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In genetic engineering, the revolutionary CRISPR-Cas system has proven to be a
vital tool for precise genome editing. Simultaneously, the emergence and rapid
evolution of deep learning methodologies has provided an impetus to the
scientific exploration of genomic data. These concurrent advancements
mandate regular investigation of the state-of-the-art, particularly given the
pace of recent developments. This review focuses on the significant progress
achieved during 2019–2023 in the utilization of deep learning for predicting guide
RNA (gRNA) activity in the CRISPR-Cas system, a key element determining the
effectiveness and specificity of genome editing procedures. In this paper, an
analytical overview of contemporary research is provided, with emphasis placed
on the amalgamation of artificial intelligence and genetic engineering. The
importance of our review is underscored by the necessity to comprehend the
rapidly evolving deep learning methodologies and their potential impact on the
effectiveness of the CRISPR-Cas system. By analyzing recent literature, this review
highlights the achievements and emerging trends in the integration of deep
learning with the CRISPR-Cas systems, thus contributing to the future direction
of this essential interdisciplinary research area.
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1 Introduction

CRISPR-Cas systems, derived from a bacterial and archaeal adaptive immune
mechanism, have rapidly evolved to become an indispensable tool in biotechnological
and biomedical research for genome editing purposes (Wright et al., 2016). This
revolutionary technique leverages the inherent capacity of these systems to target and
modify DNA sequences with remarkable specificity and efficiency (Jinek et al., 2012).

The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and the
CRISPR-associated proteins (Cas) form the two principal components of this system. The
CRISPR locus in the bacterial genome contains short repetitive sequences interspaced by
unique spacers derived from past invaders, such as viruses and plasmids (Barrangou et al.,
2007). The transcription of this locus results in a precursor CRISPR RNA (pre-crRNA),
which is processed into mature CRISPR RNAs (crRNAs). These crRNAs serve as guides for
the Cas proteins to locate and cleave complementary sequences in the invading DNA,
thereby providing adaptive immunity to the bacteria (Marraffini and Sontheimer, 2008).

CRISPR-Cas9, a Type II CRISPR-Cas system, has received substantial attention owing to
its simplicity and adaptability for genome editing (Doudna and Charpentier, 2014). In this
system, the crRNA is combined with a trans-activating crRNA (tracrRNA) to form a single-
guide RNA (sgRNA). This sgRNA directs the Cas9 nuclease to the target DNA sequence,
which is then cleaved by the nuclease, leading to insertions or deletions that can disrupt the
targeted gene (Jinek et al., 2012).
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An equally promising system is the CRISPR-Cas12, a Type V
CRISPR-Cas system. Distinct from CRISPR-Cas9, CRISPR-Cas12
uses a single RNA molecule for both CRISPR array processing and
target recognition, and cleaves DNA in a staggered pattern (Zetsche
et al., 2015). This system offers unique advantages including
targeting a wider range of sequences and providing collateral
cleavage activity.

Despite the transformative potential of these CRISPR-Cas
systems, accurate prediction of guide RNA (gRNA) activity
remains a challenging task. This is where the recent advances in
artificial intelligence (AI) methods, particularly deep learning, have
begun to show their promise (LeCun et al., 2015). Deep learning
models can capture complex patterns within data, making them
ideally suited to predict gRNA activities based on sequence
characteristics. They can, therefore, serve as an indispensable tool
for accelerating the design and optimization process of gRNAs in
CRISPR-Cas systems (Chen et al., 2019).

As deep learning rapidly evolves and the utilization of CRISPR-
Cas systems continues to expand, it is crucial to continually revisit
and evaluate the state of research in this area. Consequently, this
review aims to investigate recent advances in deep learning models
for predicting gRNA activity. Given the emerging importance of
these technologies, this review will be instrumental in informing the
ongoing development of accurate and efficient methods for gRNA
prediction in CRISPR-Cas systems.

The expanding growth of the field of deep learning has
underscored its potential in numerous applications, inclusive but
not exclusive to the domain of genomics and genetic engineering
(Eraslan et al., 2019). The rapid pace at which deep learning
algorithms and methodologies are advancing necessitates
continual scrutiny and updating of the state of knowledge in the
field. The intertwining of deep learning with the CRISPR-Cas
systems illuminates new horizons in the understanding and
application of genetic engineering.

This review encapsulates the last 5 years of research, providing
an exhaustive survey of deep learning’s current role in CRISPR-Cas
systems. Given the swift growth of deep learning methodologies and
the expanding CRISPR-Cas technology, this review is both relevant
and indispensable. An examination of current literature reveals
successes, challenges, emergent trends, and future possibilities in
this domain. The review is expected to guide field researchers and
practitioners, catalyzing further breakthroughs in the vibrant
convergence of artificial intelligence and genetic engineering.

2 Literature analysis

2.1 Process of selecting papers

The purpose of this review is to present a comprehensive and
focused synthesis of the most recent literature related to the use of
deep learning methods in the CRISPR-Cas system. To achieve this, a
systematic and diligent approach was adopted in the selection of
papers.

The first stage of the paper selection process involved
conducting a comprehensive search of the academic literature.
The Web of Science (WOS) database, a widely recognized and
extensive repository of scholarly literature, was primarily utilized

for the purpose. Our search terms were carefully chosen to include
essential keywords such as “deep learning”, “CRISPR-Cas”, and
“neural network” to ensure the identification of relevant articles for
our review.

This review exclusively incorporates articles published in peer-
reviewed journals. This choice was determined by the stringent
quality assurance processes that these publications undergo. Peer-
reviewed articles are assessed by domain experts, thereby ensuring
their scientific credibility. Moreover, they are acknowledged as
significant platforms for disseminating scientifically rigorous and
influential research.

While acknowledging the potential value of preprints and
conference papers, a deliberate decision was made to solely focus
on peer-reviewed journal articles. This selection criterion aims to
uphold the dependability and validity of the review, safeguarding
that the incorporated studies have undergone a meticulous vetting
process. To maintain the freshness and innovation of this review,
specific categories of articles, including review articles and
perspectives, were purposefully omitted. This strategy
underscores our intention to accentuate the integration of
primary, research-based studies in alignment with the objectives
of our review.

This review pertains exclusively to works published between
2019 and 2023, a timeframe judiciously chosen to ensure the study’s
contemporaneity, pertinence, and inclusivity of recent innovations
and patterns within deep learning applications for CRISPR-Cas
systems. Noteworthy is the data collection for 2023, halted in May,
to ensure the review captures the freshest insights and progressions
in the domain. The quick advancement of CRISPR-Cas and deep
learning technologies dramatically reshaped the landscape of
research post-2019, making older studies nearly obsolete and
consequently irrelevant for the present review. Given the
spectacular progress in deep learning technology in recent years,
prior research has been sidelined. Thus, focusing on the studies from
2019 to 2023 is judicious, rendering a meaningful and relevant
critique of the state-of-the-art.

