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Abstract— In this work, we propose stochastic Binary Spiking
Neural Network (sBSNN) composed of stochastic spiking neurons
and binary synapses (stochastic only during training) that com-
putes probabilistically with one-bit precision for power-efficient
and memory-compressed neuromorphic computing. We present
an energy-efficient implementation of the proposed sBSNN using
‘stochastic bit’ as the core computational primitive to realize the
stochastic neurons and synapses, which are fabricated in 90nm
CMOS process, to achieve efficient on-chip training and inference
for image recognition tasks. The measured data shows that the
‘stochastic bit’ can be programmed to mimic spiking neurons, and
stochastic Spike Timing Dependent Plasticity (or sSTDP) rule for
training the binary synaptic weights without expensive random
number generators. Our results indicate that the proposed
sBSNN realization offers possibility of up to 32× neuronal
and synaptic memory compression compared to full precision
(32-bit) SNN and energy efficiency of 89.49 TOPS/Watt for
two-layer fully-connected SNN.

Index Terms— Stochastic bit, stochastic binary SNN, stochastic
STDP, memory compression, neuromorphic computing.

I. INTRODUCTION

IN THE current era of ubiquitous autonomous intelligence,
there is a growing need for moving Artificial Intelli-

gence (AI) to the edge to cope with the ever increasing demand
for autonomous systems like drones, self-driving cars, and
smart wearable devices. Energy-efficient neuromorphic sys-
tems are henceforth necessary to process the massive amount
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of data generated by the resource-constrained battery-powered
edge devices. Furthermore, it is highly desirable to embed
on-chip intelligence using low-complexity learning rules,
which enable the edge devices to learn from real-time inputs.
Real-time on-chip learning capability precludes the need for
offline training in the cloud, which can otherwise lead to higher
latency and security concerns for real-time applications.

Spiking Neural Networks (SNNs), on the account of
event-driven computing capability and hardware-friendly local
learning using Spike Timing Dependent Plasticity (STDP),
offer a promising solution for realizing energy-efficient neuro-
morphic systems with on-chip intelligence. In fact, researchers
in [1] demonstrated that SNN running on event-driven neu-
romorphic hardware like Intel Loihi [2] incurs the minimum
energy per inference relative to similarly sized analog neural
network executed on CPU/GPU while providing equivalent
inference accuracy for a latency-critical keyword spotting
task. Recent works on deep SNNs indicate that energy effi-
ciency significantly increases with network depth due to
exponential drop in the spiking activity across successive
SNN layers [3], [4]. In this regard, prior works proposed
energy-efficient implementations of SNN using CMOS [2],
[5], [6] and emerging device technologies such as Resis-
tive Random Access Memory (RRAM) [7], [8], Conductive
Bridge RAM (CBRAM) [9], and Magnetic Tunnel Junc-
tions (MTJs) [10]. However, SNNs composed of deterministic
neuronal and synaptic models require multi-bit precision to
store the parameters governing their dynamics. As a result,
the computational complexity and neuronal/synaptic memory
requirements increase with network size, leading to reduction
in the overall power- and area-efficiency.

We propose and implement ‘stochastic bits’ enabled binary
SNN (sBSNN) that computes probabilistically with one-bit
precision for energy- and memory-efficient neuromorphic
computing at the edge. The core building block of the sBSNN
is a ‘stochastic bit’, which switches between its logic low and
high states with a probability that varies in a sigmoidal manner
based on the input. We realize the stochastic neurons, referred
to as sNeurons, and synapses (stochastic only during training)
using the proposed ‘stochastic bit’ as explained below. The
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sNeuron receives the weighted sum of the input spikes with
the synaptic weights, and spikes probabilistically depending
on the weighted input sum. The firing probability of the
sNeurons, similar to the switching dynamics of the ‘stochastic
bit’, has sigmoidal relationship with the weighted input sum.
The binary synapse interconnecting a pair of input (pre) and
output (post) neurons is similarly emulated using the ‘stochas-
tic bit’ during training. The binary synaptic weight is trained
using the stochastic-STDP (sSTDP) algorithm presented
in [11], where the synaptic weight is potentiated/depressed
with a probability that depends on the degree of correlation
between the spike times of the pre- and post-neurons. The
trained binary synaptic weights are then used deterministi-
cally during inference to predict the class of a test input.
The proposed sBSNN, with event-driven computing capability
enabled by state-less sNeurons and memory-efficient on-chip
learning capability enabled by the hardware-friendly localized
sSTDP rule, offers a promising solution for building the next
generation of autonomous intelligent systems.

