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The generation of endothelial cells (ECs) from human pluripotent stem cells (PSCs)
has been a promising approach for treating cardiovascular diseases for several
years. Human PSCs, particularly induced pluripotent stem cells (iPSCs), are an
attractive source of ECs for cell therapy. Although there is a diversity of methods
for endothelial cell differentiation using biochemical factors, such as small
molecules and cytokines, the efficiency of EC production varies depending on
the type and dose of biochemical factors. Moreover, the protocols in which
most EC differentiation studies have been performed were in very
unphysiological conditions that do not reflect the microenvironment of native
tissue. The microenvironment surrounding stem cells exerts variable
biochemical and biomechanical stimuli that can affect stem cell differentiation
and behavior. The stiffness and components of the extracellular
microenvironment are critical inducers of stem cell behavior and fate
specification by sensing the extracellular matrix (ECM) cues, adjusting the
cytoskeleton tension, and delivering external signals to the nucleus.
Differentiation of stem cells into ECs using a cocktail of biochemical factors has
been performed for decades. However, the effects of mechanical stimuli on
endothelial cell differentiation remain poorly understood. This review provides
an overview of the methods used to differentiate ECs from stem cells by
chemical and mechanical stimuli. We also propose the possibility of a novel EC
differentiation strategy using a synthetic and natural extracellular matrix.
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1. Introduction

Endothelial cells (ECs) are compacted epithelial cells located on the inner surface of

blood and lymphatic vessels. The primary function of these cells is to exchange molecular

components between the circulating blood and the underlying connective tissue. The

most prevalent ECs in the human vasculature are mature ECs that strongly express the

pan-endothelial markers CD31 and CD144 (VE-cadherin) on their surface.
Abbreviations

AFM, atomic force microscopy; BMP, bone morphogenetic protein; Col-I, collagen I; Col-IV, collagen IV; E,
elastic modulus; ECs, endothelial cells; ECM, extracellular matrix; EPCs, endothelial progenitor cells; ESCs,
embryonic stem cells; FACS, fluorescence-activated cell sorting; FGF, fibroblast growth factor; hPSCs,
human pluripotent stem cells; iPSCs, induced pluripotent stem cells; MSCs, mesenchymal stem cells; PAA,
polyacrylamide; PDMS, polydimethylsiloxane; GelMA, gelatin methacryloyl; SMCs, smooth muscle cells;
TCP, tissue culture plate; VdECM, vascular tissue-derived ECM; VEGF, vascular endothelial growth factor;
VPCs, vascular progenitor cells; YAP, yes-associated protein.
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Cardiovascular diseases are a leading cause of death worldwide,

with limited options to restore healthy blood vessels (1).

Dysfunctional ECs are the primary cause of cardiovascular

diseases, including hypertension and coronary artery disease (2).

To treat dysfunctional ECs, research into the production of stem

cell-derived vascular endothelial cells is of considerable interest

in regenerative medicine.

Embryonic stem cells (ESCs) are pluripotent stem cells (PSCs)

with an unlimited self-renewal capacity derived from the inner cell

mass of blastocyst-stage embryos. ESCs generally remain

undifferentiated under defined culture conditions but can

differentiate into three germline lineages when exposed to

specific stimuli. Notably, induced PSCs (iPSCs) have a high

degree of similarity to ESCs in terms of development and

morphology, as well as the pluripotency to differentiate into all

three germlines in response to stimuli (3, 4). iPSCs were first

described by Yamanaka et al. as a unique cell type derived from

somatic cell reprogramming with the overexpression of

exogenous transcription factors (Yamanaka factors: Oct4, Sox2,

Klf4, and c-Myc) (5). These reprogrammed iPSCs can be

obtained from various tissue cell types, including hepatocytes,

peripheral blood mononuclear cells, cord blood cells, gastric

epithelial cells, fibroblasts, urine cells, and keratinocytes (6–8).

