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Simple Summary: The ongoing advancements in deep learning, notably its use in predicting cancer
survival through genomic data analysis, calls for an up-to-date review. This paper inspects notable
works from 2021 to 2023, underlining essential developments and their implications in the field.
We offer a comprehensive review of the research, selective paper choice, and thorough analysis
of prevailing trends, contributing to a better understanding of deep learning’s potential in this
vital domain.

Abstract: Deep learning has brought about a significant transformation in machine learning, leading
to an array of novel methodologies and consequently broadening its influence. The application of
deep learning in various sectors, especially biomedical data analysis, has initiated a period filled with
noteworthy scientific developments. This trend has majorly influenced cancer prognosis, where the
interpretation of genomic data for survival analysis has become a central research focus. The capacity
of deep learning to decode intricate patterns embedded within high-dimensional genomic data has
provoked a paradigm shift in our understanding of cancer survival. Given the swift progression in this
field, there is an urgent need for a comprehensive review that focuses on the most influential studies
from 2021 to 2023. This review, through its careful selection and thorough exploration of dominant
trends and methodologies, strives to fulfill this need. The paper aims to enhance our existing
understanding of applications of deep learning in cancer survival analysis, while also highlighting
promising directions for future research. This paper undertakes aims to enrich our existing grasp of
the application of deep learning in cancer survival analysis, while concurrently shedding light on
promising directions for future research in this vibrant and rapidly proliferating field.

Keywords: deep learning; cancer prognosis; survival analysis; genomic data; biomedical data analysis

1. Introduction

Deep learning has prompted a notable shift in the machine learning field, introducing
a new period of innovation and discovery [1–3]. This shift has led to the creation of various
new methodologies, such as image generation [4–6] and natural language processing [7–10].
These enhanced techniques have expanded the applicability of deep learning, enabling its
incorporation into various fields, including biomedical data analysis [11–13], engineering
design [14,15], and computer vision [16–19].

Cancer prognosis using genomic data is a complex and multifaceted field. The intricate
nature and vastness of genomic data poses significant challenges to conventional computa-
tional techniques. Traditional methods often struggle with the high dimensionality of this
data and the need for manual feature selection, which might not capture the underlying
biological complexities. This has led to a pressing need for more advanced techniques
capable of extracting meaningful insights from such intricate datasets.

Deep learning, a subset of machine learning, has emerged as a potent tool in handling
and interpreting complex genomic data. By learning hierarchical representations directly
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from data, it can handle the high-dimensionality of genomic datasets, eliminating the need
for manual feature selection and potentially capturing more relevant biological signals.
Advancements of deep learning have substantially influenced many scientific domains [20].
In particular, deep learning has made a strong impact on cancer prognosis, where genomic
data interpretation for survival analysis has become a central area of research [21,22].
The ongoing developments of deep learning methodologies and their ability to extract
complex patterns from high-dimensional genomic data have considerably improved our
understanding of cancer survival [23–25], highlighting the need for a detailed review of
this rapidly evolving field.

The present review is a carefully curated exploration of the most recent and impactful
studies in the field, spanning a period of three years, from 2021 to 2023. This tight temporal
focus represents the dynamism and swift pace of development within the field of deep
learning, requiring a current review of the most recent advancements. The unique contri-
bution of this review lies in its wide-ranging coverage of the recent research, its rigorous
paper selection process, and its thorough analysis of the main trends and methodologies in
the field.

The architecture of this review paper is thoughtfully designed to offer a comprehensive
explanation of the growing domain of deep learning applied to cancer survival analysis
grounded in genomic data. This paper begins with the aim of the review discussed in
Section 2 as well as a detailed investigation presented in Section 3. This initial stage
meticulously outlines the fundamental principles guiding the selection of the research
articles, provides clarity on the criteria leading to the omission of certain papers, examines
the range of journals hosting these research endeavors, and conducts a quantitative analysis
of the chosen papers, primarily focusing on citation frequency and years of publication.

Following this initial groundwork, we explore a diverse array of methodologies that
find their application in survival analysis, each accorded its own dedicated section for an
in-depth discussion. These include Section 4, dedicated to recent studies with autoencoders,
Section 5, discussing ensemble methods and models, Section 6, focusing on transfer learning,
Section 7, dealing with multi-modal and multi-omics frameworks, Section 8, explicating
manifold representation learning, and Section 9, elucidating standard deep learning.

Finally, we encapsulate our findings and insights in Section 10. Here, we distill the
essence of our investigation, emphasizing the important discoveries while spotlighting
promising trajectories for future research. This manuscript presents a comprehensive
review of recent advancements in deep learning techniques applied to genomic data for
predicting cancer prognosis. The contributions of this work are fourfold:

• Thorough review of deep learning techniques applied to genomic data in cancer prognosis;
• Focus on the most recent literature from 2021 to 2023, providing readers with an

up-to-date understanding of this rapidly evolving field;
• Categorization of the deep learning methodologies used in cancer prognosis prediction

using genomic data;
• Inclusion of only those studies that intersect the domains of cancer, prognosis (survival

analysis), deep learning, and genomic data.

2. Preliminaries
2.1. Cancer Survival Analysis

Cancer survival analysis, often encapsulated under the broader umbrella of survival
analysis [24,26,27], is a branch of statistics dealing with death (or failure) in biological
organisms and failure in mechanical systems. It focuses on the expected duration of
time until an event of interest (such as death, recurrence of disease, or another adverse
event) occurs.

Traditionally, survival analysis techniques involve evaluating and interpreting time-
to-event data [28], where the event is commonly death, or in the case of cancer survival
analysis, the death caused specifically by cancer. This includes understanding the risk
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factors associated with the time-to-event outcome and predicting the survival function or
the time to event for a given individual.

The survival function, S(t), which gives the probability that a person survives longer
than some specified time, t, and the hazard function, h(t), that describes the risk of death
at time t conditional on survival until time t, are the key functions in survival analysis [29].
The survival function, S(t), is defined as the probability that the time to event is greater than
some time t, i.e., the probability of surviving past time t.

S(t) = P(T > t) (1)

where T is the time to event.
The hazard function, h(t), on the other hand, is the event rate at time t conditional on

survival until time t or later (i.e., T ≥ t). It can be considered as the risk or the force of
mortality, or failure, at a particular instant.

h(t) = lim
∆t→0

P(t ≤ T < t + ∆t|T ≥ t)
∆t

(2)

These functions form the core of survival analysis, allowing researchers to describe
and summarize survival data, identify important factors, and create models for predicting
future outcomes. In cancer survival analysis, researchers aim to analyze and interpret data
related to cancer patients’ survival time, considering various features such as patient’s age,
type and stage of cancer, treatment methods, and genetic factors, among others. This helps
in understanding the effectiveness of different treatment options and the prognosis of the
disease and can aid doctors and patients in making informed decisions related to treatment
strategies. Hence, cancer survival analysis is crucial in cancer research. The insights
gained from these analyses help in understanding the disease better, identifying factors that
influence survival rates, and ultimately improving treatments and increasing survival rates.