To that effect, we propose an energy-efficient realization
of sBSNN, fabricated in 90nm CMOS technology, to achieve
on-chip training and inference for visual image recogni-
tion tasks. The proposed ‘stochastic bit’ is composed of a
cross-coupled inverter with PMOS header and NMOS footer
transistors for obtaining the sigmoidal switching probability
characteristics. We interface the CMOS ‘stochastic bit’ with
the appropriate peripheral circuitry to realize the sNeurons
and synapses. The energy and memory efficiency of the
proposed implementation stems from three key factors. First,
the power consumed by the sNeuron for generating a spike
is comparable to that consumed in a single transition of a
cross-coupled inverter, which is typically in the order of few
μW . In addition, the ‘stochastic bit’ design also leverages
power gating technique [12] with header and footer transistors
between the supply and ground rails for reducing the leakage
power consumption. Second, the spiking dynamics of the
sNeuron depend only on the current input and not on the
integrated sum of the current and past inputs, which precludes
the need for storing the neuron state (typically known as
the membrane potential) as is common in deterministic spik-
ing neurons like the leaky integrate-and-fire neuron. Further,
the synapses need only one-bit storage to record the respective
binary states. Last, the weighted sum of the inputs with
the synaptic weights, which is typically a series of multiply
and accumulate (MAC) operations in analog neural networks,
is transformed to AND operations followed by pulse count
in the proposed sBSNN, thereby reducing the computational
energy significantly. Our analysis using a two-layer fully-
connected SNN of 400 neurons indicates that the proposed
realization offers high energy efficiency of 89.49 TOPS/Watt,
which renders it a potential candidate for enabling the next
generation of intelligent devices.

In summary, we make the following contributions:
• We proposed the ‘stochastic bit’ as the core compu-

tational primitive to realize the stochastic neurons and
binary synapses, which are implemented in 90nm CMOS
process.

Fig. 1. (a) SNN composed of stochastic input and output neurons inter-
connected via binary synaptic weights. The output sNeurons fire with a
probability that has sigmoidal relationship with the weighted input sum.
(b) Stochastic-STDP learning rule for binary synaptic weights, where
the synaptic switching probability depends on the time difference between
input (pre) and output (post) spikes. The binary weight is probabilistically
potentiated (depressed) for positive (negative) timing correlation between pre-
and post-spikes.

• We proposed and evaluated the ‘stochastic bit’ enabled
sBSNN that computes probabilistically with one-bit pre-
cision for power-efficient and memory-compressed neu-
romorphic computing.

• We proposed and demonstrated one of the first works on
all-CMOS realization of stochastic SNNs. Our proposal
provides reconfigurable on-chip learning that is suitable
for the real-time and resource constrained edge devices.

The rest of the paper is organized as follows. Section II
details the proposed sBSNN and sSTDP training rule.
Section III describes the ‘stochastic bit’ circuit design and
the required peripherals for implementing the sNeurons and
synapses. The system-level implementation of the sBSNN is
also detailed in this section. Section IV presents the measured
characterization results of the sNeurons and synapses, and
the accuracy and energy efficiency of our sBSNN realization.
Finally, section V concludes the paper.