Unlike ESCs, iPSCs have no ethical problems and can be

produced on a large scale, so they are considered an attractive

source for developing cell therapy products in regenerative

medicine (9). Therefore, the differentiation of PSCs into ECs is

gaining increasing attention because it offers the opportunity to

restore the blood vessels and can be used to cardiovascular disease.

Recently, studies on endothelial cell differentiation based on

various small molecules and cytokines have been performed

using extracellular matrix (ECM) cues (10–12). The

microenvironment in which the cells responsible for tissue

function exist in the human body is called the ECM. These cells

are influenced by mechanical cues from the ECM environment,

such as substrate stiffness, ECM components, and topological

effects (13). Living cells can sense mechanical signals from the

ECM environment surrounding the cells and convert them into

biochemical signals that lead to functional changes such as cell

morphology, cell migration, proliferation, and differentiation,

which is referred to as mechanotransduction (14). Adam Engler

et al. have investigated the differentiation fate of stem cells

through ECM stiffness. They have demonstrated that the

differentiation of stem cells into each specific cell type was

promoted in a substrate that mimics the stiffness of specific

tissue environments, such as neuronal (0.1–1 kPa), muscle (8–

17 kPa), and bone (25–40 kPa) (14, 15). Although substrate

stiffness is a vital parameter in determining stem cell

differentiation fate, most studies on stem cell-derived endothelial

differentiation have been performed with 2D- or 3D-based

methods using biochemical factors. The 2D monolayer-based

endothelial differentiation method uses ECM-coated tissue

culture plates (TCP, approximately 106 kPa) (16, 17), which

showed that the microenvironment in which most cells are

cultured in vitro does not reflect physiological stiffness value

(18). The 3D embryoid body (EB) formation approach produces
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ECs with a low efficiency of 2%–20% and heterogeneous results

(19–21). Therefore, it is vital to create a microenvironment that

mimics the stiffness and ECM components of blood vessels to

generate stem cell-derived ECs to treat cardiovascular disease.

Treating cardiovascular diseases using stem cell-derived ECs

has been established as a promising therapeutic strategy.

However, the role of mechanical cues from the ECM in

governing EC differentiation remains poorly understood. In this

review, we comprehensively described the existing knowledge on

the effects of biochemical and mechanical stimuli on EC

differentiation and proposed the possibility of a novel EC

differentiation strategy using a synthetic and natural ECM.

Investigating mechanical properties associated with the vascular

microenvironment and their application to EC generation would

help provide novel insights into the development of strategies

and directions for treating cardiovascular diseases. Thus, this

review will contribute to our mechanistic understanding of EC

differentiation and serve as a foundation for further research on

EC-based cardiovascular disease treatment.
2. PSC-derived EC differentiation
regulated by biochemical factors

2.1. Mesoderm induction for endothelial
lineage

During the development of mammalian embryos, ECs from the

mesoderm first form the primitive vascular plexus, an immature

tubular network, which matures into an orderly network of

arteries, veins, and capillaries (22). The concept of differentiation

of PSC-ECs is derived from vascular development in embryology.

In recent decades, efforts have been made to efficiently

differentiate ECs from PSCs under the influence of biochemical

factors (23–29). These approaches are based on 2D and 3D EC

differentiation protocols, in which the basal medium contains

various cytokine supplements (Figure 1A). EC differentiation

methods based on biochemical factors usually consist of several

phases, such as mesoderm induction, vascular specification, and

EC maturation (Table 1). First, different types and

concentrations of small molecules and cytokines [CHIR99021,

CP21R7, BMP4, Activin A, fibroblast growth factor 2 (FGF2)]

were used to differentiate PSCs into mesodermal lineage cells. A

glycogen synthase kinase-3 (GSK3β) chemical inhibitor

(CHIR99021) was added to the cytokine cocktail for mesoderm

induction to differentiate the mesoderm (31). However,

inhibition of GSK3β could promote self-renewal or

mesendoderm differentiation of human PSCs (hPSCs) (32–34).