2.2. Artificial Intelligence, Machine Learning, and Deep Learning

Artificial intelligence (AI), machine learning, and deep learning are often used in-
terchangeably in various contexts. However, they are inherently different, representing
successive layers of abstraction and complexity [30].

AI is a broad field that encompasses the concept of creating intelligent machines
capable of simulating human intelligence, including problem-solving, learning, planning,
and understanding language. AI has been a subject of study since the inception of computer
science and can be divided into two main types: narrow AI, which is designed to perform
a narrow task, and general AI, which can perform any intellectual task that a human
being can.

Machine learning, a subset of AI, refers to the design and development of algorithms
that allow computers to learn from and make decisions or predictions based on data. These
algorithms operate by building a mathematical model based on input data (i.e., ’training
data’) to make predictions or decisions without being explicitly programmed to perform
the task.

Deep learning, a further subset of ML, constitutes a collection of algorithms that em-
ploys a hierarchical level of artificial neural networks to carry out the process of machine
learning. The hierarchy of artificial neural networks mimics the human brain in a nu-
anced manner while providing a profound improvement on traditional machine learning
algorithms. By using a cascading structure of multiple layers for feature extraction and
transformation, each successive layer uses the output from the previous layer as an input,
thus enabling the algorithm to learn from data in a progressive and hierarchical manner.

Indeed, the concept of deep learning takes inspiration from the functioning of the
human brain, more specifically, the neural activations. In a similar vein, artificial neurons
within a deep learning network are triggered into an ’active’ state when the sum of their
received signals surpasses a predefined threshold. This paradigm elegantly echoes the
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biological process, whereby a neuron fires an action potential when a certain threshold
of input stimulation is reached. Further translating this analogy into the mathematical
domain, deep learning operationalizes this neural activation concept through the means of
matrix multiplication. In a structured manner, each artificial neuron’s inputs are multiplied
by their associated weights. These products are then accumulated, and if the cumulative
sum exceeds the neuron’s specific activation threshold, the neuron is activated, transmitting
its signal to the next layer in the network. This process, carried out across thousands or
even millions of neurons and multiple layers, forms the mathematical underpinning of the
deep learning paradigm, thereby facilitating a robust and nuanced modeling of complex
data patterns.

2.3. Deep Learning Techniques in Cancer Prognosis with Genomic Data

Deep learning techniques have emerged as powerful tools for dealing with complex
and high-dimensional data, such as genomic data in cancer prognosis. Genomic data
provides a wealth of information that can be used to predict patient outcomes and tai-
lor treatments to individual patients. Deep learning methods, given their capacity to
model complex, non-linear relationships and their ability to handle large amounts of
high-dimensional data, are particularly suited to this task.

The deep learning techniques typically used in cancer prognosis with genomic data
include but are not limited to multi-layer perceptron (MLP), convolutional neural networks
(CNNs), and autoencoders. These methods have proven effective in a variety of tasks, in-
cluding predicting patient survival times, classifying different cancer types, and identifying
genetic markers for specific cancers. In this review, we will provide an overview of these
methods and discuss their application in the field of cancer prognosis with genomic data.
Figure 1 depicts an illustrative diagram that portrays the application of deep learning in
cancer prognosis utilizing genetic data. Table 1 provides a comprehensive overview of the
recent studies, effectively organizing them into distinct categories.

Figure 1. Illustrative diagram depicting the application of deep learning in cancer prognosis using
genetic data.
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Table 1. Summary of deep learning methods in cancer prognosis studies.

Deep Learning Category Brief Description

Autoencoders [31–41] A specific type of artificial neural network architecture designed for unsupervised learning of
efficient codings. Autoencoders learn to compress input data into a coded representation
and then uncompress it back to the original input. This capability makes them especially useful
for dimensionality reduction and feature extraction tasks, where they learn to preserve as much
information as possible while representing data in a reduced-dimensional space.

Ensemble of deep learning
methods/models [42–49]

An ensemble method combines predictions from several different deep learning models to
improve the overall predictive accuracy. Each model in the ensemble contributes a portion of the
overall prediction. Through the combination of diverse models, the ensemble method can exploit
the strengths of each individual model while mitigating their weaknesses, leading to a more
robust and accurate overall prediction.

Multi-modal/multi-omics
deep learning models [50–76]

These are sophisticated techniques designed to integrate and analyze data from different sources
or modalities (such as imaging, genomics, proteomics, etc.) to enhance learning performance.
By integrating data from diverse sources, these models can capture complex and hidden patterns
that may not be evident when each data type is analyzed separately.

Deep learning with transfer
learning [77–80]

In the context of deep learning, transfer learning involves leveraging a pre-trained model
(usually trained on a large-scale dataset) or transferring learned features from one task to another.
The key advantage of transfer learning is that it can significantly improve learning efficiency and
performance, especially when the target task has limited training data.

Deep learning for manifold
representation [81–91]

These methods employ deep learning architectures to generate numerical vector representations
or embeddings of features in a lower-dimensional space (a manifold). Such representations can
be utilized to reveal and preserve the intrinsic structure and relationships within the data, which
are instrumental for downstream tasks.

Deep learning
(unspecified/generic) [92–109]

This category encompasses general deep learning approaches, which may include a variety of
architectures and techniques. These approaches often involve several minor modifications or
adaptations to cater to the specificities of the task at hand, without specializing in a particular
method or model like the other categories.

3. Literature Review and Paper Selection
3.1. Principles Underpinning the Selection of Research Articles

This review specifically focuses on the intersection of four primary research areas:
(1) cancer, (2) prognosis (survival analysis), (3) deep learning, and (4) genomic data. The
studies included in this review satisfy all four of these conditions. To ensure a comprehen-
sive and relevant review, our paper selection was guided by a strict set of principles and
employed a meticulous strategy.

The primary source of research articles was the scholarly search engine Web of Science
(WOS), using a set of keywords around the themes of deep learning, survival analysis,
and genomic data. We focused on articles published in peer-reviewed journals between
2021 and 2023, excluding review articles, perspectives, and similar types of literature.
The selection of articles from peer-reviewed journals aimed to uphold the quality of our
review by only including scientifically sound, thoroughly vetted, and impactful studies.
Additionally, the selected papers were categorized based on the specific deep learning
methods employed, providing a structured overview of various methodologies in the field.

3.2. Exclusion Criteria

Our selection process involved a rigorous curation and a manual scrutiny phase to
align with the scope and objectives of our review. The key exclusion criteria were as follows:

• Data type: Articles primarily using image data were excluded, with exceptions for those
incorporating both image data and genomic data in a multi-modal deep learning approach;

• Research objectives: Papers focusing solely on cancer subtype prediction without sur-
vival analysis were omitted;

• Analytical methods: Articles using only conventional machine learning methods were
excluded, with exceptions for those using both machine learning and deep learning.
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This curation process resulted in a selection of 79 papers, providing a focused insight
into the current state of deep learning for cancer survival analysis with genomic data.