II. BACKGROUND

A. Stochastic Binary Spiking Neural Network (sBSNN)

The core building block of the proposed sBSNN is a set
of input (pre) neurons connected to an output (post) neuron
via binary weights. The input neurons, which represent the
image pixels for a visual object recognition task, generate
Poisson-distributed spikes at a rate proportional to the cor-
responding pixel intensities. At any given time, the input
pre-spikes get modulated by the interconnecting synaptic
weights to produce resultant current into the output neuron.
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Several previous works have explored the hardware implemen-
tations for these core building blocks of stochastic SNNs, using
emerging technologies like CBRAMs and MTJs [11], [13] and
built-in blocks in FPGA board [14]. We proposed a ‘stochastic
bit’ as the core building block for neuron and synapse (train-
ing) to achieve on-chip learning with compressed memory.
We model the output neuron using the ‘stochastic bit’, which
spikes probabilistically based on the input current (or weighted
input sum) during both training and inference. The spiking
probability of the output sNeuron has sigmoidal dependence
on the input current as illustrated in Fig. 1(a). It is important to
note that the sNeuron is state-less since the stochastic spiking
dynamics depend only on the instantaneous input current and
not on the integrated sum of current and past input currents as
is typical in deterministic neuron models, thereby eliminating
the multi-bit precision requirement for the neuron state (or
membrane potential). The stochastic synapses (stochastic only
during training) are similarly emulated using the ‘stochastic
bit’, where the synaptic switching probability depends on the
time difference between the pre- and post-spikes as explained
in the following subsection II-B.

B. Stochastic-STDP (sSTDP)

Spike Timing Dependent Plasticity (STDP) is a bio-inspired
local learning mechansim, which has been experimentally
observed in the rat hippocampus [15]. STDP postulates that the
change in the weight of a multi-level synapse interconnecting
a pair of pre- and post-neurons depends on the correlation
between the respective spike times. If the pre-neuron spikes
before the post-neuron, the synaptic weight increases (synaptic
potentiation), while it decreases if the pre-neuron spikes after
the post-neuron (synaptic depression). Binary synapses, on the
contrary, require a probabilistic learning rule to prevent rapid
switching of the weights between the high and low levels,
which would otherwise render the synapses memory-less.
We use the sSTDP learning algorithm proposed in [11] to
train the binary synaptic weights, where the synaptic switch-
ing probability has exponential dependence on spike timing
difference as illustrated in Fig. 1(b) and described by

PL−→H = γpot · e
−�t
τpot where �t = tpost − tpre > 0 (1)

PH−→L = γdep · e
�t

τdep where �t = tpost − tpre < 0 (2)

where PL−→H and PH−→L are the probability of potentia-
tion and depression, respectively. In other words, the weight
of a synapse changes based on the temporal correlation
between the spike time of pre- and post-neurons. For example,
if a pre- (post-) neuron fires before a post- (pre-) neuron
does, it is positively (negatively) correlated with the input
pattern [16]. Consequently, potentiation (depression) occurs
probabilistically in the positive (negative) timing window of
the sSTDP algorithm. The corresponding switching probability
is determined by the spike timing difference between pre
and post spikes as described in the above equations. The
peak switching probability and time constant for potentiation
(γpot , τpot ) and depression (γdep, τdep) determine the synaptic
learning efficacy. The sSTDP hyperparameters have to be cho-
sen carefully to ensure right balance between the potentiation

and depression weight updates, and achieve efficient learning.
Once the training is complete, the learnt binary weights are
used deterministically during inference. The presented sBSNN
requires only one-bit precision for the neurons and synapses,
leading to visual image recognition with compressed memory
requirement.

III. SBSNN DESIGN AND IMPLEMENTATION

In this section, we first detail the design and implementation
of the proposed ‘stochastic bit’, which is the core comput-
ing primitive of the sBSNN. We then present the design
of sNeuron and synapse (stochastic only during training).
Finally, we detail the system-level realization of two-layer
fully-connected sBSNN for visual image recognition.