During the data collection process, additional information, such
as the number of citations and publication details for each chosen
article, was gathered. This data offered valuable insights into the
scope, impact, and acceptance of the research within the scientific
community. To provide a structured overview of the deep learning
methodologies employed in the selected studies, the papers were
categorized based on the specific objectives they pursued. This
classification contributes to a comprehensive understanding of
the deep learning landscape for the CRISPR-Cas system by
enhancing comprehension of the various methodologies utilized.
Table 1 provides a summary of the reviewed papers, with the
majority of studies focused on predicting gRNA activities.

2.2 Distribution analysis of publications in
different journals

An analytical perspective on the dispersion of the chosen
publications divulges insightful patterns and trends. The
referenced articles manifest a broad distribution across various
renowned journals, underscoring the global interest and
engagement in deep learning for CRISPR-Cas systems. This
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dispersion across myriad scholarly avenues corroborates the cross-
disciplinary appeal and reach of this research field.

A striking observation is the lack of monopolization by any
single journal. The most represented journal accounts for a relatively
small fraction, approximately 7.4%, of the total publications. This
underlines the expansive and diversified publication landscape,
where researchers are disseminating their findings across a

multitude of platforms, potentially tailoring their target outlets
based on their specialized readership and expertise.

Table 2 provides a statistical summary of the distribution of the
selected papers across journals. The highest representation is seen in
BMC Bioinformatics, Computational and Structural Biotechnology
Journal, and Nature Communications, each containing four
publications, accounting for around 7.4% of the total papers.

TABLE 1 Overview of Recent Studies Using Deep Learning in CRISPR-Cas system.

Research Topics Brief description Studies

Prediction of gRNA Activities Uses deep learning methods to predict the efficiency or on- and off
activities of guide RNAs (gRNAs) in the CRISPR/Cas system

Ameen et al. (2021), Shrawgi and Sisodia (2019), Dimauro et al. (2019),
Xie et al. (2023), Xue et al. (2019), Wan and Jiang (2023), Zhang et al.
(2020b), Li et al. (2022a), Xiang et al. (2021), Kirillov et al. (2022),
Elkayam and Orenstein (2022), Niu et al. (2021b), Luo et al. (2019),
Zhang et al. (2021a), Yang et al. (2023), Zhang et al. (2020c), Liu et al.
(2020), Zhang and Jiang (2022), Vinodkumar et al. (2021), Zhang et al.
(2020a), Vora et al. (2023), Lin et al. (2020), Charlier et al. (2021), Lin
et al. (2022), Niu et al. (2021a), Jost et al. (2020), Xiao et al. (2021),
Wang and Zhang (2019)

Prediction of CRISPR-Cas
Editing Outcomes

Deep learning models to predict diverse outcomes of CRISPR-Cas
editing, including mutational outcomes and cleavage efficiency

Li et al. (2021), Liu et al. (2022), Wang et al. (2021), Li et al. (2022b), Li
et al. (2022c), Naert et al. (2020), Naert et al. (2021), Marquart et al.
(2021), Zhang et al. (2021b)

Design of High-Activity
gRNAs

Uses deep learning to design highly active gRNAs for CRISPR-
mediated gene editing or epigenome editing

Baisya et al. (2022), Wang et al. (2019), Feng et al. (2021), Kim et al.
(2020a)

Automated System
Implementation

Using deep learning to automate specific processes in the application
of CRISPR-Cas system

Cordero-Maldonado et al. (2019), Allen et al. (2022), Patino et al.
(2021), Kanfer et al. (2021)

Nucleic Acid Detection Utilizing CRISPR and deep learning for detection of nucleic acids
related to specific diseases

Xie et al. (2022), Kang et al. (2022), Ding et al. (2023)

Anti-CRISPR Protein
Identification

Utilizing deep learning to identify anti-CRISPR proteins Wandera et al. (2022), Upmeier zu Belzen et al. (2019), Park et al. (2022)

Cas9 Variant Activity
Prediction

Developing deep learning models to predict the activity and
specificity of different Cas9 variants

Kim et al. (2020b)

Transcription Factor Binding
Predictions

Using deep learning to predict transcription factor binding
interactions

Avsec et al. (2021)

Analysis of Public Opinion Employing deep learning to analyze public opinions about the
CRISPR-Cas9 system

Muller et al. (2020)

TABLE 2 Distribution of publications across journals.

Journal Counts Percentage (%)

Nature Communications 4 7.4

Computational and Structural Biotechnology Journal 4 7.4

BMC Bioinformatics 4 7.4

Nucleic Acids Research 3 5.6

Bioinformatics 3 5.6

Biomolecules 2 3.7

Scientific Reports 2 3.7

Biosensors and Bioelectronics 2 3.7

Nature Biotechnology 2 3.7

Misc 28 51.8

Total 54 100
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Nucleic Acids Research and Bioinformatics follow suit with three
papers each, contributing approximately 5.6% to the total
publication count.

Other significant contributors to the publication pool include
Biomedicals, Scientific Reports, Nature Biotechnology, and
Biosensors and Bioelectronics, each with two publications,
constituting around 3.7% each of the total publication
distribution. Besides, a multitude of other journals with a single
publication, encapsulated under Misc., collectively accounts for
51.8% of the publications, emphasizing the extent and depth of
research dissemination in this field. These findings signify that the
research on deep learning for CRISPR-Cas systems transcends
disciplinary boundaries, warranting publication in diverse
scientific outlets ranging from bioinformatics and computational
biology to genetics and molecular biology.

2.3 Quantitative analysis of the selected
papers

In order to provide a more robust and statistically driven
overview of the deep learning in CRISPR-Cas systems domain, a
comprehensive evaluation of the selected academic articles is
conducted. This analysis focuses on the distribution of citations
and the temporal progression of publications, offering insights into
the scholarly influence and the momentum of research in this field.

Beginning with citation statistics as a proxy for academic impact
and community receptiveness, the median count is found to be
seven. This value underscores a healthy level of interaction and
endorsement of the considered studies. However, the average
citation count, estimated at 16.1, exceeds the median, hinting at
the existence of certain highly influential works that skew the mean
upwards. This discrepancy between median and mean values reveals
a distinct, multifaceted citation scenario among the analyzed papers.

Transitioning to a temporal inspection of the publications, an
intriguing progression materializes. The year 2019 heralds the
research in deep learning for CRISPR-Cas systems, with eight
pioneering papers. This is followed by a modest ascension in
2020, where the count escalates to ten. Intriguingly, the year
2021 marks a critical juncture, featuring 17 publications, thereby

contributing significantly to this emerging domain. For 2023, despite
the incomplete data due to ongoing updates inWoS, five papers have
already surfaced until April, suggesting a sustained trend of vigorous
scholarly activity. A granular examination of the citation frequency
and the year of publication for each paper is encapsulated in
Figure 1.