3.3. Publication Platforms and Analysis of Selected Papers

Our selected papers were published across a diverse range of academic journals,
indicating the interdisciplinary interest in deep learning for cancer survival analysis using
genomic data. The most frequent publication platform was “Cancers”, hosting six of the
seventy-nine selected papers, a mere 8% of the total. Other common platforms included
“Frontiers in Oncology” and “Computers in Biology and Medicine”, each with three papers.
A detailed distribution of papers across different journals is shown in Figure 2A.

Figure 2. Quantitative analysis of the publications: (A) Distribution of papers across journals;
(B) Distribution of citation frequency. The x-axis denotes the number of citations, while the y-axis
represents the number of publications.

We further investigated the selected papers in terms of their citation frequency and
publication years. The median number of citations for the selected papers is 3, with the
mean at 6.8, suggesting a few highly-cited papers. In terms of publication years, 2021 and
2022 were particularly active, with 33 and 39 papers published, respectively. As of April
2023, 7 papers have already been published. Figure 2B provides a more detailed overview
of the citation frequency.

4. Survival Analysis with Autoencoders

Autoencoders [110], a specific type of artificial neural network, have emerged as a
central tool in bioinformatics, particularly in the context of cancer prognosis and subtype
prediction. Autoencoders are unsupervised learning algorithms that aim to identify low-
dimensional features, or encodings, of high-dimensional data. In the genomic context,
these encodings often represent important biological characteristics that are crucial in
understanding the underlying processes of cancer development and progression.

The structure of an autoencoder is composed of an encoder and a decoder, functioning
in unison to create a compressed representation of the input data. This compressed repre-
sentation, often termed as the bottleneck or latent space, captures the essential features of
the input data. By optimizing the network to reconstruct the input data from this compact
representation, the autoencoder learns to filter noise and preserve the most informative
features, making it particularly useful for complex, high-dimensional biological data.

Recent trends in bioinformatics have seen a surge in the use of autoencoders, partic-
ularly deep autoencoders, to analyze multi-omics data for cancer prognosis and subtype
prediction. Multi-omics data refers to the integration of genomic, transcriptomic, proteomic,
and other types of biological data to provide a comprehensive understanding of biological
systems. The high dimensionality and noise in multi-omics data pose significant challenges
for traditional machine learning methods, necessitating the development of robust deep
learning approaches. Autoencoders, with their capacity for unsupervised learning and
dimensionality reduction, have proven to be an effective solution.
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A common approach in these studies involves leveraging the autoencoder for feature
extraction from high-dimensional omics data, followed by survival analysis or clustering
for cancer prognosis and subtype prediction. The extracted features often reveal meaningful
biological insights, such as identifying differentially expressed genes or survival-related
features, and can be further utilized for downstream analysis or validation. Moreover,
autoencoders have been extended to integrate multi-omics data, facilitating a holistic
understanding of cancer biology and improving the predictive performance of survival
models. Table 2 summarizes these recent studies.

Table 2. Contributions of recent studies utilizing autoencoders.

Author and Citation Contributions

Chai et al. [31] Developed a multi-omics data integration approach using a denoising autoencoder for robust cancer
prognosis prediction.

Kirtania et al. [32] Proposed DeepSGP, an autoencoder-based deep learning strategy for predicting glioblastoma
multiforme (GBM) patient survival.

Franco et al. [33] Evaluated the performance of four autoencoders for cancer subtype detection using multi-omics data,
with better results than standard data fusion techniques.

Song et al. [34] Implemented an autoencoder-based model for prognosis prediction in colorectal cancer,
demonstrating superior performance in identifying survival-related features.

Lai et al. [35] Presented a disease network-based deep learning approach using an autoencoder model for
characterizing melanoma.

Yang et al. [36] Introduced deep subspace fusion clustering (DSFC), an autoencoder-based method for cancer subtype
prediction from multi-omic data.

Zhang et al. [37] Utilized an autoencoder-based deep learning framework to integrate multi-omics data for
muscle-invasive bladder cancer subtyping.

Tian et al. [38] Adopted an autoencoder-based approach to identify survival-sensitive subtypes of gliomas with high
prognostic prediction ability.

Zhang et al. [39] Proposed deep latent space fusion (DLSF), a deep learning model integrating multi-omics data for
disease subtype identification.

Al Mamun et al. [40] Employed the concrete autoencoder (CAE) to identify prognostic long non-coding RNAs (lncRNAs)
for different types of cancers.

Madhumita and Paul [41] Proposed an autoencoder-assisted cancer subtyping framework for identifying clinically significant
cancer subtypes.

The application of deep learning techniques, particularly autoencoders, to genomic
data has seen a rise in popularity due to its effectiveness in cancer prognosis. Chai et al. [31]
devised an innovative approach that applied a denoising autoencoder to integrate multi-
omics data. This approach, when tested on 15 different cancer types from the TCGA
database, exhibited an average improvement in C-index values of 6.5% over traditional
methods. Notably, the model continued to demonstrate effective prediction capabilities
with a C-index of 0.627, even when solely utilizing mRNA data.

In a similar vein, Kirtania et al. [32] developed a unique deep learning strategy,
DeepSGP, which harnessed the power of autoencoders to predict the survival of glioblas-
toma multiforme (GBM) patients. By using RNA-seq data from 129 GBM samples, the au-
thors leveraged EdgeR for DEGs selection, and then reduced these through correlation-
based analysis. Autoencoders, among other feature subset selection and extraction algo-
rithms, were subsequently employed, with DeepSGP demonstrating superior performance
by achieving an impressive accuracy of 0.83 and an AUC of 0.90.

Several studies have focused on comparing the performance of autoencoders to other
data fusion techniques. Franco et al. [33], for instance, compared four different autoen-
coders for cancer subtype detection using multi-omics data. This comparison showed that
autoencoders were generally more successful than standard data fusion techniques such as
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principal component analysis (PCA), kernel PCA, and sparse PCA. The study underscored
the potential of autoencoders in detecting significant differences in survival profiles, hence
facilitating accurate patient subgroup prediction.

Expanding the application of autoencoders, Song et al. [34] used an autoencoder-
based model to predict prognosis in colorectal cancer. By integrating DNA methylation,
RNA-seq, and miRNA-seq data, the study was able to identify survival-related features,
demonstrating that the autoencoder-based strategy outperformed other transformation
strategies. Similarly, Lai et al. [35] presented a disease network-based deep learning
approach that combined genomic data and an autoencoder model to characterize melanoma.
This approach led to the identification of three distinct patient subtypes with varying
survival times.