A. CMOS ‘Stochastic Bit’ Design

As mentioned in section I, controllable stochastic behavior
is the central characteristic of the ‘stochastic bit’. In CMOS-
based designs, stochastic behavior is largely dependent on the
characteristics of the random noise source. Thermal noise is
one of the commonly used entropy sources in CMOS process,
which stems from the channel fluctuations induced by random
Brownian motion of electrons. The power spectral density
of thermal noise across a resistor is given by V 2 = 4kT R,
where k is the Boltzman constant, T is the temperature
in Kelvin, and R is the resistance in ohms. Accordingly,
thermal noise induced stochasticity is only affected by the
device resistance and operating temperature. Thermal noise
has been used as the source of randomness in many True
Random Number Generator (TRNG) designs [17], [18]. Also,
metastability-based TRNG designs using cross-coupled invert-
ers have been reported to achieve high operating frequency
and power efficiency [19]. This motivated us to investigate the
possibility of harnessing the metastable behavior of bi-stable
circuits to implement the ‘stochastic bit’.

The proposed ‘stochastic bit’ is realized using cross-coupled
inverter with PMOS header transistors and NMOS footer tran-
sistors as depicted in Fig. 2(a). The operation of the ‘stochastic
bit’ is divided into two different modes, namely, pre-charge
and evaluation, which are gated by the ‘EN’ (enable) signal
as shown in Fig. 2(b). In the pre-charge mode (when ‘EN’
is low), the cross-coupled nodes A and B are pre-charged to
the same voltage by leakage current, while the header and
the footer transistors are turned off. Note that, the inherent
power gating enabled by the PMOS header transistors and
the NMOS footer transistors causes the leakage current of the
proposed design to be lower than the gate leakage current of
a 6T SRAM bitcell [12]. The switching probability depends
on asymmetry in the effective strength of left- and right-wing
PMOS transistors, which can be modulated using the input that
is represented as 6-bit code in our implementation and acti-
vates different binary weighted PMOS switch transistors. The
NMOS footer transistors connected to ground are controlled
symmetrically in strength using the same input code, which
is represented with 3-bit precision in our implementation,
to modulate the shape of the probability curve. The shape
of the switching probability versus the PMOS digital code is
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Fig. 2. (a) Schematic of 6-bit ‘stochastic bit’ core. (b) Illustration of
the pre-charge and evaluation modes of operation of the ‘stochastic bit’.
(c) Timing diagram illustrating the operation of the ‘stochastic bit’.

sigmoidal as will be shown in the results section IV. The shape
and the covered range of probability is programmable and can
be reconfigured on-chip. It is worth noting that, the ‘stochastic
bit’ consumes only leakage power during the pre-charge mode,
and charging/discharging power for nodes A and B during the
evaluation mode. In addition, the speed of operation is based
on the speed of ‘EN’ signal. Therefore, the proposed design
becomes more power efficient and faster as CMOS process
scales. Also, the PMOS and NMOS sizing, and bit-precision
for the respective codes can be tuned based on the application
requirements.

B. Stochastic Neuron (sNeuron)

We now describe how the ‘stochastic bit’ is used to realize
stochastic input and output neurons forming the sBSNN. The
input neurons map the image pixel intensities to spike trains,

Fig. 3. Design of ‘Stochastic bit’ enabled (a) spiking neuron, and (b) binary
synapse (stochastic during training and deterministic during inference).

where each neuron fires probabilistically at a rate proportional
to the corresponding pixel intensity. The ‘stochastic bit’ can
inherently realize an input sNeuron by mapping the pixel
intensity to PMOS code that controls its switching probabil-
ity. On the contrary, the ‘stochastic bit’ is interfaced with
counter and modulator circuit (shown in Fig. 3(a)), which
generates and modulates the weighted input, for realizing
the output sNeuron that spikes with the desired probability.
Also, the spiking activity of the sNeuron can be suppressed
by masking the ‘EN’ signal of the ‘stochastic bit’, which
is used for implementing lateral inhibition that facilitates
competitive learning as will be explained in subsection III-D.
The generated spikes from the input and the output sNeuron
(PRE and POST) are applied to the stochastic binary synapses
for synaptic updates as explained below.