This analytical exploration of the selected academic articles
offers profound understanding of their scholarly impact and the
trends shaping the field of deep learning for CRISPR-Cas systems.
The analysis of the median and mean citation statistics illuminates
the varied levels of scholarly reception, while the year-by-year
publication count demonstrates the momentum of research
output. Such insights contribute to an enriched understanding of
the academic landscape and lay the groundwork for deeper
exploration in this research arena.

3 Deep learning for prediction of gRNA
activities

In CRISPR-Cas systems, a profound necessity exists to predict
the activities of gRNAs with high precision and reliability. The
spectrum of gRNA activities, spanning from on-target to off-target
effects, lays the foundation for successful genome editing. However,
the complexity of sequence-activity relationships inherent in gRNAs
introduces a layer of intricacy, turning this task into a substantial
challenge (Doench et al., 2016). Therefore, it is increasingly evident
that conventional analytical approaches may be insufficient in
tackling this issue, inviting more sophisticated computational
methods to the forefront. The advent of deep learning has indeed
provided an efficacious solution to this challenge.

Deep learning, a subset of artificial intelligence, involves
neural networks with numerous layers (hence “deep”) that can
model complex patterns in large datasets (LeCun et al., 2015).
These neural networks learn from data by optimizing a loss
function that captures the discrepancy between the predicted
and true outcomes. They are capable of understanding hidden
structures and relationships in data, making them particularly
useful in predicting gRNA activities based on sequence
characteristics.

FIGURE 1
Overview of the distribution of publication years and citation frequencies. (A) Distribution of publication years; (B) Distribution of citation
frequencies; (C) Violin plot for the relationship between citation frequencies and publication years.
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The application of deep learning in predicting gRNA activities
initially took form in studies focusing on the CRISPR-Cas9 system
(Yin et al., 2019). These studies employed various types of deep
learning architectures, including convolutional neural networks
(CNNs) and recurrent neural networks (RNNs), to learn the
intricate sequence-activity relationships of gRNAs. The learned
models were capable of predicting on-target and off-target
activities of gRNAs, thus guiding the selection of optimal gRNAs
for specific genome editing tasks. The superior performance of these
models underscored the potential of deep learning in this field.

Soon after, researchers began leveraging deep learning for the
prediction of gRNA activities in the CRISPR-Cas12 system (Chen
et al., 2018). CRISPR-Cas12, having unique properties compared to
CRISPR-Cas9, posed different challenges in predicting gRNA
activities. Nevertheless, deep learning proved its versatility by
adapting to this system and delivering accurate predictions.

Recent advancements in the field have witnessed the emergence
of more sophisticated deep learning models that offer greater
predictive performance and interpretability. For instance,

attention mechanisms, initially developed in the field of natural
language processing, have been incorporated into deep learning
models for gRNA activity prediction to provide insights into the
importance of different nucleotides in a gRNA sequence. Such
advancements are indicative of the growing maturity of deep
learning applications in this field. Table 3 presents a compilation
of recent investigations.

In the CRISPR-Cas systems, several studies have proposed
distinct methodologies using deep learning models to predict
gRNA and sgRNA efficiencies and activities.

Studies utilizing hybrid models are evident in the field. For
instance, Ameen et al. (2021) presented a hybrid CNN-SVR model
for predicting gRNA activity within the CRISPR-Cas12 system.
Further contributions include several studies proposing
TransCrispr (Wan and Jiang, 2023) and a novel hybrid CNN-
SVR system (Zhang et al., 2020b), respectively, for CRISPR-Cas9
system applications. Furthermore, hybrid models such as CNN-XG,
a fusion of a convolutional neural network and XGBoost, were
introduced (Li B. et al., 2022). Several other studies utilized

TABLE 3 Summary of the Contributions of Deep Learning Studies in Predicting gRNA Activities.

Author Contributions

Ameen et al. (2021) Proposed a hybrid CNN-SVR model for predicting gRNA activity in the CRISPR-Cas12 system, outperforming existing models

Shrawgi and Sisodia. (2019) Developed a CNN model, DeepSgRNA, to predict the efficiency of sgRNAs in the CRISPR-Cas9 system

Dimauro et al. (2019) Introduced CRISPRLearner, a CNN-based model for predicting sgRNA cleavage efficiency

Xie et al. (2023) Proposed CRISPR-OTE, a CNN and biLSTM-based framework for gRNA on-target efficiency prediction

Xue et al. (2019) Presented DeepCas9, a CNN-based model for identifying functional sgRNAs in the CRISPR-Cas9 system

Wan and Jiang. (2023) Developed TransCrispr, a Transformer and CNN-based model for predicting sgRNA knockout efficacy

Zhang et al. (2020b) Proposed a hybrid CNN-SVR system for predicting gRNA on-target efficacy in the CRISPR-Cas9 system

Li et al. (2022a) Introduced a CNN and XGBoost-based model, CNN-XG, for predicting sgRNA on-target knockout efficacy

Xiang et al. (2021) Created CRISPRon, a deep learning model for advanced gRNA efficiency predictions

Kirillov et al. (2022) Presented a hybrid of Capsule Networks and Gaussian Processes for predicting gRNA cleavage efficiency

Elkayam and Orenstein. (2022) Developed DeepCRISTL, a transfer learning model for predicting on-target editing efficiency in the CRISPR-Cas9 system

Niu et al. (2021b) Introduced R-CRISPR, a deep learning model for predicting off-target activities in CRISPR-Cas9

Luo et al. (2019) Presented DeepCpf1, a deep CNN model for predicting CRISPR-Cpf1 gRNAs on-target activity and off-target effects

Zhang et al. (2021a) Proposed interpretable attention-based CNNmodels, CRISPR-ONT and CRISPR-OFFT, for predicting CRISPR-Cas9 sgRNA activities

Yang et al. (2023) Developed EpiCas-DL, a deep learning framework for optimizing sgRNA design for CRISPR-mediated epigenome editing

Zhang et al. (2020c) Developed DL-CRISPR, a deep learning model for predicting off-target activity in CRISPR-Cas9

Liu et al. (2020) Introduced CnnCrispr, a model for predicting off-target propensity of sgRNA.

Zhang and Jiang. (2022) Introduced CRISPR-IP, a CNN, BiLSTM, and attention layers-based model for CRISPR-Cas9

Charlier et al. (2021) Introduced a novel encoding of sgRNA-DNA sequences to enhance deep learning off-target prediction in CRISPR-Cas9 gene editing

Lin et al. (2022) Presented an AI approach integrating CNNs and attention module for quantifying CRISPR gene-editing off-target effects

Niu et al. (2021a) Proposed an ensemble CNN model, sgRNACNN, for identifying high on-target activity of sgRNA in four agronomic species

Jost et al. (2020) Used CRISPR interference to control gene expression, deriving rules governing mismatched sgRNA activity using deep learning

Xiao et al. (2021) Proposed AttCRISPR, an interpretable model to predict sgRNA on-target activity, integrating encoding and embedding-based methods

Wang and Zhang. (2019) Designed a CNN for predicting sgRNA activity in E. coli, emphasizing the importance of species-specific models in sgRNA prediction
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CNN-based models, which developed DeepSgRNA (Shrawgi and
Sisodia, 2019), CRISPRLearner (Dimauro et al., 2019), DeepCas9
(Xue et al., 2019), and CRISPRon (Xiang et al., 2021), respectively.