The mesoderm-inducing effects of GSK3 inhibitors, including

CHIR99021, CP21R7 (CP21), 6-bromoindirubin-3′-oxime (BIO),

and SB216763, were investigated to inhibit GSK3 and activate

Wnt signaling. CP21 and CHIR99021, selected by a luciferase

assay and cell viability assay, were used for mesoderm induction,

and these mesodermal cells can differentiate into different types

of vascular lineage cells, such as endothelial cells and vascular

smooth muscle cells (SMCs). The differentiation of ECs and
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FIGURE 1

Two major approaches to achieve stem cell-derived endothelial cell differentiation using biochemical and mechanical cues. (A) Biochemical cues. (B)
Mechanical cues. ECM, extracellular matrix; ESCs, embryonic stem cells; iPSCs, induced pluripotent stem cells; MSCs, mesenchymal stem cells.
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SMCs from mesodermal cells was promoted by VEGF and PDGF-

BB, respectively (35). Therefore, different small molecules and

cytokines can be selected and combined to generate efficient

mesodermal progenitor cells for ECs. Lam et al. reported that

CHIR99021 effectively induced hPSCs to differentiate into

BRACHY+ cells expressing mesoderm-specific markers compared

with WNT3a treatment (36). Another study also confirmed that

treating hiPSCs with CHIR99021 alone at different

concentrations and without cytokine support could induce

differentiation into BRACHY+ mesodermal cells. These cells

could further generate CD34+/CD31+ populations of up to 25%

in endothelial differentiation media (37). These studies suggested

that efficient mesoderm induction is essential for further EC

differentiation.
2.2. Vascular specification from
mesodermal cells

2.2.1. 2D-monolayer system for endothelial
differentiation

The use of a 2D monolayer system for endothelial cell

differentiation has been extensively studied (24, 29, 37). In a 2D

system, iPSCs are seeded on a flat surface, like a tissue culture

plate without a feeder layer, and then differentiated into

endothelial cells utilizing several growth factors and cytokines

(Table 1). This method is easy to use and reproducible for EC
Frontiers in Cardiovascular Medicine 03
differentiation (38). Vascular endothelial growth factor (VEGF) is

a critical element controlling EC phenotype specification (39).

Through the stimulation of VEGF-mediated downstream

signaling pathways, such as the MAPK and PI3K pathways,

VEGF can enhance the differentiation of endothelial cells from

stem cells (40–42). Several studies have reported efficient

induction of PSCs-derived endothelial differentiation by adding

VEGF (35, 43, 44). VEGF is a key factor that can promote the

differentiation of PSCs-derived endothelial cells but its effect can

be enhanced when combined with other growth factors. Sriram

et al. demonstrated that the differentiation efficiency of

endothelial cells by VEGF and bone morphogenetic protein 4

(BMP4) in mesodermal-committed cells. BMP4, a member of the

TGF-β superfamily, is important in directing human stem cells

to a mesodermal lineage and facilitating the generation of

immature ECs (45, 46). Fluorescence-activated cell sorting

(FACS) analysis indicated that BMP4 alone had a minimal effect

on the population of endothelial progenitors. In contrast, when

treated with VEGF alone, over 50% of the population

differentiated over time (by day 5). Counterintuitively,

differentiation into CD34+/CD31+ endothelial progenitor cells

(EPCs) was more than 90% successful at day 5 when BMP4 and

VEGF were used together (24). Harding et al. also reported the

differentiation efficiency of endothelial cells by a combination of

various growth factors. They elevated the expression of EC-

related genes through the addition of bFGF as well as the

combination of VEGF and BMP4 (40). Takeshi et al. reported
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the direction of differentiation from VEGFR2+ mesoderm cells to

EC using stimulation with VEGF and cyclic adenosine

monophosphate (cAMP) (17). In addition, forskolin, the cAMP

pathway activator, was used to promote endothelial commitment

during differentiation to EC (25, 26, 30). Therefore, exposure to

VEGF is essential for endothelial differentiation from cells of the

early mesodermal lineage and its efficiency can be greatly

increased by a synergistic combination of cytokines.