C. Stochastic Binary Synapse

The stochastic binary synapse (during training) is realized
by interfacing the ‘stochastic bit’ with 6T SRAM as depicted
in Fig. 3(b). Based on the sign of the spike timing difference,
tpost − tpre, the synaptic weight update event is determined as
potentiation (depression) when the sign is positive (negative).
Then, the spike timing difference, measured as the number of
clock pulses using time to digital converter (TDC), feeds the
‘stochastic bit’ to selectively turn on the PMOS header transis-
tors, effectively causing it to produce an output pulse with the
appropriate probability depending on spike timing. Note that
TDC can be realized using a counter for potentiation (depres-
sion) that resets when PRE (POST) is high. TDC is shared by
stochastic synapses that are activated by the same PRE/POST
signal. The generated pulse activates the wordline of the 6T
SRAM cell while the bitline is driven to VDD (ground) for
synaptic potentiation (depression) update. Once the stochastic
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Fig. 4. Architecture of two-layer fully-connected sBSNN, with lateral inhibi-
tion, for object recognition. The input pixels (pre-neurons) are fully-connected
via stochastic binary synapses to excitatory post-neurons, which are trained
using the sSTDP learning algorithm. The excitatory neurons are subdivided
into different groups, where each group is trained on a unique class of image
patterns.

training process is complete, the ‘stochastic bit’ is powered
off and the learnt binary weight stored in the corresponding
SRAM cell is deterministically used during inference as shown
in Figure 3(b). Note that, during both training and inference,
the computation of the weighted input sum reduces to AND
operations followed by pulse count since both the inputs
and synaptic weights are binary. Hence, the sBSNN provides
much higher computational energy efficiency relative to analog
neural networks with real-valued (32-bit) inputs and synaptic
weights, which require MAC (multiply-and-accumulate) units,
and SNNs with real-valued weights and binary inputs that need
accumulators for computing the weighted input sum.

D. sBSNN System-Level Implementation

1) On-Chip Training: We demonstrate the efficacy of the
proposed sNeuron and synapse using a two-layer fully-
connected sBSNN depicted in Fig. 4. Fig. 5 illustrates
the system-level implementation of the two-layer sBSNN.
The input sNeurons representing the image pixels are
fully-connected via binary weights to output (post) sNeurons.
At every time-step, the weighted sum of the input spikes with
the synaptic weights are modulated and fed to the ‘stochastic
bit’ in the respective post-neurons, causing them to fire proba-
bilistically. The weighted sum received by each post-neuron is
calculated by counting the number of pulses from the output
of the AND gates in the corresponding column of synapses
as depicted in Fig. 5. The pulses are only generated when
both inputs of the AND gate are high. Accordingly, power is
only dissipated when there are transitions in the AND gate.
As a result, the weighted input sum computation in sBSNN
consumes significantly lower power compared to full precision
(32-bit) SNN. In the event of a post-spike, the spiking neuron
inhibits the remaining post-neurons, as illustrated in Fig.4,
by masking the respective enable (EN) inputs as explained in
subsection III-B to uniquely learn the presented pattern. The
synapses connecting the input to the spiking post-neuron are
probabilistically potentiated based on spike timing. The spike

Fig. 5. System-level realization of two-layer fully-connected sBSNN with
lateral inhibition.

timing difference, tpost − tpre (tpre − tpost) in the number of
clock pulses, is measured using the POT (DEP) counter shown
in Fig. 5, which is reset at every pre-spike (post-spike) and
decremented by unity at successive time-steps. The elapsed
count of POT (DEP) counter is sampled upon a post-spike
(pre-spike) for potentiation (depression) weight update. The
spike timing difference is fed to the ‘stochastic bit’ in the
synapses (depicted in Fig. 3(b)), which in turn probabilis-
tically programs the SRAM as detailed in subsection III-C.
The sSTDP-based probabilistic weight updates enable each
excitatory neuron to learn a complete representation of the
input pattern in the input to excitatory synaptic weights.
In order to ensure that each excitatory neuron learns unique
input representations, we divided the excitatory neurons into
different clusters and trained each cluster of neurons on a
distinct class of input patterns as proposed in [11]. Fig. 6
shows the MNIST digit representations learnt by a two-layer
fully-connected sBSNN of 400 excitatory neurons using the
sSTDP-based training methodology.