An alternative approach, combining multi-dimensional
sequence information with prior knowledge, was adopted by Xie
et al. (2023) in their proposition of CRISPR-OTE. Meanwhile,
Kirillov et al. (2022) introduced a novel approach integrating
capsule networks and Gaussian processes.

Studies have also proposed methods focused on predicting off-
target activities, such as R-CRISPR (Niu R. et al., 2021) and
DeepCpf1 (Luo et al., 2019). Other studies contributing to this
segment include CnnCrispr (Liu et al., 2020), CRISPR-IP (Zhang
and Jiang, 2022), and a graph convolutional network model
(Vinodkumar et al., 2021), respectively.

Zhang G. et al. (2021) took a unique approach by proposing
interpretable attention-based convolutional neural networks for
predicting CRISPR-Cas9 sgRNA on-and off-target activities.
Similarly, Vora et al. (2023) introduced a hybrid multi-task deep
learning model, CRISP-RCNN, which emphasized the derivation of
sequence features affecting Cas9 activity.

Models focusing on improving the predictability of off-target
activities in CRISPR-Cas9 include CRISPR-Net (Lin et al., 2020) and
novel encoding of sgRNA-DNA sequences (Charlier et al., 2021).
Other studies such as focused on refining the quantification of off-
target effects (Lin et al., 2022) and identifying high on-target activity
in agronomic species (Niu M. et al., 2021), respectively.

Lastly, a few studies delved into controlling gene expression and
improving predictive performance. For instance, Jost et al. (2020)
utilized CRISPR interference to control gene expression, while Xiao
et al. (2021) and Wang and Zhang (2019) proposed models that
emphasized the importance of position-dependent nucleotide
preferences and species-specific considerations, respectively.

3.1 Remarks on recent research trends

Recent advancements incorporate a variety of deep learning
architectures, ranging from CNNs to RNNs, particularly those
utilizing BiLSTM units, hybrid models, as well as attention
mechanisms. This multiplicity of approaches signals the vibrancy
and dynamism in the field, reaffirming the overarching view that no
single method is universally optimal for every situation, thereby
underscoring the need for bespoke solutions tailored to individual
requirements.

A recurring trend is evident in the frequent utilization of CNNs.
This adoption could be attributed to their superior capability to
process sequence data, which is particularly pertinent in the context
of gRNA sequences. CNNs are adept at identifying local patterns
within sequences and are robust to variations in their position,
which makes them particularly suitable for gRNA activity
prediction.

The incorporation of BiLSTMs in numerous models elucidates
another prevalent trend. The allure of BiLSTMs stems from their
capacity to process sequences in both directions, capturing long-
term dependencies in the sequence data. This characteristic makes
them especially beneficial for tasks involving sequential data with
complex dependencies, such as predicting the activities of gRNAs.

Interestingly, there seems to be an increasing interest in
combining multiple learning models to form hybrid systems,
frequently intertwining CNNs with other machine learning
techniques such as SVMs or XGBoost. These hybrid models
leverage the strengths of different methods, improving the
robustness and performance of the predictive models.

Attention mechanisms, a recent innovation, also make their
presence felt in the field. Derived from the domain of natural
language processing, these mechanisms provide a mechanism to
focus on crucial parts of the input sequence, enhancing the
interpretability of the deep learning models.

Taken together, these trends reflect the swift evolution of deep
learning methodologies in the domain of gRNA activity prediction.
They indicate the field’s increasing sophistication and maturity
while concurrently highlighting the plethora of opportunities that
remain unexplored. These advancements, coupled with the constant
evolution of deep learning architectures andmethodologies, promise
a future rich with possibilities for enhanced precision and efficiency
in gRNA activity prediction.

4 Deep learning for prediction of
CRISPR-Cas editing outcomes

The epoch of genomic engineering has been decidedly
invigorated by the advent of the CRISPR-Cas9 system, an
innovative tool that has dramatically transformed the landscape
of genetic modification (Doudna and Charpentier, 2014). Despite its
considerable potential, a lingering issue persists in the form of
predicting the outcomes of CRISPR-Cas9 editing with a high
degree of accuracy. The prediction of these outcomes is pivotal
in genome editing, as it informs the design of guide RNAs (gRNAs)
that direct Cas9 to target genomic sites (Gasiunas et al., 2012). This
has prompted a profusion of studies employing deep learning
methods to predict the on-target and off-target effects of gRNAs
in the CRISPR-Cas9 system.

The allure of deep learning lies in its capacity to discern complex,
non-linear relationships within data, surpassing the capabilities of
traditional linear models (LeCun et al., 2015). Deep learning
networks, composed of multiple interconnected layers, enable the
transformation of the input data through a series of non-linear
transformations to output a prediction. This process uncovers
intricate patterns within the input data, a characteristic
particularly pertinent in gRNA activity prediction given the
complex nature of sequence-activity relationships.

The landscape of deep learning in predicting CRISPR-Cas9
editing outcomes is rapidly evolving, with growing interest in the
incorporation of attention mechanisms to enhance interpretability.
Originating from natural language processing, attention
mechanisms direct the model to focus on pivotal parts of the
input sequence, offering insights into the influence of different
nucleotides in gRNA sequences (Vaswani et al., 2017). This
innovation signifies the maturity of deep learning applications in
this field, promising a future replete with possibilities for enhanced
precision and efficiency in predicting CRISPR-Cas9 editing
outcomes. A summary of contemporary research endeavors is
depicted in Table 4.
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In the prediction of CRISPR-Cas9 editing outcomes, multiple
studies have been conducted, each offering unique
methodologies and insights. For instance, the work presented
by Liu et al. (2022) introduced the Apindel model, a framework
incorporating BiLSTM and Attention mechanism. The model
displayed enhanced performance in prediction detail and
accuracy relative to its predecessors. Meanwhile, Marquart
et al. (2021) established BE-DICT, a sophisticated model
utilizing attention mechanisms, trained on a vast genetic
sequence library, which showed a notable precision in
predicting base editing outcomes.

The application of CNNs in this domain has also been
substantial. Wang et al. (2021) offered EditPredict, a CNN model
that has been shown to predict RNA editing events in humans with
impressive accuracies. The model’s functionality extends to
reference genome sequences and can account for single
nucleotide variants in personal genomes. On a similar vein, Li
W. et al. (2022) brought forth SeqGAN, a novel model
amalgamating CNN and a sequence-generating adversarial
network, yielding enhanced predictions for CRISPR off-target
cleavage sites.