Although the 2D-based EC differentiation methods by

treatment of growth factors are considered effective ways,

the iPSC-ECs can exhibit heterogeneity (19). The concept of

EC heterogeneity is widely recognized, as ECs exhibit remarkable

diversity in both their functional and gene expression profiles

(19, 47, 48). This heterogeneity of ECs and differentiation fate is

further regulated by VEGF exposure. High concentrations of

VEGF (50 ng/ml) induced the specification of ECs into the

arterial subtype, whereas lower concentrations (10 ng/ml)

promoted venous specification (19). Another study also

supported this tendency, hESC-endothelial progenitors

differentiated into arterial and venous subtypes under serum-free

culture conditions containing EGF and bFGF, with and without

VEGF, respectively. Compared to hiPSC-ECs treated with a

high concentration of VEGF throughout the differentiation

process, the venous markers, CoupTFII and EphB4, were

increased under low VEGF conditions. The number of positive

populations of the vein markers NRP2 and EPH-B4 increased

in the absence of VEGF. With the addition of 10 ng/ml VEGF,

arterial specification of endothelial progenitors exceeded 97%,

and the relative mRNA expression levels of arterial and venous-

associated markers were regulated by VEGF (24). This highlights

that the presence of VEGF also plays a crucial role in arterial

and venous EC differentiation from hESC-derived CD34+/CD31+

EPCs. Therefore, VEGF signaling plays a considerable role in

vascular specification, arterial and venous selective differentiation,

and maintenance of EC properties of PSC-derived mesodermal/

endothelial progenitors. Thus, future efforts will be needed to

develop methods to derive iPSCs-ECs with specific origins and

functions required in the production of appropriate ECs for the

treatment of cardiovascular diseases.

2.2.2. 3D-system for endothelial differentiation
The EB formation approach for generating endothelial cells

from stem cells includes plating the stem cells as aggregates and

allowing them to differentiate spontaneously in a manner like

embryonic development that can progress to the three germ layer

(49). While this method results in a heterogeneous population of

aggregated cells, it can also lead to low efficiency in generating

endothelial cells due to the difficulty in controlling the

differentiation process and ensuring that the appropriate

signaling pathways are activated. Levenberg et al. first described

the approach of EB-derived endothelial cell differentiation. In

this method, hESCs were cultured as aggregates in suspension,

and toward the endothelial cells, but exhibited very low efficiency

of EC generation (approximately 2%) (20). Another method for

improving the efficiency of EC differentiation using EBs is

continuous addition with VEGF-A, which is known to increase
Frontiers in Cardiovascular Medicine 05
the typically low yield of ECs obtained from EBs (39). Recently,

Hamad et al. have established a high-efficiency EC differentiation

protocol in a 2D culture system using a high concentration of

VEGF and other growth factors. Subsequently, they applied this

protocol to a differentiation method starting from 3D EB

formation and showed improved EC differentiation yield,

compared to previous studies (44). The EB-derived ECs exhibited

typical endothelial cell markers such as CD31, VE-cadherin, and

von Willebrand factor. In order to use iPSCs-EC as a cell therapy

product, a 3D bioreactor suspension system is a promising

approach for mass production, and the 3D EB-based EC

differentiation method is an inevitable approach and requires

further investigation to optimize its efficiency.
2.3. Endothelial cell maturation

The appropriate culture conditions used for the maturation of

endothelial cells differentiated from iPSCs can be optimized to

promote endothelial cell expansion and functional properties

after vascular specification. Although VEGF plays a vital role in

EC specification, Sriram et al. exposed EPCs (CD34+/CD31+) to

different concentrations of VEGF ranging from 0 to 100 ng/ml

and observed that they became apoptotic at high VEGF

concentrations. The hESCs-derived CD34+/CD31+ cells stably

maintained EC-specific surface expression for serial passages in

the presence of low concentrations of VEGF (24). These results

indicated that the optimal concentration of VEGF for EC

expansion should be considered after vascular specification.