Moving on to another variant of autoencoder application, Yang et al. [36] introduced
deep subspace fusion clustering (DSFC), an extension of similarity network fusion. This
technique, which leveraged an auto-encoder and data self-expressiveness approaches, was
used to integrate multi-omic data for cancer subtype prediction. DSFC showed promis-
ing results, demonstrating comparable or even better performance than many current
integrative methods when evaluated across six different cancer types.

Continuing in this line of study, Zhang et al. [37] implemented a deep learning frame-
work based on autoencoders to integrate multi-omics data for muscle-invasive bladder
cancer (MIBC), identifying two distinct subtypes with notable differences in overall sur-
vival. The study also identified a potential biomarker, KRT7, for MIBC risk, affirming the
robustness of their model across various validation datasets. Similarly, Tian et al. [38] and
Zhang et al. [39] both utilized an autoencoder-based approach to identify survival-sensitive
subtypes of gliomas and to propose a deep learning model integrating multi-omics data for
disease subtype identification, respectively.

Transitioning from traditional autoencoders, Al Mamun et al. [40] proposed a deep
learning algorithm, the concrete autoencoder (CAE), to identify prognostic long non-coding
RNAs (lncRNAs) for 12 different types of cancers. The authors proposed a variant of the
original algorithm, a multi-run CAE (mrCAE), to counter the stochastic nature of CAE and
identify a more stable set of features. The resultant model was found to outperform the
single-run CAE and other feature selection techniques, achieving an accuracy of 95%.

Madhumita and Paul [41] proposed an autoencoder-assisted cancer subtyping frame-
work that uses a sparse autoencoder neural network to capture the latent space of multi-
omics data. The authors demonstrated the efficiency of this framework across five different
multi-omics cancer datasets from TCGA. The framework provided a robust information
bottleneck by selecting a compression of 10–20% of input features with L1 regularization
penalty, thereby enabling the prediction of clinically significant cancer subtypes. The study
highlights the potential of autoencoder-assisted multi-omics integration in predicting can-
cer subtypes and provides insights into the biological and clinical implications of the
identified subtypes.

5. Survival Analysis with Ensemble Deep Learning Methods and Models

The ensemble of deep learning models constitutes a widely employed paradigm
in bioinformatics, geared towards improving the predictive performance of individual
models [111]. This approach harnesses the collective intelligence of multiple learning al-
gorithms to obtain superior predictive power, often leading to improved accuracy and
robustness of the model. The ensemble methodology typically involves training multiple
models, each with different architectures or hyperparameters, and combining their outputs
to yield a final prediction. This combination can be accomplished through a variety of meth-
ods, including simple averaging, weighted averaging, or more sophisticated approaches
such as stacking, bagging, and boosting.

Emerging trends in the field of bioinformatics have embraced the ensemble methodol-
ogy, integrating it with deep learning models to tackle complex problems such as cancer
prognosis prediction, gene identification, and biomarker classification. This trend stems
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from the unique challenges presented by the vast, high-dimensional, and often noisy bio-
logical data, which necessitate robust and versatile models. The ensemble of deep learning
models offers the advantage of capturing different facets of the data through individ-
ual models, thereby providing a more comprehensive representation of the underlying
biological processes.

One common strategy involves the fusion of deep learning algorithms with tradi-
tional machine learning methods or statistical models, such as survival analysis, random
forest classifiers, or regression models. This combination leverages the strengths of both
paradigms, harnessing the capacity of deep learning for feature extraction and representa-
tion learning, and the interpretability and statistical rigor of traditional models. Moreover,
advanced techniques such as fuzzy logic systems, Bayesian optimization, and generative
adversarial networks have been integrated into the ensemble framework, further enhancing
the model’s capabilities.

The use of ensemble deep learning techniques to improve the prognosis of cancer
patients has seen notable developments in the past few years (Table 3). For instance,
Poirion et al. [42] established DeepProg, a robust prognostic prediction model comprising
an amalgamation of machine learning and deep learning models. DeepProg was assessed
on liver and breast cancer datasets, where it showcased superior predictive performance,
with C-index values ranging from 0.68 to 0.80. Notably, the model’s pan-cancer analysis as-
sociated poor survival subtypes with a range of biological processes, including extracellular
matrix remodeling, immune deregulation, and mitosis.

Table 3. Contributions of recent studies utilizing ensemble methods.

Author and Citation Contributions

Poirion et al. [42] Introduced DeepProg, an ensemble of deep learning and machine learning models for prognosis
prediction using multi-omics data.

Yang et al. [43] Proposed FuzzyDeepCoxPH, a fusion of deep learning algorithms and fuzzy logic system for
identifying high-risk missense mutation variants and genes related to cancer mortality.

Arya and Saha [44] Proposed a bi-phase model that enhances prognosis prediction for breast cancer patients by combining
gated attentive deep learning models and random forest classifiers.

Zi et al. [45] Proposed a DNN model for the prediction of survival risk in HCC patients, demonstrating high
accuracy.

Kaur et al. [46] Proposed a parallel Bayesian hyperparameter optimized Stacked ensemble (BSense) model for breast
cancer survival prediction.

Tamilmani et al. [47] Proposed an improved generative adversarial network optimized with a mayfly optimization algorithm
for cancer miRNA biomarker classification.

Chen and Wei [48] Proposed an improved survival prediction model using deep learning and self-supervised learning,
demonstrating superior performance on cancer datasets from TCGA.

Carreras et al. [49] Employed a multi-faceted algorithm to predict overall survival in MCL patients, identifying genes
predictive of survival across multiple common cancers.

Along a similar vein, Arya and Saha [44] introduced a two-phase model that merges
random forest classifiers with gated attentive deep learning models, aiming to enhance the
prognosis prediction in breast cancer patients. This innovative approach demonstrated a
considerable improvement in survival estimation for breast cancer patients when bench-
marked against conventional methods. Further building on the theme of ensemble learning,
Kaur et al. [46] proposed a parallel Bayesian hyperparameter optimized Stacked ensemble
(BSense) model for predicting breast cancer survival. This amalgamation of deep neural
networks (DNNs), gradient boosting machines, and distributed random forests (DRFs) was
further enhanced by applying Bayesian optimization with Gaussian processes for hyper-
parameter tuning. On evaluation using several datasets, including TCGA, METABRIC,
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Metabolomics, and RNA-seq datasets, the model exhibited superior performance in pre-
dicting breast cancer survival.

Several research efforts have proposed unique integrative models by combining deep
learning algorithms with other techniques. For instance, Yang et al. [43] proposed Fuzzy-
DeepCoxPH, an innovative model that blends deep learning algorithms, a fuzzy logic
system, and conventional survival analysis. This model aimed to identify high-risk mis-
sense mutation variants and genes strongly associated with cancer mortality. By integrating
these diverse techniques, the model effectively provides a comprehensive estimation of
cancer mortality risk, highlighting its efficacy in distinguishing high-risk variants and
genes related to cancer mortality.