Machine learning approaches have also been utilized to identify
specific biological changes in cells. For instance, Li Y. et al. (2022)
proposed two unique models utilizing multilayer perceptron
algorithms and deep learning to detect human blood cells with
CRISPR-mediated fetal chromatin domain (FCD) ablations. The
models displayed promising predictive abilities for genetically edited
cells.

Exploring predictive modeling further, Naert et al. (2020)
developed a neural network trained in mouse embryonic stem
cell cultures to predict editing outcomes in Xenopus and
zebrafish embryos. The model successfully predicted repair
outcomes leading to a considerable increase in phenotype
penetrance in the F0 generation.

A substantial contribution to the field of tumorigenesis research
was made by Naert et al. (2021), who introduced CRISPR-SID. This
approach integrated multiplexed CRISPR-Cas9 genome editing with
deep learning, predicting double-strand break repair patterns to
identify genes vital for tumorigenesis, suggesting a druggable
potential of key genes.

Finally, the study by Zhang W. et al. (2021) exemplifies the
successful combination of high-throughput sequencing and deep
learning. They assessed the efficiency, specificity, and PAM
compatibility of various Cas9 variants, using a deep learning
model to validate and predict SpRY off-target sites, thereby
informing the refinement of Cas9 variants for precise genome
editing.

4.1 Remarks on recent research trends

From the comprehensive overview of recent studies as depicted
in Table 4, several emergent trends shaping the intersection of deep
learning and CRISPR-Cas9 editing outcomes prediction are
discerned. One salient trend is the increasingly multifaceted
nature of the adopted deep learning architectures, often
manifesting in combinations of well-established neural network
paradigms, such as the marriage of BiLSTM and Attention
mechanisms or the fusion of CNNs and adversarial networks
(Goodfellow et al., 2016). This convergence of diverse approaches
facilitates increasingly nuanced modeling of complex sequence-
activity relationships in CRISPR-Cas9 systems, thus ameliorating
prediction accuracy.

Secondly, it is notable that studies are progressively endeavoring
to augment the practicality of their models by extending their
predictive capabilities to diverse scenarios. These encompass a
wide range of editing events, including but not limited to the
knockout of specific enzymes, off-target cleavage site prediction,

TABLE 4 Summary of the contributions of deep learning studies in CRISPR-Cas9 editing outcomes.

Author Contributions

Li et al. (2021) Proposed an end-to-end deep learning framework named CROTON, an approach used deep multi-task convolutional neural networks and
neural architecture search (NAS) to automate both feature and model engineering

Liu et al. (2022) Developed Apindel, a deep learning model employing BiLSTM and Attention mechanism, to predict a comprehensive range of Cas9-
generated mutational outcomes, surpassing previous models in accuracy

Wang et al. (2021) Introduced EditPredict, a CNN-based model that accurately predicts RNA editing events in humans, including those resulting from CRISPR-
Cas9 knockout of the ADAR1 enzyme

Li et al. (2022b) Devised SeqGAN, a model combining CNN and an adversarial network, to predict CRISPR off-target cleavage sites, achieving superior
performance in cross-validation tests

Li et al. (2022c) Proposed machine learning approaches, including deep learning, for identifying human blood cells with CRISPR-mediated fetal chromatin
domain (FCD) ablations, with promising results in the prediction of edited cells

Naert et al. (2020) Applied predictive modeling of editing outcomes to maximize CRISPR-Cas9 phenotype penetrance in Xenopus and zebrafish embryos,
improving phenotype penetrance in the F0 generation

Naert et al. (2021) Introduced CRISPR-SID, a method using deep learning to predict double-strand break repair patterns for identifying genes essential for
tumorigenesis in a Xenopus tropicalis desmoid tumor model

Marquart et al. (2021) Developed BE-DICT, a deep learning model incorporating attention mechanisms, to predict base editing outcomes, providing a versatile tool
for genome editing

Zhang et al. (2021b) Conducted a comprehensive evaluation of the editing efficiency of several Cas9 variants and utilized a deep learning model to verify and
predict SpRY off-target sites, informing the refinement of Cas9 variants for precise editing

Frontiers in Bioengineering and Biotechnology frontiersin.org07

Lee 10.3389/fbioe.2023.1226182

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1226182


and base editing outcome anticipation. This trend elucidates the
expanding ambit of applicability for deep learning techniques within
this domain, potentially enriching their usability and impact in real-
world settings.

Moreover, the ambit of organisms and cell types under
investigation in these studies is also steadily widening. While
initial investigations predominantly focused on more commonly
used organisms and cell cultures, more recent studies have shown
promising results in more complex organisms like Xenopus and
zebrafish embryos or even in the specialized contexts of human
blood cells. This broadening scope of research lends credence to the
universality and adaptability of deep learning methods in CRISPR-
Cas9 editing outcome prediction.

Finally, there is an emergent focus on the interpretability and
explicability of models, evident in the incorporation of attention
mechanisms and comprehensive evaluation of Cas9 variants. These
aspects, although often overlooked in a frenzy to achieve higher
accuracy, are paramount to the practical adoption of these models,
as they provide insights into the model’s decision-making process
and thus increase trust in their predictions.

The emerging field of applying deep learning methods to predict
CRISPR-Cas9 editing outcomes is witnessing rapid evolution. The
current trends underscore a concerted move towards more
sophisticated, practical, and interpretable deep learning solutions,
rendering this an exciting and promising research Frontier.

5 Deep learning for design of high-
activity gRNAs

Accompanying the escalating interest in harnessing the
potential of CRISPR-Cas systems for genome editing has
emerged a critical need for the design of high-activity guide
RNAs (gRNAs). A high-activity gRNA, often fundamental to
the successful manipulation of genetic sequences, is
characterized by its potent ability to direct the Cas proteins to
the intended genomic loci with high efficiency and specificity,
thereby maximizing on-target activity and minimizing off-target
effects (Mohr et al., 2016). However, the formulation of a high-
activity gRNA presents a substantial challenge, as it requires a
comprehensive understanding of the complex sequence-activity
relationships inherent to gRNAs. The application of deep learning,
a sophisticated breed of machine learning, to this conundrum has
introduced a promising avenue of exploration.

In the intricate domain of deep learning, algorithms built upon
layered architectures of artificial neurons, or nodes, are furnished
with the capacity to learn intricate, nonlinear relationships from
copious data (LeCun et al., 2015). In the context of high-activity
gRNA design, these deep learning architectures are fed with data
encompassing gRNA sequences and their associated experimental
activities, subsequently learning to extrapolate the underlying
relationships that govern gRNA efficiency. This predictive
capability of deep learning models effectively translates into a
powerful tool for high-activity gRNA design. Table 5
encapsulates a snapshot of recent studies.