SB431542 is a small molecule inhibitor that specifically targets

the TGF-β signaling pathway (50). Inhibiting TGF-β signaling by

SB431542 can enhance the endothelial cell specification and

maintenance (51–53). James et al. found that TGF-β inhibition

by SB431542 promotes EC specification and expansion of ECs in

homogeneous populations, which exhibited high transcriptional

signature of typical endothelial cells (51). Treating SB431542

after EC differentiation allows the promotion of endothelial

proliferation and prevents senescence during passage (30). The

addition of SB431542 for EC differentiation may cause distinct

effects depending on which stage of EC differentiation is applied.

The use of SB431542 at the early stage of EC differentiation led

to a decrease in the expression of mesoderm-specific genes,

whereas the addition of SB431542 at the later stage of

differentiation increased the expression of endothelial-specific

genes (53). These results suggest that inhibition of the TGF-β

signaling pathway in the early stage negatively affects the

generation of mesodermal cells but has a positive impact on

vascular specification and EC maturation.
2.4. Vascularization of hPSC-EC

Endothelial cells and mural cells, including pericytes and

vascular smooth muscle cells, are essential for vascular

development. To evaluate the angiogenic properties of hPSC-EC,

Orlova et al. established the monolayer differentiation methods
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to derive ECs and pericytes from hPSCs and 2D coculture systems

consisting of hiPSC-Ecs and pericytes on gelatin-coated dishes to

model vascular plexus (31, 43). Briefly, hPSC-Ecs first adhere to

the substrate and form EC islands surrounded by pericytes that

remodel into vascular-like structures. Kurokawa et al. investigated

the ability of the CDH5-iPS-ECs to form 3D vascular networks

by co-culturing EC with fibroblast in microfluidic devices (54).

The iPS-ECs undergo vacuole formation and aggregate into tube-

like structures. The microvessel network connected to the top

and bottom microfluidic lines and was perfusable. Recently,

several studies reported the development of an organ-on-a-chip

model to recapitulate a pathophysiological microenvironment.

Campisi et al. established a human blood-brain barrier (BBB)

microvascular network model with hPSC-EC, brain pericytes,

and astrocytes in a fibrin gel (55). The BBB model exhibited

perfusable and selective microvasculature, with permeability

lower than that regarded conventional in vitro models. Wimmer

et al. attempted to generate self-organizing 3D human blood

vessel organoids from hPSC that exhibited vascular network

formation in the collagen I–Matrigel matrix (56). Vessel

organoids differentiated into CD31+ endothelial networks and

PDGFR- β+ pericytes. That also showed sprouting vascular

networks at the periphery and prototypical tip cell morphology.

In addition, the transplantation of blood vessel organoids into

immunocompromised mice formed a stable human vasculature.

Therefore, the development of vascular modeling and organoid

using hPSC-EC can be applied to understanding vascular disease

and vascular regeneration.
3. Influence of ECM cues on EC
differentiation

3.1. Extracellular matrix as a regulator for
stem cell behavior

The microenvironment surrounding ECs is defined as the

“vascular endothelial niche”. ECs are located in the basement

membrane (57), whose components are proteoglycans and

proteins such as collagen IV (Col-IV), laminin, and fibronectin

(58, 59). The ECM of the vascular niche plays a critical role in

vascular tissue engineering by providing both a physical

scaffolding for adhesive support and a 3D environment by

transmitting biochemical and mechanical signals that control

cellular behavior. The stiffness of the ECM is one of the most

critical factors in the microenvironment and plays a vital role as

an inducer in the behavior of different cell types (14, 15, 60).

Various hydrogels, such as polydimethylsiloxane (PDMS),

polyacrylamide (PAA), collagen, and gelatin methacryloyl

(GelMA), can be used to mimic tissue-specific stiffness (61, 62).