Another novel approach was undertaken by Zi et al. [45], who developed a deep neural
network model for predicting survival risk in patients with hepatocellular carcinoma (HCC).
This model applied various machine learning algorithms such as K-Means, random forests,
and LASSO regression to identify new HCC subtypes and select key genes, demonstrating
high accuracy exceeding 93.3%.

Recent advancements have also been seen in the use of generative adversarial net-
works (GANs) and self-supervised learning. Tamilmani et al. [47] developed a model
that combines a deep convolutional GAN and modified convolutional neural network
optimized with a mayfly optimization algorithm. This approach aims to balance the dataset
and improve the classification performance for cancer miRNA biomarker classification.
In contrast, Chen and Wei [48] presented a survival prediction model that combines a deep
survival forest and self-supervised learning for adaptive learning of high-dimensional
genomic data. This model demonstrated superior performance in terms of the C-index
and brier score when compared with advanced survival analysis methods, suggesting its
potential utility in personalized treatment decision-making.

The use of deep learning techniques in predicting overall survival in cancer patients
has been explored by Carreras et al. [49]. They employed an algorithm that integrates a
multilayer perceptron artificial neural network, radial basis function, GSEA, and conven-
tional statistics. This integrated model facilitated dimensionality reduction by correlating
20,862 genes with 28 MCL prognostic genes. This approach resulted in the identification of
58 genes that predict survival with high accuracy, demonstrating its potential in predicting
the survival of a large pan-cancer series, including common cancers such as lung, breast,
colorectal, prostate, stomach, and liver.

6. Survival Analysis with Transfer Learning.

Transfer learning in the context of deep learning is a technique where a pre-trained
model is adapted for a different but related problem [112]. This approach stems from the
observation that the features learned by deep learning models on a specific task can serve
as a useful starting point for learning on other tasks. This is particularly true in domains
where labeled data is limited or expensive to obtain, as is the case with many problems in
the biomedical field.

The primary motivation behind transfer learning is to leverage the knowledge gained
from training on large-scale datasets (such as ImageNet for image classification tasks) and
apply it to tasks where the amount of available labeled data might be scarce. For instance,
a model pre-trained on a large image dataset might have learned useful low-level features,
such as edge or color detectors, that can be applied to a medical imaging task.

Transfer learning techniques have been gaining popularity in recent years, with an
increasing trend towards their application in various fields, such as computer vision,
natural language processing, and bioinformatics. One of the most common approaches in
transfer learning involves fine-tuning, where a pre-trained model is trained further on a
target task, usually with a smaller learning rate, to adapt its parameters to the specifics of
the new task.

The use of transfer learning in deep learning techniques for cancer prognosis has seen
a surge of interest in recent years, as summarized in Table 4. An excellent example of this is
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the study conducted by Chai et al. [77], where they developed a transfer learning-based
Cox proportional hazards network (TCAP), designed to integrate multi-omics data for
bladder cancer prognosis predictions. This model outperformed its predecessors, achieving
a C-index of 0.665. Additionally, they trained an XGBoost model exclusively on mRNA
data, which demonstrated a commendable C-index of 0.621 on the TCGA dataset and an
average C-index of 0.637 on three other datasets.

Table 4. Contributions of recent studies with transfer learning.

Author and Citation Contributions

Chai et al. [77] Proposed a transfer learning-based Cox proportional hazards network (TCAP) to integrate multi-omics
data for predicting bladder cancer prognosis.

Johnson et al. [78] Proposed diagnostic evidence gauge of single cells, a deep transfer learning framework, to transfer disease
information from patients to cells.

Shi et al. [79] Developed a deep learning model, based on the VGG19 architecture and transfer learning strategy,
for prognosis prediction in colorectal cancer based on histopathologic features of the tumor
microenvironment.

Meng et al. [80] Introduced SAVAE-Cox, a novel framework that incorporates an attention mechanism and an adversarial
transfer learning strategy for survival analysis of high-dimensional transcriptome data.

Parallel to this, Johnson et al. [78] proposed a unique deep transfer learning framework
called diagnostic evidence gauge of single cells, which transfers disease information from
patients to individual cells. This model, applied to single-cell and patient bulk tissue
transcriptomic datasets from a range of diseases, such as glioblastoma multiforme and
Alzheimer’s disease, showed encouraging results.

Focusing on the tumor microenvironment, Shi et al. [79] employed a deep learning
model for colorectal cancer prognosis prediction based on the histopathologic features.
Utilizing the VGG19 architecture and a transfer learning strategy, the researchers auto-
mated the quantification of the tumor microenvironment in whole slide images. This model
achieved an impressive accuracy of 94.2% in recognizing different tissue types. The tu-
mor microenvironment signature, developed from the extracted features, demonstrated
a significant association with progression-free survival, emphasizing the importance of
incorporating histopathological features in prognosis prediction.

Expanding the scope of current deep learning approaches, Meng et al. [80] presented
SAVAE-Cox, a novel framework that combines an attention mechanism with an adversarial
transfer learning strategy. This unique approach was used for survival analysis of high-
dimensional transcriptome data. The model was trained on 16 types of TCGA cancer
RNA-seq datasets, and it showed superior performance over other state-of-the-art survival
analysis models, such as Cox proportional hazard model, Cox-lasso, Cox-ridge, Cox-nnet,
and VAECox, in terms of the concordance index.

7. Survival Analysis with Multi-Modal and Multi-Omics Frameworks

Multi-modal deep learning and multi-omics methods are swiftly gaining recognition in
the biomedical domain, particularly in the study of cancer prognosis and diagnosis [113,114].
Multi-modal deep learning refers to the combination of various types of data, such as
images, text, or structured data, in a single model, which can lead to more comprehensive
and accurate predictions. In the context of cancer research, multi-modal models often
integrate data from different imaging techniques, such as CT and MRI scans, along with
histopathological images, genomic data, and clinical information. This approach allows
for the incorporation of heterogeneous information into the prediction models, thereby
increasing their interpretability and performance.

Multi-omics methods, on the other hand, provide an integrative view of the molecular
landscape of cancer by combining multiple omics layers, including genomics, transcrip-
tomics, proteomics, metabolomics, and epigenomics. This comprehensive view allows
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for the unraveling of the complex interplay of different biological processes and path-
ways involved in cancer. The integration of multi-omics data can be achieved through
various machine learning and deep learning techniques, including tensor decomposition,
variational autoencoders, and deep belief networks.

Recent trends in cancer research point towards a convergence of multi-modal deep
learning and multi-omics methods, offering a more holistic view of cancer biology. This
approach leverages the power of deep learning to extract meaningful patterns from high-
dimensional and heterogeneous data, leading to improved prediction performance and
better biological insights. Techniques such as gating-based attention mechanisms, convolu-
tional neural networks, graph convolutional networks, and deep tensor survival models
are being employed to integrate multi-modal and multi-omics data.