One pertinent example is DeepGuide (Baisya et al., 2022), a
neural network architecture that proved proficient at designing
high-activity sgRNAs for Cas9 and Cas12a. The model’s training
on genome-wide CRISPR activity profiles significantly bolstered the
success rate of CRISPR-based mutagenesis in Yarrowia lipolytica.

In a similar manner, Wang et al. (2019) offered an optimized
gRNA design for two high-fidelity SpCas9 variants using a deep
learning model known as DeepHF. This model amalgamates
Recurrent Neural Network (RNN) with biological features
essential for activity prediction, thereby outperforming previous
models and design tools.

Investigating guide-target mismatches and their impact on
dCas9-sgRNA binding activity, Feng et al. (2021) employed a
convolutional neural network to construct a predictive model.
This model assists in the rational design of sgRNA in bacterial
CRISPR interference. By marrying a biophysical model with deep
learning, they significantly improved the predictive accuracy of
sgRNA design, demonstrating the efficacy of deep learning in
CRISPR system applications.

Further extending the analysis to PAM-sequence compatibilities
and the on-target and off-target activities of SpCas9 and its variants,
Kim H. K. et al. (2020) performed a comprehensive comparison at
endogenous sites in human cells. The introduction of new non-NGG
PAM sequences and the creation of deep-learning models for
predicting xCas9 and SpCas9-NG activities underscored the
potential for these techniques to facilitate genome editing
applications.

5.1 Remarks on recent research trends

The emergence of deep learning has irrevocably revolutionized
the landscape of CRISPR-Cas9 system-based research. The drive to

TABLE 5 Summary of the Contributions of Deep Learning Studies for High-Activity gRNA Design.

Author Contributions

Baisya et al. (2022) Presented DeepGuide, a neural network-based architecture for designing high-activity Cas9 and Cas12a sgRNAs, significantly increasing the
success rate of CRISPR-based mutagenesis in the yeast Yarrowia lipolytica

Wang et al. (2019) Introduced an optimized gRNA design for two high-fidelity SpCas9 variants using deep learning. Developed DeepHF, a model combining
RNN with essential biological features for activity prediction, outperforming other models and design tools

Feng et al. (2021) Conducted an in-depth investigation into the effects of guide-target mismatches on dCas9-sgRNA binding activity in bacteria, improving the
predictive accuracy of sgRNA design using a biophysical model and a convolutional neural network

Kim et al. (2020a) Performed an extensive comparison of PAM-sequence compatibilities and the on-target and off-target activities of SpCas9 and its variants,
xCas9 and SpCas9-NG, at endogenous sites in human cells. Created deep-learning models to predict the activities of xCas9 and SpCas9-NG.
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ascertain high-activity gRNAs to increase the efficacy of genome
editing tasks has seen the advent of increasingly sophisticated
computational tools harnessing deep learning. These tools exhibit
an ability to fathom the intricate sequence-activity relationships of
gRNAs that have hitherto been elusive.

A confluence of varied deep-learning architectures has been seen
in recent studies. From CNNs to RNNs, these methodologies imbibe
essential biological features in their models to aid in the accurate
prediction of gRNA activities. This incorporation of biological
knowledge into the neural network models has undoubtedly
improved their performance, outstripping other existing models
and design tools.

An innovative trend is the modeling of guide-target mismatches
to enhance the accuracy of sgRNA design (Chuai et al., 2018).
Leveraging the innate strengths of deep learning, these models are
capable of predicting the effects of mismatches on dCas9-sgRNA
binding activity, thereby informing the design of sgRNAs.

The deep learning models employed in these studies not only
serve to predict but also provide a comprehensive comparison of on-
target and off-target activities of SpCas9 and its variants. This
permits an evaluation of PAM-sequence compatibilities at
endogenous sites in human cells, underscoring the potential for
precision in genome editing (Sternberg et al., 2014). As evidenced in
these studies, integrating deep learning into the CRISPR-Cas9
systems is leading to transformative progress in the design of
high-activity gRNAs. It is anticipated that this trend will
continue to evolve, with deep learning models becoming even
more adept at handling the challenges inherent in the field of
genome editing (Doench et al., 2016).

6 Deep learning for automated system
implementation in CRISPR-Cas systems

In the era where biological research is progressively influenced
by computational methods, the implementation of deep learning-
based automated systems has witnessed a progressing interest,
especially in the domain of CRISPR-Cas systems. The inception
of such systems emanates from the necessity to address the
inefficiencies associated with manual handling of the intricacies
involved in gRNA design and implementation. Automated systems,
empowered by deep learning methodologies, aim to streamline these
processes, bringing about a paradigm shift in the execution of
CRISPR-Cas system-based experiments.

Deep learning algorithms, with their unparalleled proficiency in
understanding andmodelling complex patterns, form the bedrock of
these automated systems (LeCun et al., 2015). Imbued with the
capacity to harness the wealth of experimental and theoretical data,
these algorithms are capable of processing numerous variables
simultaneously, from gRNA sequence characteristics to
environmental factors affecting gRNA performance. The
consequent predictive models expedite the decision-making
process, underpinning the selection of optimal gRNA designs and
their implementation strategies (Cong et al., 2013).

As a manifestation of this approach, recent studies have unveiled
automated systems that offer end-to-end solutions, from the design
of high-activity gRNAs to their implementation in genome editing
tasks (Brinkman et al., 2018). These systems draw upon the prowess

of deep learning models, automating not only the gRNA design but
also the prediction of potential off-target effects and the evaluation
of experimental results. As such, deep learning has contributed
significantly to the refinement of CRISPR-Cas systems, rendering
them more accessible, precise, and efficient (Doench et al., 2016).
The advent of such transformative methodologies has opened the
floodgates to explore new dimensions in genome editing, thereby
catalyzing the transition towards a more automated and effective use
of CRISPR-Cas systems. Table 6 provides an overview of
contemporary research endeavors.

The incorporation of deep learning in the automation of various
procedures within the CRISPR-Cas systems presents another area of
research worth highlighting. The research by Cordero-Maldonado
et al. (2019), for instance, demonstrates the use of a deep learning
software grounded on the open-source Inception-v3 library for
automating injections in zebrafish embryos. With an impressive
accuracy, the systemmanaged to identify the injection site and inject
CRISPR-Cas9 and DNA constructs as effectively as a seasoned
experimentalist would, thus underscoring its potential in
facilitating high-throughput genome editing.

An interesting approach was presented by Allen et al. (2022)
through the introduction of a flow-based imaging platform that
employs deep learning for studying the DNA damage response in
human hematopoietic stem and progenitor cells treated with
CRISPR-Cas9 and recombinant adeno-associated virus. Their
research highlighted that guide RNAs with a higher genome-
editing activity are associated with a more significant DNA
damage response, thus simplifying the characterization and
screening processes of genome-editing parameters.