2) On-Chip Inference: At the end of training, each
post-neuron learns to spike for a unique input class by
encoding a general input representation in the input to output
synaptic weights as shown in Fig. 6. Once training is com-
pleted, we disable the clock signal of the ‘stochastic bit’ in the
synapses, thereby fixing the weights for the inference phase.
The learnt binary weights, stored in the SRAM cells, are used
deterministically during inference. A test pattern is predicted
to belong to the class learnt by the group of neurons with the
highest average spike count over the time period for which the
test input is presented. The proposed sBSNN implementation,
by virtue of using simpler weighted input sum computation
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Fig. 6. MNIST digit representations (28 × 28 in dimension) learnt by
a two-layer fully-connected sBSNN of 400 excitatory neurons (organized
in 20 × 20 grid).

and state-less stochastic neurons, can provide high energy
efficiency during inference as will be shown in section IV.

IV. RESULTS

In this section, we first present the measured results of
the sNeuron and synapse, which are fabricated in 90nm
CMOS process. We subsequently show the simulation
results of our sBSNN implementation (detailed in subsection
subsection III-D) using the measured neuronal and synaptic
dynamics on the MNIST dataset.

A. ‘Stochastic Bit’ Characterization

Fig. 7(a) illustrates the setup for characterizing the CMOS
‘stochastic bit’ design (detailed in section III). The on-chip
timing controller generates sufficient number of enable (EN)
pulses, which is set to 768 in our experiments, for obtaining
reasonable estimate of the ‘stochastic bit’ switching probabil-
ity for a specific configuration of PMOS and NMOS codes.
The number of resultant output pulses at OA (refer to Fig. 2(a))
is recorded by a 15-bit on-chip counter to determine the
switching probability for the chosen PMOS and NMOS codes.
For every set of input codes, we performed the switching
probability measurement 1000 times. Fig. 7(b) shows that the
switching probability of the ‘stochastic bit’ varies roughly in a
sigmoidal manner with the PMOS code. The measured switch-
ing probability ranges from 11.6% to 90.1% with less than 5%
standard deviation at a supply voltage of 1.4V . In addition,
we varied the NMOS code and found that it controls the shape
of the switching probability curve as illustrated in Fig. 7(c).
The variation in the switching probability dynamics with the
NMOS code can be attributed to the change in the respective
transistor sizes relative to the PMOS transistor sizes. Note
that, the ratio of minimum to maximum switching probability
is determined by the bit-precision of the PMOS code and the
relative sizing (widths) of the PMOS and NMOS transistors,
which need to be fixed at design-time based on the application
requirements.

Fig. 7. (a) Measurement setup for the ‘stochastic bit’ design, which is
interfaced with a FPGA board for generating the on-chip clock/inputs and
monitoring the outputs via the CLK and GPIO ports, respectively. (b) The
measured box plots of switching probability versus the input (PMOS) digital
code, and its standard deviation, σ (refer to the inset). In each box, the central
mark indicates the median, the ends of the vertical blue boxes indicate the
25th and 75th percentiles, respectively, and the lines indicate the min and max
value. (c) Switching probability dynamics for different 3-bit NMOS codes.

B. Stochastic Binary Synapse

The sSTDP dynamics required for training a binary synaptic
weight are obtained by feeding the spike timing difference
to the on-chip pulse generator, which generates the pre-
and post-spikes as shown in Fig. 8(a). The Time-to-Digital
Converter (TDC) measures the spike timing difference and
produces the PMOS code for the ‘stochastic bit’, which prob-
abilistically activates the SRAM wordline. The SRAM cell
is then probed for potentiation (depression) event to estimate
the sSTDP characteristics for the positive (negative) timing
window. We adopted a methodology similar to that used for
the ‘stochastic bit’ characterization for measuring the sSTDP
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Fig. 8. (a) Measurement setup for the sSTDP dynamics needed to train
a stochastic binary synapse, which is interfaced with an FPGA board for
generating the clock and inputs (spike timing, TIME_IN), and monitoring the
outputs (state of SRAM cell). (b) The measured sSTDP curve for different
NMOS codes.