Single-stiffness and stiffness gradient hydrogels were simulated to

study the mechanotransduction and behaviors of stem cells that

are mechanosensitive to matrix stiffness (14, 63, 64). Stem cells

can mechanosense the rigidity of the matrix; information about

the rigidity is transmitted to the nucleus along the cytoskeleton,

and, Yes-associated protein (YAP), Lamin A, and MRTFA, which
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are mechanosensitive proteins; these mechanosensitive proteins

react according to the stiffness of the matrix and generate

biochemical signals that ultimately determine stem cell behaviors

such as migration, proliferation, functions, and differentiation

fate of stem cells (63–66). For example, a soft matrix promotes

adipogenesis and a stiff matrix promotes osteogenesis (67). The

results indicated that stem cell mechanosensitive proteins are

sensitively regulated depending on the substrate stiffness (soft to

stiff) and even influence their differentiation fate. Therefore,

using an appropriate matrix stiffness is vital to differentiate stem

cells into the endothelial lineage (Figure 1B).
3.2. Mechanical properties of the vascular
environment

Developing tissue constructs that incorporate the mechanical

properties of natural tissues is essential to provide proper

mechanical cues to cells. Substrate stiffness is a key factor among

the mechanical properties of ECM, and it is important to

understand the stiffness of natural tissues. To this end, atomic

force microscopy (AFM) is a valuable tool for measuring the

stiffness of tissues and living cells (68, 69). The elastic modulus

(E) of the vascular environment varies by species and tissue, as

shown by AFM. For example, the stiffness values of murine

femoral artery and thoracic aorta were 3.2 and 4.3 kPa,

respectively, as revealed by AFM measurements (70). According

to reported AFM indentation measurements, the mean elasticity

of the tunica adventitia layer of porcine pulmonary arteries and

aorta were 128.6 and 25.8 kPa, respectively (71). In contrast,

measurements of the intima of bovine carotid and the media

layers of porcine carotid arteries yielded mean stiffnesses of 2.5

and 5.7 kPa, respectively (72, 73). The reported elastic modulus

of venous tissue is approximately 3–50 kPa, which is in between

the stiffness of the epithelium and cartilage (11, 74, 75). Unlike

veins, arteries are composed of a high density of Col-I and are

surrounded by several layers of SMCs and connective tissue,

allowing them to withstand high blood pressure (74, 76).

Therefore, arterial tissues have higher stiffness values than veins

within a range of elastic moduli 50–150 kPa (71, 75, 77, 78).

Finally, exploring the mechanical properties of the vascular niche

and highlighting the significance of engineering biomimetic

environments for stem cell differentiation for application in

vascular regeneration is necessitated (Figure 2).
3.3. Effects of substrate stiffness on
endothelial differentiation

The endothelial commitment of stem cells can be regulated by

substrate stiffness (Table 2). Smith et al. demonstrated that

compliant substrates could guide the endothelial commitment

of hPSCs. The authors used physiologically soft (3 kPa) and

stiff (1.7 MPa) matrices fabricated by PDMS substrates to

compare the traditional TCP environment (3 GPa) for culturing

and EC differentiation from hPSCs. They found that hPSCs
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FIGURE 2

Applications of extracellular matrix cues on stem cell-derived endothelial differentiation and vascular regeneration. (A) Sources for cell therapy. (B)
Engineering biomimetic environment. (C) Generation of endothelial cells. (D) Application to vascular regeneration.
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cultured on the soft matrix enhanced differentiation toward

endothelial cells through stiffness-mediated mesodermal

induction, with robustly improved EC marker expression

including VE-cadherin, CD31, vWF, and eNOS (82). The

differentiation of EPCs into arterial or venous ECs in vitro is

suggested to be influenced by variations in substrate stiffness.

Xue et al. prepared PDMS-based matrices with stiffness

physiologically related to venous (7 kPa) and arterial (128 kPa)

tissue for inducing differentiation of mouse bone marrow-

derived EPCs on each matrix. When the correct substrate

stiffness was applied, the expression of EphrinB4, a venous

endothelial marker, was upregulated on a soft (venous)

substrate, whereas stiff (arterial) substrates increased the

expression of EphrinB2, an arterial endothelial marker (11).

These studies demonstrated the important role of substrate

stiffness in regulating endothelial differentiation and

functionality, emphasizing the necessity of using substrates that

mimic the physiological conditions of the vascular niche in

tissue engineering applications.