The automated systems within CRISPR-Cas research also
extends to the development of platforms for high-throughput
and precise cell manipulation applications. One such example is
the work of Patino et al. (2021), who established an automated
single-cell electroporation system that amalgamates deep learning
and computer vision strategies for gene editing tasks. Their use of a
fully convolutional network (FCN) for accurate nuclei and cytosol
location in various cell types proved highly effective, demonstrating
the viability of their platform by delivering gRNA complexes into an
induced pluripotent stem cell (iPSC) line.

Lastly, Kanfer et al. (2021) proposed AI-Photoswitchable
Screening (AI-PS), an innovative pooled screening approach.
This approach marries convolutional neural networks with
CRISPRi screening for subcellular phenotyping. Their method,
which involves training machine learning models on subcellular
phenotypes and isolating cells of interest for sequencing through
photoactivation, holds significant promise for genome-wide
applications, as evidenced by their successful identification of
essential factors that mediate TFEB relocation.

6.1 Remarks on recent research trends

Leveraging the capabilities of deep learning algorithms not only
accelerates the genome editing process but also amplifies its
precision and efficiency. From automated injections to single-cell
electroporation systems, a clear trend of integrating deep learning
with established biological procedures is discernible. The capabilities
of deep learning to automate these procedures is a testament to its
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versatility and power, extending beyond high-activity gRNA design
into a broader context of automating procedures within the
CRISPR-Cas system.

Deep learning’s prowess in image recognition and processing
has been pivotal in enabling automated system implementation. The
precise localization of target sites within organisms or cells,
identification of various cellular structures, and efficient image-
based screening have been made possible and more efficient
through the use of deep learning algorithms. In particular,
CNNs, known for their excellent performance in image-related
tasks, have become a mainstay in most works revolving around
image analysis for CRISPR-Cas systems.

Given these innovative implementations and the upward
trajectory in applying deep learning within the CRISPR-Cas
system, it can be postulated that the Frontier of genome editing
is rapidly expanding. These advancements contribute to the broader
scientific understanding of deep learning’s capabilities in
bioinformatics, subsequently opening doors for further
exploration and innovative applications within genome editing.
This trend of increasing reliance on deep learning underscores its
potential to drive forward the future of genome editing and our
understanding of biological systems at large.

7 Deep learning for other emerging
topics in CRISPR-Cas systems

As the confluence of deep learning and CRISPR-Cas systems
continue to shape a new Frontier in the field of genome editing,
novel research avenues are persistently emerging. Amidst the
traditional applications in high-activity gRNA design and
automation of CRISPR-Cas systems, there is a growing
application of deep learning algorithms in diverse domains linked
to the CRISPR-Cas system, extending the dimensions of its
influence.

One remarkable illustration of these emerging topics is the
utilization of CRISPR-Cas systems in tandem with deep learning
for nucleic acid detection related to specific diseases (Chen et al.,
2018). This novel approach has displayed commendable potential in
the diagnosis of diseases, identifying nucleic acid sequences
characteristic to pathogens or genetic disorders with enhanced

accuracy and speed. In a similar vein, deep learning algorithms
are leveraged to identify anti-CRISPR proteins, augmenting our
understanding of CRISPR-Cas systems’ defense mechanism.
Furthermore, the prediction of activities and specificities of
different Cas9 variants using deep learning models contributes to
the advancement of the CRISPR-Cas toolbox, thereby facilitating
more versatile and precise genome editing experiments (Brinkman
et al., 2018). Table 7 showcases a collection of recent studies.

Diverse novel applications of deep learning in CRISPR-Cas
systems present intriguing research trajectories. For instance, Xie
et al. (2022) established a unique colorimetric detection method
named RApid VIsual CRISPR (RAVI-CRISPR), incorporating
CRISPR-Cas12a and a convolutional neural network. This
methodology, synchronized with a smartphone application, was
adept in sensitive detection of SARS-CoV-2 and African swine
fever virus, illustrating its utility in point-of-care testing.

In the intersection of deep learning, CRISPR-Cas systems, and
protein analysis, Kang et al. (2022) devised a method for direct
histone deacetylase (HDAC) activity detection. Their research
offered a sensitive one-pot assay, exhibiting the potential of such
methodologies in precision detection tasks. Similarly, Ding et al.
(2023) proposed a CRISPR-Cas12a/Cas13a bioassay coupled with
deep learning for synchronous detection of exosomal proteins,
opening new vistas for cancer diagnosis.

Advancements have also been made in the detection and
understanding of anti-CRISPR proteins (Acrs), as evidenced by
Wandera et al. (2022). Their deep learning algorithm unearthed
numerous potential Acrs across nearly all CRISPR-Cas types
and subtypes. In another protein-focused study, Upmeier zu
Belzen et al. (2019) successfully utilized deep neural networks
for the functional dissection and engineering of proteins,
including ERK, HRas, CRISPR-Cas9, and anti-CRISPR
protein AcrIIA4.

Building upon this, Park et al. (2022) introduced a novel
approach to protein drug design through accurate structure
prediction of Anti-CRISPR proteins using deep learning-based
methodologies, presenting new opportunities for countering
disease-causing proteins. In line with this, Kim N. et al. (2020)
proposed a computational approach to predict the sequence-specific
activity of 13 SpCas9 variants, substantiating the potential of deep
learning models in gene editing.

TABLE 6 Summary of the contributions of deep learning studies for automated system implementation in CRISPR-Cas systems.

Author Contributions

Cordero-Maldonado et al. (2019) Utilized a deep learning software based on the open-source Inception v3 library for automated injections in zebrafish embryos. The
system enabled high throughput genome editing by injecting CRISPR-Cas9 and DNA constructs as efficiently as an experienced
experimentalist

Allen et al. (2022) Introduced a flow-based imaging platform employing deep learning to study the DNA damage response in human hematopoietic stem
and progenitor cells treated with CRISPR-Cas9 and recombinant adeno-associated virus. This system simplified the characterization
and screening process of genome-editing parameters

Patino et al. (2021) Developed an automated single-cell electroporation system integrating deep learning and computer vision strategies for gene editing
tasks. They demonstrated its potential in high-throughput, precise cell manipulation applications by delivering gRNA complexes into
an induced pluripotent stem cell (iPSC) line

Kanfer et al. (2021) Proposed a novel pooled screening approach, AI-Photoswitchable Screening (AI-PS), which integrates convolutional neural networks
with CRISPRi screening for subcellular phenotyping. Their proof-of-concept screen accurately identified essential factors mediating
TFEB relocation
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Additionally, deep learning has been employed for
comprehensive evaluations of the editing efficiency and specificity
of several Cas9 variants, as seen in Zhang W. et al. (2021). Their
results shed light on optimizing Cas9 variants for precise CRISPR-
Cas9 editing. Similar predictive capabilities were showcased by
Avsec et al. (2021) through their BPNet model, enabling the
discovery of soft syntax rules for cooperative transcription factor
binding interactions.