dynamics as explained below. For every value of spike timing
within the sSTDP window, TIME_IN in Fig. 8(a), we gener-
ated sufficient number of enable pulses (set to 768 as explained
in subsection IV-A) for the ‘stochastic bit’ constituting the
binary synapse. We then probed the 6T SRAM for a change
in the cell state to determine the corresponding switching
probability. We repeated the switching probability measure-
ment 1000 times for every value of spike timing. Fig. 8(b)
shows the measured sSTDP dynamics, where the synaptic
switching probability has roughly exponential dependence on
spike timing, which conforms to the sSTDP rule depicted
in Fig. 1(b). The sSTDP dynamics can be tuned on-chip by
programming the NMOS code controlling the footer transistor
sizes in the ‘stochastic bit’ as explained in subsection III-A.
Note that the Time-to-Digital Converter (TDC in Fig. 8(a))
and pulse generators are used only for measurements. The
binary synapse is composed of only the 6T-SRAM and the
‘stochastic bit’ during training, where the pre- and post-spikes
are generated by the input and output sNeurons, respectively,
constituting the sBSNN. Also, the spike timing difference is
estimated using a counter per pre-/post-neuron as described in
subsection III-D.

C. sBSNN for MNIST Digit Recognition

The sBSNN implementation was functionally trained and
evaluated using the measured neuronal and synaptic dynamics

TABLE I

COMPARISON WITH RELATED WORKS

shown in Figs. 7(b) and 8(b), respectively, on the MNIST
digit recognition dataset. The accuracy on the test dataset
is 65.88% for an SNN of 400 excitatory neurons trained
on 900 MNIST digit patterns, which was sufficient for all
the neurons to learn general input representations as depicted
in Fig. 6. Any more increase in the number of training patterns
could deteriorate the learnt representations, leading to further
loss in accuracy. The accuracy can be improved by increasing
the number of excitatory neurons and/or by incorporating
an additional fully-connected classification layer trained on
a larger fraction of the dataset. We augmented the SNN
with a softmax readout layer of 10 neurons corresponding to
the 10 classes in the MNIST handwritten digit recognition
task, where each readout neuron is fully-connected to all
the excitatory neurons. For a given input pattern, the spike
count of the excitatory neurons are estimated using the sSTDP
trained sBSNN, and subsequently fed to the softmax readout
layer, which predicts the test pattern to belong to the category
represented by the readout neuron with the highest activation.
We trained the readout layer on the entire training dataset using
the Adam optimizer [26], which is a popular gradient-based
supervised training algorithm, and cross-entropy loss func-
tion with learning rate of 0.001 for 8 epochs. We obtained
higher accuracy of 92.30% on the entire MNIST test dataset
of 10,000 images.

sBSNN offers possibility of up to 32× neuronal and synap-
tic memory compression relative to similarly sized full preci-
sion (32-bit) SNN with accuracy loss that can be minimized for
larger SNNs. The energy of the sNeuron with the measurement
blocks (refer to the sNeuron measurement setup in Fig. 7) is
measured to be 8.4pJ/spike. The standalone neuronal energy is
estimated to be 1.84pJ/spike as detailed in Table I. In addition,
Table I also indicates that the proposed implementation offers
lower neuronal energy consumption compared to related works
in 90nm CMOS process.