Flk-1 is a well-known marker of vascular progenitor cells

(VPCs), which can differentiate into ECs and SMCs (83). The

formation of these Flk-1+ cells can be influenced by the

substrate stiffness to which the cells are exposed. For instance,

when comparing the differentiation ratio of mesenchymal stem

cells (MSCs) in stiff (8–15 kPa) and soft (2–5 kPa) 3D

nanofiber substrates, 95% of MSCs exhibited Flk-1 endothelial
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markers on soft substrates within 24 h. However, only 20% of

MSCs presented Flk-1 markers on stiff matrices (84). Wong

et al. demonstrated that the differentiation of ECs and SMCs

from Flk-1 cells is related to substrate stiffness. They prepared

soft (10 kPa), medium (40 kPa), and stiff (>100 kPa, TCP)

hydrogels with a PAA substrate that can mimic most

physiological stiffness levels. Flk-1+ cells differentiated from

murine ESCs adhered to each matrix for EC differentiation

(10). After ESCs differentiated into VPCs (Flk-1+ cells), the

differentiation potential of ECs and vascular SMCs varied

depending on the rigidity of the matrix. The rigid matrix

directed VPCs to CNN1+ SMCs, whereas softer hydrogels

resulted in more CD31+ ECs. Beyond the effects of the 2D

matrix on understanding PSCs-derived EC differentiation, the

3D hydrogels can enhance the differentiation efficiency of ECs.

Zhang et al. found that the 3D environment by fibrin scaffold

elevated the efficiency of EC differentiation and quality of

hiPSCs-ECs compared to the traditional 2D culture system.

This approach suggested that providing the physical 3D surface

tension by controlling the spatiotemporal environment is important

for enhancing EC differentiation and the function of ECs (85).

Although the stem cells had the same starting point, their

differentiation fate changed depending on the substrate stiffness to

which they were exposed. Thus, the stiffness-dependent lineage

commitment suggests that the optimal substrate stiffness parameter

is vital for the efficient generation of ECs from PSCs.
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3.4. Effect of extracellular matrix
composition on endothelial differentiation

Recent studies in mechanobiology have focused on matrix

stiffness, a mechanical property of the ECM, and have confirmed

that it is a critical factor in determining numerous cellular

behaviors (14, 15). However, not only the substrate stiffness of

the ECM but also the type and density of ECM ligands can

affect stem cell mechanotransduction beyond the effect of matrix

stiffness. Notably, specific ECM types and their densities can

even reverse the effect of substrate stiffness. Stanton et al.

demonstrated that YAP-mediated mechanotransduction of stem

cells is regulated by ECM types such as fibronectin, Col-I,

Col-IV, and laminin with different ECM ligand densities (86).

These results highlight the importance of biochemical ligand type

and density in designing mechanotransduction experiments and

applying the optimal ECM components for EC differentiation

studies.

Various types of ECM materials have been used for PSCs-

derived endothelial differentiation, including Matrigel,

fibronectin, and laminin (16, 25, 44). Matrigel, a commercially

available ECM product derived from Engelbreth-Holm-Swarm

mouse sarcomas, is widely used for supporting growth and

differentiation of various cell types, including endothelial cells

(24, 87, 88). However, there are several drawbacks to using

Matrigel for EC differentiation. Matrigel shows batch-to-batch

variation and contains many undefined growth factors, which

can interfere with the reproducibility of experiments (89, 90).

Therefore, alternative ECM materials such as fibronectin and

laminin have been explored for PSCs-derived EC differentiation.

Siram et al. established a protocol for efficient differentiation of

hESCs into ECs under feeder- and serum-free conditions, using

fibronectin as an alternative ECM to Matrigel. They found that

culturing hESCs on the fibronectin-coated surfaces can maintain

the pluripotent status and induce differentiation of ECs (24).

Nguyen et al. demonstrated the ability of laminin to support the

differentiation of hESCs into functional endothelial progenitor

cells under chemically defined, xeno-free conditions (16). These

highlight the potential of using alternative ECM materials for

efficient EC differentiation, which could aid cell-based therapies

for vascular disease, and emphasizes the importance of utilizing

defined ECMs for reliable and reproducible differentiation

protocols.