Lastly, Muller et al. (2020) utilized deep learning to gauge public
opinions on CRISPR-Cas9, providing a compelling perspective on
the societal implications and acceptance of this revolutionary
technology. This comprehensive usage of deep learning across
diverse aspects of CRISPR-Cas systems encapsulates the immense
potential and opportunities it offers for future research.

7.1 Remarks on recent research trends

The studies detailed in Table 7 epitomize the increasing
ubiquity and indispensability of deep learning methods in the
sphere of CRISPR-Cas systems. The manifold utilizations of these
techniques to illuminate various domains of CRISPR technology
serve as evidence of their escalating prominence. From the
inception of colorimetric detection methodologies to the
advancement of high-throughput bioassays, these studies are
emblematic of an epoch of enhanced efficacy and precision in
CRISPR-related procedures. With the confluence of CRISPR and
deep learning, previously intractable challenges, such as the
identification of anti-CRISPR proteins or the prediction of
Cas9 variant activity, now stand within the purview of
plausible resolution. Furthermore, deep learning’s
contributions extend beyond conventional research spheres,
offering novel insights into public sentiment regarding
CRISPR-Cas9, as evinced in the Twitter data analysis.

The discernible trends woven into these recent studies
underscore an evident shift towards the convergence of biology
and computational science. The expanding reliance on deep learning
as a tool for disentangling the complexities of CRISPR-Cas systems
signifies a transformative phase in scientific exploration. By
leveraging the strengths of these computational techniques,
researchers are increasingly able to navigate the intricacies of
genomic manipulation with unprecedented proficiency.
Moreover, the integration of deep learning in these investigations
has not only enhanced the accuracy and efficiency of the resultant
solutions but also augmented the scope of research, broadening the
horizons of discovery. The maturation of this interdisciplinary
approach portends a promising future, one where the symbiosis
of deep learning and CRISPR-Cas systems may chart a path to novel
scientific breakthroughs.

8 Conclusion

The synthesis and explication of the knowledge generated from
the application of deep learning to the ever-evolving field of
CRISPR-Cas systems is a task of cardinal importance. Our
collective quest for understanding and leveraging the vast
potential of these two groundbreaking domains is a testament to
the ceaseless ingenuity of the scientific community. This review,
which encompasses a substantial and recent corpus of literature, has
undertaken the vital role of not only summarizing but also
contextualizing these numerous works of investigation within a
broader framework.

Given the rapid evolution of deep learning methodologies and
the ceaseless expansion of CRISPR-Cas technology, it is
indispensable to continuously scrutinize, distill, and disseminate
the amassed knowledge. The deep learning domain has been
characterized by an extraordinarily swift pace of development,

TABLE 7 Summary of the contributions of deep learning studies for emerging topics in CRISPR-Cas systems.

Author Contributions

Xie et al. (2022) Established a colorimetric detectionmethod (RAVI-CRISPR) for nucleic acids using CRISPR-Cas12a
and deep learning

Kang et al. (2022) Utilized CRISPR-Cas system with deep learning for direct histone deacetylase activity detection

Ding et al. (2023) Proposed a CRISPR-Cas12a/Cas13a bioassay with deep learning for synchronous detection of
exosomal proteins in cancer diagnosis

Wandera et al. (2022) Developed a deep learning model for identifying anti-CRISPR proteins (Acrs)

Upmeier zu Belzen et al. (2019) Demonstrated the use of deep neural networks for predicting the impact of point mutations on the
activity of CRISPR-Cas9 and anti-CRISPR proteins

Park et al. (2022) Utilized a deep learning-based protein structure prediction approach (AlphaFold2) for protein drug
design with Anti-CRISPR proteins

Kim et al. (2020b) Proposed a deep learning-based computational approach for predicting the sequence-specific activity
of 13 SpCas9 variants

Zhang et al. (2021b) Utilized a deep learning model for evaluating and predicting the editing efficiency, specificity, and
PAM compatibility of Cas9 variants

Avsec et al. (2021) Developed BPNet, a deep learning model for predicting base-resolution chromatin
immunoprecipitation binding profiles of transcription factors

Muller et al. (2020) Employed deep learning to analyze public opinions on CRISPR-Cas9 through Twitter data analysis
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creating an abundance of innovative methodologies, which has
found a fertile ground of application in the expanding arena of
CRISPR-Cas systems. This cross-disciplinary integration, marked by
remarkable synergy, is continually yielding novel insights that are
poised to redefine the boundaries of genetic engineering.

The exploration of the confluence of these two fields, captured in
this review, illuminates the transformative potential lying at this
intersection. By offering an exhaustive account of the strides made in
leveraging deep learning for predicting gRNA activity, the review
extends a coherent narrative of progress, successes, and persisting
challenges. The importance of this timely discourse stems from its
ability to not only guide ongoing research but also to shape the
future trajectory of this amalgamated field.

In retrospect, the review underscores the necessity of adaptive
learning that is sensitive to the swiftly changing landscape of deep
learning and CRISPR-Cas systems. Consequently, the urgency to
regularly update the state of knowledge in the field cannot be
overstated. This endeavor not only facilitates the sharing of
insights across the scientific community but also creates a
collaborative environment that is conducive to innovation. In
doing so, the review plays a pivotal role in fostering a scientific
ecosystem that can respond effectively to emerging challenges and
capitalize on new opportunities.

However, in the recent studies, it has been observed that almost all
studies utilize independent datasets, with each paper often employing a
dataset specific to the authors, a common characteristic of CRISPR-Cas
studies. Since it is widely categorized the studies in this review, each
category often targets distinct predictions. As illustrated in Tables 3–7,
even within the same category, unique research objectives are pursued.
Consequently, the metrics used vary significantly, ranging from log-
likelihood, accuracy, AUC, to Cosine similarity, and sometimes, the aim
is to create embeddings. In such a diverse landscape, a numerical
comparison using a common dataset is virtually unfeasible.

The lack of unified reference datasets and common metrics in
this field presents a significant challenge in comparing the
performance of existing methods numerically. This limitation,
inherent to the current landscape of CRISPR-Cas studies, has
been considered throughout this review and is worth noting for
future studies aiming to advance the field.

In conclusion, the comprehensive overview presented in this
review provides a vantage point to appreciate the remarkable
progress made in integrating deep learning with CRISPR-Cas
systems, particularly in predicting gRNA activity. By illuminating

the current state of affairs and shedding light on areas of potential
growth, the review serves as a critical beacon for researchers
venturing into this dynamic interface of artificial intelligence and
genetic engineering. Furthermore, by facilitating a rigorous and
systematic understanding of the recent advancements in the field,
this review contributes significantly to the ongoing endeavor of
navigating the uncharted territories in the application of deep
learning to CRISPR-Cas systems. The continued pursuit of such
interdisciplinary integration promises to unlock transformative
potential that can redefine our understanding and manipulation
of biological systems.
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