequencies.

B. SPOOFING DETECTION IN NOISY ENVIRONMENT
There was the Audio Deep Synthesis Detection Challenge
(ADD 2022) [41] hosted as one of the grand challenges from
the IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP) 2022 conference. The track 1 of
ADD 2022 is to identify spoofing attacks in noisy situations
like real-world noises and background music effects. The 3rd
place winning team considered the ResMax model [42], [43]
as one of their final ensemble models. Especially, ResMax
had the best single model performance among the five single
models considered in their ensemble system. There were
43 participating teams in the ADD 2022 challenge [41]. The
winning team in the competition applied wav2vec2 [44] to
extract features and fine-tuned their model, achieving 21.7%
EER [45]. The 3rd-place winning team that utilized the Res-
Maxmodel in their ensemblemodel achieved 23.8%EER and
the single ResMax model alone achieved 24.7% EER [43].
These results show that the ResMax model is one of the
competitive models in voice spoofing detection models, and
also shows good performance in noisy environment settings.

C. SPOOFING DETECTION AGAINST ADVANCED
ADVERSARIAL ATTACK
While voice spoofing detection solutions are widely studied
under signal processing and computer security communities,
new advanced technologies are also suggested that can bypass
them by manipulating voice spoofing samples [46], [47].
In the study of Zhang et al. [46], they carried voice command
samples to ultrasound frequency band which is inaudible for
humans and recovered them by leveraging non-linearity of
the microphone circuit. Wang et al. [47] also eliminated sus-
picious features of frequency domain using software-based
inverse filter. To build more secure voice spoofing detec-
tion solutions under the demands of real-world applications
like voice-assistants, we should consider not only typical
replay and synthesized spoofing voice samples, but also such
advanced adversarial spoofing samples. In further research,
we will be able to analyze such crafted samples using Grad-
CAM, understand how our approaches effectively detect such
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advanced attacks, and finally improve our models and param-
eter settings to defend against both traditional and advanced
attacks towards robust and efficient voice spoofing deep
learning model.

VI. CONCLUSION
Existing voice spoofing attack detection systemswere created
without taking into account real-world model complexity and
detection latency requirements, and they frequently consist
of numerous large and sophisticated deep learning models.
Given the model size and latency constraints, such solutions
would be deemed unsuitable. In comparison, our CQT-1
120-ResMax model outperformed the top-performing PA
solution on the evaluation set using only a single deep learn-
ing model with much less parameters, achieving an EER
of 0.30% compared to the current best competition EER of
0.39% by an ensemble solution.

In the LA set, we place third with an EER of 2.19%, barely
behind the second best ensemble solution in the evaluation
set, which earned an EER of 1.86%. Although CQT-1 120-
ResMax used the fewest parameters among the single model
systems, it displayed substantial superiority in detection
accuracy. Furthermore, we tried using ResMaxSep, lowering
the number of parameters by six times (286K vs. 45K for
PA data) while maintaining a comparable level of perfor-
mance: ResMaxSep produced an EER of 0.36% on the PA
dataset, which was slightly worse than the original (EER of
0.30%); on the LA dataset, it achieved 2.55% EER, which
was roughly 0.12% worse than the original. However, Res-
MaxSep only uses 45 K parameters and would be more useful
for real-world on-device deployment. In our future works,
we aim to investigate inverted residuals and linear bottle-
necks from MobileNextV2 [48] to decrease model complex-
ity, examine ResMax and ResMaxSep using advanced adver-
sarial attacks, and assess their performance in noisy envi-
ronmental conditions using ADD 2022 and ASVspoof 2021
datasets [7], [41].
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