Recent research in the field of oncology has seen a convergence of efforts to integrate
multi-modal and multi-omics data for comprehensive cancer prognosis, as shown in Table 5.
A number of such studies utilize deep learning models and focus on specific types of cancer,
revealing noteworthy methodological insights and advancements. Schulz et al. [50] and
Chen et al. [51] both developed multimodal deep learning models for prognosis prediction,
but with distinct emphases. Schulz et al. [50] trained their model on a combination of multi-
scale histopathological images and genomic data, with the model demonstrating significant
prognostic value. Chen et al. [51], however, proposed a fusion strategy for histopathol-
ogy and genomic features, enhancing the control of representational expressiveness via a
gating-based attention mechanism.

Table 5. Contributions of recent studies integrating multi-modal/multi-omics data.

Author and Citation Contributions

Schulz et al. [50] Developed a multimodal deep learning model for prognosis prediction in clear-cell renal cell carcinoma.

Chen et al. [51] Proposed pathomic fusion, a strategy for fusing histopathology and genomic features for improved
cancer diagnosis and prognosis.

Zhang et al. [52] Proposed a deep tensor survival model integrating multi-omics cancer data to improve cancer survival
outcome prediction.

Malik et al. [53] Integrated multi-omics data using a neural network framework to predict survival and drug response in
breast cancer patients.

Hassanzadeh et al. [54] Presented an integrated deep belief network that analyzes RNA, miRNA, and methylation molecular
data to predict cancer survival and provide risk stratification.

Zhang et al. [55] Presented OmiEmbed, a multi-task deep learning framework for multi-omics data.

Wei et al. [56] Proposed a deep learning-based approach leveraging multi-omics data for biochemical relapse
prediction in prostate dancer patients.

Karabacak et al. [57] Utilized a CNN-based deep learning model to stratify low-grade gliomas using a multiple-gene
signature and MRI data.

Park et al. [58] Constructed a multi-omics data-affinitive artificial intelligence algorithm based on the graph
convolutional network to predict non-small-cell lung cancer.

Steyaert et al. [59] Developed a deep learning framework for multimodal data fusion for prognosis prediction in brain tumors.

Chen et al. [60] Integrated radiomic features with genomic data to improve the survival analysis for non-small cell lung
cancer patients.

Choi and Lee [61] Developed Multi-PEN, a deep learning model for prognosis estimation in low-grade glioma patients.

Zhou et al. [62] Developed a deep learning model to classify Nottingham prognostic index score levels for breast cancer
patients, leveraging multi-omics data.

Islam et al. [63] Proposed a radiogenomic overall survival prediction approach for GBM, integrating gene expression
data with radiomic features.

Schmelz et al. [64] Conducted in-depth analyses combining transcriptomic and genomic profiling in neuroblastoma
patients, reporting continuous clonal evolution.
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Table 5. Cont.

Author and Citation Contributions

Yang et al. [65] Developed HISMD, an immune subtyping system for HNSCC using multi-omics data and deep learning
techniques on whole slide images.

Hira et al. [66] Developed multi-omics analysis model for ovarian cancer using variational autoencoders.

Calabrese et al. [67] Evaluated an artificial intelligence method for predicting clinically relevant genetic biomarkers from
preoperative MRI in patients with glioblastoma.

Pan et al. [68] Developed i-Modern, an integrated multi-omics deep learning network method, to identify potential
therapeutic targets in glioma.

Tan et al. [69] Presented a multi-modal fusion framework (MultiCoFusion) based on multi-task correlation learning for
survival analysis and cancer grade classification.

Zhang et al. [70] Conducted multi-omics data analyses to predict the prognosis of serous ovarian cancer (SOC) patients
with principal component transformation (PCT).

Sharma et al. [71] Developed a deep learning-based integrative model for survival time prediction in patients with HNSCC.

Tang et al. [72] Developed a wavelet-based deep learning model for prognosis formulation in pancreatic adenocarcinoma.

Leng et al. [73] Benchmarked deep learning methodologies for fusing multi-omics data, suggesting moGAT as the best
performer for classification tasks, and efmmdVAE, efVAE, and IfmmdVAE for clustering tasks.

Carmichael et al. [74] Proposed an integrative, exploratory analysis framework that uses angle-based joint.

Huang et al. [75] Developed a model based on bidirectional deep neural networks (BiDNNs) to integrate DNA
methylation and mRNA expression data for HCC samples.

Rescigno et al. [103] Focused on characterizing CDK12-mutated mCRPC using a combination of targeted next-generation and
exome sequencing techniques and deep learning.

Hu et al. [76] Proposed a deep neural network, GCS-Net, for predicting gastric cancer prognosis based on biological
information pathways.

Efforts to integrate multi-omics data have been abundant in the literature, provid-
ing predictive survival models for various cancers. Zhang et al. [52] proposed a deep
tensor survival model integrating multi-omics data, demonstrating improved prediction
performance over models using individual genomic data. Similarly, Malik et al. [53] and
Hassanzadeh et al. [54] utilized neural network frameworks to integrate multi-omics data,
achieving high predictive accuracy for survival and drug response.

In terms of methodological versatility, the studies by Zhang et al. [55] and Wei et al. [56]
stand out. OmiEmbed [55] is a unified multi-task deep learning framework designed for
multi-omics data, demonstrating superior performance across a variety of tasks, includ-
ing dimensionality reduction and survival prediction. Wei et al. [56] applied their deep
learning approach to a cohort of 417 prostate cancer patients, identifying relapse-associated
subgroups and highlighting the potential for early intervention strategies.

Some studies have innovated by combining radiomic features with genomic data for
survival analysis. For instance, Chen et al. [60] integrated these data types to improve
survival prediction for non-small-cell lung cancer patients. In a similar vein, Islam et al. [63]
synthesized missing MRI modalities to integrate gene expression data with radiomic
features, thus enhancing overall survival prediction.

Notably, a significant number of these studies underscored the importance of inte-
grating multi-modal and multi-omics data for understanding cancer characterization and
improving prediction accuracy [57–59,61,62]. Models such as the multi-prognosis estima-
tion network developed by Choi and Lee [61] introduced gene attention layers for each data
type, enabling the identification of prognostic genes. Others, such as MultiCoFusion [69],
demonstrated the value of multi-task learning in improving performance across tasks in
both single-modal and multi-modal data.
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8. Survival Analysis with Manifold Representation Learning

Manifold representation learning with deep learning is an area of research focused
on learning the underlying structure or geometry of the high-dimensional data [115]. This
approach seeks to uncover a low-dimensional representation (a manifold) that captures the
essence of the data, thereby making it more interpretable, manageable, and amenable to
subsequent analysis. Manifold learning techniques, when combined with deep learning,
can leverage the ability of neural networks to learn complex, non-linear transformations,
enabling them to discover intricate manifold structures in high-dimensional spaces.