D. Energy Efficiency

Finally, we estimate the energy efficiency of the two-layer
sBSNN implementation composed of 784 input and 400 output
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Fig. 9. (a) Die photo of the ‘stochastic bit’ and its layout (refer to the inset).
(b) Die photo of the stochastic binary synapse composed of the ‘stochastic
bit’ and 6T-SRAM bitcell. (c) Test chip measurement setup using FPGA.

sNeurons in terms of Tera-operations (TOPS) per Watt. Our
functional simulations indicated that the average number of
transitions in the AND gate of stochastic synapses is ∼700 out
of 784 × 400 total possible transitions. The average power
consumed by the AND gate per transition in 90nm CMOS
process is estimated as 0.80μW , which totals to 0.56mW
per time step. Every output sNeuron requires a 10-bit ones
counter for accumulating the maximum weighted input sum
of 784, and the ‘stochastic bit’ to spike probabilistically.
The average weighted input sum received by the output
sNeurons is functionally determined to be 21. The average
power consumed by the 10-bit ones counter is estimated to
be 0.558mW per sNeuron while that of the ‘stochastic bit’
is measured to be 0.033mW per sNeuron. The total output
neuronal power is 236mW (0.558mW+0.033mW × 400)
while that of the input neurons is 25.87mW (0.033mW ×
784). The proposed implementation performs 23.52 TOPS
(784×400×2×37.5MHz) while consuming 262.8mW, leading
to energy efficiency of 89.49TOPS/Watt. The high energy
efficiency can be attributed to binary dot product computations
and the inherent sparsity in the neuronal spiking activity
offered by SNNs. Figs. 9(a)-(b) show the die shot of the
sNeuron, synapse, and the layout of the ‘stochastic bit’ core
(inset of Fig. 9(a)). For measurements, we interfaced an FPGA

Fig. 10. (a) The switching probability curves with process (FF, TT, SS,
FS, SF) and temperatures (−55 ◦C , 27 ◦C , 125 ◦C) variations. (b) The
compensated switching probability curves for all corners presented in (a).

to the QFN packaged chip on a custom PCB as depicted
in Fig. 9(c).

E. Process and Temperature Variation

Fig. 10(a) shows the simulated switching probability curves
affected by process and temperature variations. The black
solid line represents the baseline of our design and the other
lines represent variations caused by the different combinations
of process corners (FF, TT, SS, FS, SF) and temperatures
(−55◦C , 27◦C , 125◦C). The (SS, −55◦C) corner shows less
than 10% change in probability due to decreased temperature
and current, decreasing noise or the source of the randomness.
The variations can be easily compensated by having variable
size of M1 and M2 transistors of Fig. 2(b) in the same
way we size M3 and M4 transistors. The size ratio between
M1/M2 transistors and Ml1x /Mr1x transistors determines the
unit step change of probability and thus, the slope of the
probability curve. Fig. 10(b) shows the compensated switching
probability curves from all corners presented in Fig. 10(a).
In addition to the variation compensation, this approach also
allows us to control the shape and slope of the probability
curve at the cost of area required for sizing M1 and M2 tran-
sistors. Further, the probability range can also be controlled
through the NMOS codes applied to M3 and M4 transistors
as shown in Fig. 7(c).

V. CONCLUSION

We proposed ‘stochastic bit’ enabled Binary SNN (sBSNN),
composed of stochastic spiking neurons (sNeurons) and binary

Authorized licensed use limited to: Chung-ang Univ. Downloaded on September 08,2023 at 07:37:27 UTC from IEEE Xplore.  Restrictions apply. 



2554 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 67, NO. 8, AUGUST 2020

synaptic weights, for energy- and memory-efficient neuromor-
phic computing at the edge. sBSNN computes probabilistically
with only one-bit precision for both the constituting sNeu-
rons and synapses, leading to on-chip visual image recogni-
tion with compressed memory requirement. We presented an
energy-efficient implementation of two-layer fully-connected
sBSNN using ‘stochastic bit’ as the core computational prim-
itive to realize the sNeurons and binary synapses (stochastic
during training and deterministic during inference) fabricated
in 90nm CMOS process. We demonstrated memory-efficient
on-chip training of the binary synaptic weights using the
stochastic-STDP (sSTDP) training algorithm. The proposed
implementation, by virtue of sparse event-driven computing
enabled by state-less sNeurons and binary weights, offered
high energy-efficiency of 89.49 TOPS/Watt. We believe that
sBSNN can provide a promising solution for building the next
generation of intelligent devices capable of real-time on-chip
learning.
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