A combinatorial ECM microarray platform was used for PSC-

derived EC differentiation to understand the influence of the

microenvironmental factors regulating their differentiation. ECM

microarrays consist of multi-component combinations of the

ECM proteins, including fibronectin, Col-IV, laminin, gelatin,

heparin sulfate, and Matrigel to mimic the environment of the

basement membrane where ECs reside (80). Human iPSC or

ESC lines were differentiated into ECs on an ECM microarray,

and the relative fluorescence intensity of CD31 was compared

under each condition. Compared with other ECM components,

combinatorial ECMs (CHL: Col-IV + heparan sulfate + laminin,

and CGH: Col-IV + gelatin + heparan sulfate) could promote
Frontiers in Cardiovascular Medicine 09
endothelial differentiation by increasing the expression of CD31

at the protein and transcript levels (80). These results suggest

that optimal ECM components and combinations are essential

for efficiently producing ECs from PSCs.
3.5. Decellularized extracellular matrix as
differentiation inducers

Decellularized ECM (dECM) is a commonly used natural

biomaterial that can be obtained by removing cells from tissues or

cells with detergents and can be derived from various types of

organs or tissues (91, 92). The dECM preserves the characteristics of

the natural ECM and provides a structural scaffold, biomechanical

properties, soluble components, native proteins, and cell adhesion

ligands (93, 94). Recent research on tissue- and organ-derived ECM

emphasizes the need for tissue specificity to maintain the function

and phenotype of native cells (94–96). Therefore, vascular tissue-

derived ECM (VdECM) may be an attractive biomaterial to

recapitulate the vascular niche and enhance EC differentiation and

cell function. VdECM and Col-I gels were used to assess cell

proliferation, viability, and differentiation to evaluate the

performance of encapsulated EPCs. The proliferation ability of live

cells in VdECM significantly exceeded that of Col-I gel, as confirmed

by cell viability and proliferation assays. Compared with Col-I gel,

gene expression of typical endothelial markers, including CD31,

CD144, and von Willebrand factor, was significantly increased in

VdECM. Moreover, mature CD31+ ECs formed microvascular-like

structures, which is a distinguishing feature in contrast to the simply

elongated morphology of ECs in Col-I gel (81). Ullah et al.

demonstrated that the VEGF-supplemented dECM is an instructive

material for effective differentiation of hiPSCs into ECs in vitro and

even in the absence of other inductive factors in culture medium.

The VEGF-enriched dECM provides a functional niche for the

selective promotion of cell attachment, survival, and differentiation

(79). This study provides important insight into the role of specific

growth factors in dECM that promote EC differentiation instead of

conventional growth factor-supplemented media. By identifying and

supplementing specific dECM factors, it may be possible to enhance

the differentiation efficacy and functionality of PSCs-EC for

regenerative applications. These results suggest that the natural

properties of dECM can be used as an efficient tool for vascular EC

differentiation.
4. Conclusion

In recent years, different types of stem cells and various

approaches have been developed to generate ECs using chemical

treatments. Most of the research is currently performed with 2D

monolayer-based protocols to guide mesoderm induction and

endothelial specification. The appropriate type and concentration

of growth factors for differentiation stages are essential for

effective EC generation. Many studies have been performed on

plates coated with Matrigel or other ECM components (laminin,
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collagen, and fibronectin) and treated with growth factors.

However, stem cells can “mechanosense” their ECM stimuli and

convert them into biochemical signaling pathways. Synthetic

matrix and tissue-specific dECM can be used to recapitulate the

vascular microenvironment by applying this concept to EC

differentiation. Modulating the stiffness and components of the

ECM is critical in determining the differentiation fate of arterial

and venous ECs. Therefore, investigating mechanical factors

related to the vascular microenvironment and their application to

EC generation is necessary to find novel strategies and directions

for treating cardiovascular diseases.
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