Deep learning-based manifold representation learning has seen significant develop-
ment in the past few years, driven by the increasing availability of large and complex
datasets, especially in domains such as bioinformatics, computer vision, and natural lan-
guage processing. A common theme among these developments is the integration of
manifold learning techniques with deep learning architectures, aiming to improve the
efficiency, interpretability, and performance of the models.

Manifold learning techniques often rely on the assumption that high-dimensional data,
such as images or gene expression profiles, inherently reside on a low-dimensional manifold
embedded within the high-dimensional space. The goal is to discover this manifold and
use it as a new, more compact, and potentially more informative representation of the data.
This can be particularly valuable in bioinformatics, where data are often high-dimensional
and complex, making traditional analysis methods challenging.

Several studies have addressed the development of deep learning methods for cancer
prognosis using manifold representation learning, reflecting the diverse nature of cancers
and their treatments (Table 6). Among these, Zhang and Kiryu [81] introduced an un-
supervised clustering methodology, MODEC, leveraging manifold optimization and DL
techniques to integrate multi-omics data for identifying cancer subtypes. MODEC’s utility
was demonstrated through its successful application on the cancer genome atlas (TCGA)
datasets, emphasizing its effectiveness in distinguishing clinically significant cancer sub-
types. Conversely, Li et al. [85,86] devised DL models targeting specific types of cancer,
such as colorectal and oral squamous cell carcinoma, respectively. Both studies’ models
were designed to predict survival outcomes, with the former model also assessing the
benefits of adjuvant chemotherapy.

In a different line of research, Zhang et al. [82] and Gupta et al. [83] exploited deep
learning to design tools to handle high-dimensional datasets effectively. Zhang et al. estab-
lished the deep Bayesian perturbation Cox network (DBP) to predict survival outcomes
in cancer patients, notably proficient when working with large high-dimensional datasets
with a substantial portion of censored samples. Gupta et al. introduced the continuous rep-
resentation of codon switches (CRCS), a deep learning-based method producing numerical
vector representations of mutations, which was applied to detect cancer-associated somatic
mutations, identify driver genes, and predict patient survival.

Several investigations focused on the exploration of specific factors and their influences
on cancer prognosis. Kim et al. [84] utilized deep learning to investigate tumor-infiltrating
lymphocytes, signifying their potential in the tumor microenvironment. Using CIBERSORT,
the researchers designed a deep learning-based model for predicting survival in oral
cancer. Skead et al. [88] applied deep learning to study age-related clonal hematopoiesis
(ARCH), a condition linked with an elevated risk of blood malignancies. The deep learning
model efficiently captured signatures of purifying selection, consequently elucidating the
interaction between positive and negative selection in deeply sequenced blood samples.

The utility of deep learning also extends to the areas of image processing and feature
selection for cancer prognosis. Shirazi et al. [87] devised a deep convolutional neural
network for segmenting whole-slide pathology images in glioblastoma, revealing that
spatially resolved gene signatures correlated strongly with survival in genetically defined
patient groups. In contrast, Yin et al. [90] utilized a CNN model for survival prediction
based on prognosis-related cascaded Wx feature selection, demonstrating its high predictive
power.
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Table 6. Contributions of recent studies with manifold representation learning.

Author and Citation Contributions

Zhang and Kiryu [81] Developed MODEC, an unsupervised clustering method using manifold optimization and deep learning
for identifying cancer subtypes.

Zhang et al. [82] Developed the deep Bayesian perturbation Cox network (DBP) to effectively predict survival outcomes
in cancer patients dealing with high-dimensional datasets.

Gupta et al. [83] Developed continuous representation of codon switches (CRCS), a deep learning-based method for
generating numerical vector representations of mutations with applications in detecting cancer-related
somatic mutations and predicting patient survival.

Kim et al. [84] Used a novel deep learning-based method to predict survival in oral cancer by analyzing
tumor-infiltrating lymphocyte profiles.

Li et al. [85] Developed CRCNet, a deep learning model for predicting survival outcome and the benefit of adjuvant
chemotherapy in stage II/III colorectal cancer (CRC) patients.

Li et al. [86] Employed deep learning to identify genetic mechanisms underlying immunosuppression in the survival
of oral squamous cell carcinoma (OSCC) patients.

Shirazi et al. [87] Developed a deep convolutional neural network (DCNN) for segmentation of whole-slide pathology
images in glioblastoma to identify novel tumour cell–perivascular niche interactions associated with
poor survival.

Skead et al. [88] Conducted a deep learning and population genetics study on age-related clonal hematopoiesis (ARCH),
demonstrating high accuracy in discriminating between evolutionary classes and captured signatures of
purifying selection.

Wang et al. [89] Utilized bidirectional long short-term memory (BiLSTM) to infer pan-cancer associated genes by
examining the microbial model organism Saccharomyces Cerevisiae (Yeast) by homology matching.

Yin et al. [90] Developed a convolutional neural network (CNN) model, named the CNN-Cox model, for survival
prediction based on prognosis-related cascaded Wx feature selection.

Li et al. [91] Constructed an immunophenotype-associated mRNA signature (IMriskScore) for predicting overall
survival in patients with lower-grade glioma using deep learning neural networks with MRI radiomics.

Finally, studies such as those by Wang et al. [89] and Li et al. [91] incorporated innova-
tive strategies in their deep learning applications. Wang et al. employed bidirectional long
short-term memory to examine the microbial model organism Saccharomyces Cerevisiae,
intending to infer pan-cancer-associated genes. Li et al. combined deep learning neural net-
works with MRI radiomics to construct an immunophenotype-associated mRNA signature
for predicting overall survival in patients with lower-grade glioma. These diverse deep
learning applications underline the field’s potential in furthering cancer prognosis.

9. Survival Analysis with Generic Deep Learning with Modifications

Deep learning, a subfield of artificial intelligence, has emerged as a powerful tool for
survival analysis in cancer prognosis [116]. This advanced machine learning technique
entails the use of multiple layers of artificial neural networks to uncover intricate patterns
in complex data. The growth in the use of generic deep learning models in cancer prognosis
can be attributed to their ability to accommodate high-dimensional data, handle nonlinear
relationships, and identify intricate interactions between features.

The recent trend in survival analysis with deep learning involves the development of
architectures that are not only robust but also interpretable. This means that these models
are not only proficient at identifying patterns that can predict cancer survival outcomes,
but they also provide insights into the underlying biological mechanisms, which can be
translated into clinical practice.

Recent studies have been geared towards enhancing the performance and interpretabil-
ity of these models. For instance, attention mechanisms have been integrated into deep
learning architectures to identify important features for prediction. This not only improves
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the performance of the models but also provides insights into which features are crucial in
predicting survival outcomes. Table 7 summarizes recent studies.

Table 7. Contributions of recent studies with generic deep learning with modifications.

Author and Citation Contributions

Hou et al. [92] Proposed an integrative histology-genomic analysis for HCC prognosis using deep learning, integrating
histopathology risk scores and hub genes.

Lee et al. [93] Proposed a deep learning model for predicting cancer occurrence by utilizing whole-genome data,
demonstrating exceptional performance on the TCGA dataset.

Jha et al. [94] Utilized neural networks to identify transcriptomic features shared across different cancer types,
discovering common cancer transcriptome signatures.

Zheng et al. [95] Developed deep learning-based models for accurate diagnosis and survival prediction in bladder cancer
using histological images.

Al-Fatlawi et al. [96] Utilized deep learning models to improve the diagnosis of pancreatic cancer using RNA-based variants
from blood samples.

Elsharawy et al. [97] Demonstrated the potential of an AI-based breast cancer grading model, trained using CNN on images
from TCGA.

Ye et al. [98] Proposed a deep learning-based method to predict genes susceptible to ovarian cancer, using a graph
attention network (GAT) and a deep neural network (DNN).

Guo et al. [99] Proposed a deep learning-based model, DLFscore, for the prognosis prediction and potential
chemotherapy sensitivity in prostate cancer.

Ramirez et al. [100] Introduced Surv_GCNN, a novel GCNN approach for cancer survival rate prediction, outperforming
other models in multiple cancer types.

Chen et al. [101] Identified immune subtypes and landscape of gastric cancer using a deep learning model trained on
whole-slide images.

Park et al. [102] Developed a deep learning method to diagnose different stages in NAFLD and its relationship
with HCC.

Ma et al. [104] Optimized the prognostic model of cervical cancer using AI and data mining technology, identifying
DMCs and constructing a prognostic model.

Del Carmen et al. [105] Studied the relationship between genetic lesions and response to neoadjuvant radiochemotherapy in
locally advanced rectal cancer, identifying a genetic signature predicting response to treatment.

Huang et al. [106] Explored the roles of immune microenvironment-related factors in hepatitis B virus-related diseases
using AI-based model.

Yang et al. [107] Investigated the role of ACSL4 in NSCLC and its link to the ferroptosis process using deep learning.

Mehmood et al. [108] Employed deep learning to identify compounds potentially possessing superior affinity for KRAS
mutants in colorectal cancer.

Wang et al. [109] Proposed a method to predict long-term survival in lung cancer patients using gene expression data and
a CNN-based deep learning model.

The landscape of survival analysis leveraging generic deep learning has been en-
riched with several innovative modifications. The models proposed by Hou et al. [92] and
Lee et al. [93] were aimed at predicting patient prognosis, employing both histopathology
risk scores and whole-genome data, respectively. Hou et al. [92] improved upon their
predecessors by combining histopathological information and hub genes from mRNA data
for hepatocellular carcinoma prognosis, achieving a high concordance index. Concurrently,
the method by Lee et al. [93] focused on predicting cancer occurrence through the analysis
of mutation types, presenting remarkable accuracy and specificity.

Similarly, Jha et al. [94], Zheng et al. [95], and Al-Fatlawi et al. [96] explored different
facets of cancer diagnosis and prognosis. Jha et al. [94] identified transcriptomic features
commonly shared across different cancer types using feed-forward neural networks, in-
troducing a novel perspective on common cancer transcriptome signatures. Meanwhile,



Biology 2023, 12, 893 17 of 22

Zheng et al. and Al-Fatlawi et al. [95,96] focused on bladder and pancreatic cancer, respec-
tively, demonstrating the ability of deep learning to distinguish between different disease
states and providing substantial diagnostic accuracy.

The applications of deep learning in cancer prognosis have extended beyond tradi-
tional genomic data. Elsharawy et al. [97] developed an AI-based breast cancer grading
model utilizing images from the TCGA. The model exhibited significant potential in gene
discovery and second opinions. In a similar vein, Ye et al. [98] and Guo et al. [99] pro-
posed models for predicting susceptibility to ovarian cancer and prognosis of prostate
cancer, respectively, underlining the versatility of deep learning techniques across various
cancer types.

A novel trend in survival analysis is the incorporation of network-based approaches.
Ramirez et al. [100] introduced Surv_GCNN, a graph convolution neural network ap-
proach for cancer survival prediction, which outperformed traditional models in multiple
cancer types. Chen et al. [101] identified immune subtypes in gastric cancer using deep
learning on whole-slide images, providing further insight into the use of deep learning in
immunotherapeutic strategies.

The exploitation of deep learning in disease staging and prognosis prediction has
also seen considerable advancement. Park et al. [102] developed a deep learning method
for diagnosing non-alcoholic fatty liver disease and its association with hepatocellular
carcinoma, demonstrating reliable performance. Ma et al. [104] constructed a prognostic
model for cervical cancer with considerable predictive power, highlighting the potential of
AI algorithms in optimizing prognosis models.

Lastly, several studies have employed deep learning in association with genetic ab-
normalities and their implications in cancer prognosis. Del Carmen et al. [105] identified
chromosomal region alterations associated with therapy response in rectal cancer, utilizing
a deep-learning-based algorithm for disease-free survival and overall survival prediction.
Huang et al. [106] explored the roles of immune microenvironment-related elements in
hepatitis B virus-related diseases, while Yang et al. [107] investigated the role of ACSL4 in
non-small cell lung cancer. The studies underline the ability of deep learning to reveal the
intricate links between genetic aberrations and cancer prognosis, further enhancing our
understanding of the disease’s complex mechanisms.

10. Conclusions

In our comprehensive exploration of the existing literature, we emphasized the signifi-
cant role that deep learning methodologies have played in survival analysis of cancer using
genomic data. These advanced computational techniques have greatly improved the pre-
dictive capabilities of survival analysis and have provided a more nuanced understanding
of complex genomic data.

Autoencoders, for instance, have shown great potential in extracting low-dimensional
features from high-dimensional genomic data, and transfer learning techniques have
allowed the leveraging of pre-existing models, reducing computational resources and
improving generalization on small datasets.

A notable trend we have observed is the increasing preference for multi-modal and
multi-omics studies, indicating the versatility of deep learning in handling and integrating
diverse data types to provide a more holistic view of cancer survival.

However, the field of deep learning in cancer survival analysis is still emerging.
A significant challenge is the development of more interpretable and explainable models,
overcoming the black box nature of current methodologies. We also highlighted the need for
further exploration of advanced deep learning techniques, such as graph neural networks
and transformers, in this context.

One specific area that holds promise is the application of contrastive learning with
self-supervised learning for survival analysis, especially when there is a lack of labeled
data. For instance, the genomic implications in laryngeal cancer, particularly concerning
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the invasion of the paraglottic space or interarytenoid space [117], could be analyzed with
this methods.

This review gives an extensive overview of the state-of-the-art deep learning method-
ologies used in cancer prognosis. We believe the insights from our review will guide future
research in this important field, leading to novel and groundbreaking discoveries.
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