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Simple Summary: The rapidly advancing field of deep learning, specifically transformer-based
architectures and attention mechanisms, has found substantial applicability in bioinformatics and
genome data analysis. Given the analogous nature of genome sequences to language texts, these
techniques initially successful in natural language processing have been applied to genomic data.
This review provides an in-depth analysis of the most recent advancements and applications of these
techniques to genome data, critically evaluating their advantages and limitations. By investigating
studies from 2019 to 2023, this review identifies potential future research areas, thereby encouraging
further advancements in the field.

Abstract: The emergence and rapid development of deep learning, specifically transformer-based
architectures and attention mechanisms, have had transformative implications across several domains,
including bioinformatics and genome data analysis. The analogous nature of genome sequences
to language texts has enabled the application of techniques that have exhibited success in fields
ranging from natural language processing to genomic data. This review provides a comprehensive
analysis of the most recent advancements in the application of transformer architectures and attention
mechanisms to genome and transcriptome data. The focus of this review is on the critical evaluation
of these techniques, discussing their advantages and limitations in the context of genome data
analysis. With the swift pace of development in deep learning methodologies, it becomes vital to
continually assess and reflect on the current standing and future direction of the research. Therefore,
this review aims to serve as a timely resource for both seasoned researchers and newcomers, offering
a panoramic view of the recent advancements and elucidating the state-of-the-art applications in
the field. Furthermore, this review paper serves to highlight potential areas of future investigation
by critically evaluating studies from 2019 to 2023, thereby acting as a stepping-stone for further
research endeavors.

Keywords: deep learning; transformer model; attention mechanism; genome data; transcriptome
data; genomics; bioinformatics; sequence analysis; natural language processing

1. Introduction

The revolution of deep learning methodologies has invigorated the field of bioinformat-
ics and genome data analysis, establishing a foundation for ground-breaking advancements
and novel insights [1–6]. Recently, the development and application of transformer-based
architectures and attention mechanisms have demonstrated superior performance and
capabilities in handling the inherent complexity of genome data. Deep learning tech-
niques, particularly those utilizing transformer architectures and attention mechanisms,
have shown remarkable success in various domains such as natural language processing
(NLP) [7] and computer vision [8–10]. These accomplishments have motivated their rapid
adoption into bioinformatics, given the similar nature of genome sequences to language
texts. Genome sequences can be interpreted as the language of biology, and thus, tools
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proficient in handling language data can potentially decipher the hidden patterns within
these sequences.

The attention mechanism, first introduced in sequence-to-sequence models [11], has
revolutionized how deep learning models handle and interpret data [12–18]. This technique
was designed to circumvent the limitations of traditional recurrent models by providing a
mechanism to attend to different parts of the input sequence when generating the output.
In the context of genome data, this implies the ability to consider different genomic regions
and their relations dynamically during the interpretation process. The attention mechanism
computes a weighted sum of input features, where the weights, also known as attention
scores, are dynamically determined based on the input data. This mechanism allows
the model to focus more on essential or relevant features and less on irrelevant or less
important ones.

Inspired by the success of attention mechanisms, the transformer model was proposed
as a complete shift from the sequential processing nature of recurrent neural networks
(RNNs) and their variants [19–22]. The transformer model leverages attention mechanisms
to process the input data in parallel, allowing for faster and more efficient computations.
The architecture of the transformer model is composed of a stack of identical transformer
modules, each with two sub-layers: a multi-head self-attention mechanism and a position-
wise fully connected feed-forward network. Using this architecture, transformer models
can capture the dependencies between inputs and outputs without regard for their distance
in the sequence.

The potential of transformer-based architectures and attention mechanisms in genome
data analysis is vast and largely unexplored. They present a promising solution to tackle
the massive scale and intricate nature of genomic data. The ability to capture long-range
dependencies between genomic positions, consider multiple relevant genomic regions
simultaneously, and adaptively focus on salient features makes these methods uniquely
suited for genomic applications. This review paper seeks to highlight and investigate the
innovative applications of these methods in genome data analysis, critically assess their
advantages and limitations, and provide future research directions.

The surge of research in this domain has led to a voluminous influx of studies and
publications, each contributing new findings, methods, and perspectives. While this rapid
proliferation of research is a testament to the field’s dynamism, it also poses a challenge for
researchers to keep pace with the advancements. Hence, the necessity for comprehensive
review papers that curate, synthesize, and cohesively present these findings is paramount.

This review paper aims to provide a rigorous and up-to-date synthesis of the pro-
liferating literature in this field. Given the swift pace of development in deep learning
methodologies, it is critical to continually assess and reflect on the current standing and
future direction of the research. This review will serve as a timely resource for both sea-
soned researchers and newcomers to the field, offering a panoramic view of the recent
advancements and elucidating the state-of-the-art applications of transformer architectures
and attention mechanisms in genome data analysis.

This review undertakes a systematic and critical assessment of the most recent studies
spanning 2019 to 2023. Thoroughly examining these publications aims to provide novel
perspectives, detect existing research gaps, and propose avenues for future investigation.
Moreover, this review aims to highlight the far-reaching implications and potential benefits
associated with the application of advanced deep learning techniques in the analysis of
genome data. By investigating these advances, it seeks to inspire and stimulate further
research endeavors and technological breakthroughs in the dynamic field of bioinformatics.

2. Deep Learning with Transformers and Attention Mechanism
2.1. Conventional Architectures of Deep Learning

In recent years, the field of biomedicine has observed a significant upsurge in the
application of machine learning and, more particularly, deep learning methods. These ad-
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vanced techniques have been instrumental in unearthing insights from complex biomedical
datasets, enabling progress in disease diagnosis, drug discovery, and genetic research.

Deep learning, or deep neural networks (DNNs), employs artificial neural networks
with multiple layers, a feature that makes it remarkably capable of learning complex
patterns from large datasets [23]. One of the simplest forms of a neural network is the
multilayer perceptron (MLP), which contains an input layer, one or more hidden layers,
and an output layer. MLPs are proficient at handling datasets where inputs and outputs
share a linear or non-linear relationship. However, they are less effective when dealing
with spatial or temporal data, a limitation overcome by more sophisticated deep learning
models such as convolutional neural networks (CNNs) [24] and RNNs [25].

CNNs are exceptionally efficient at processing spatial data, such as images, due to their
ability to capture local dependencies in data using convolutional layers. In biomedicine,
CNNs have proved instrumental in tasks like medical image analysis and tissue phenotyping.

RNNs, including their advanced variant, long short-term memory (LSTM) networks,
are designed to handle sequential data by incorporating a memory-like mechanism, allow-
ing them to learn from previous inputs in the sequence. This property makes them valuable
in predicting protein sequences or understanding genetic sequences in bioinformatics.

Generative adversarial networks (GANs), a game-changer in the field, consist of two
neural networks, the generator and the discriminator, that compete [26–32]. This unique
architecture enables the generation of new, synthetic data instances that resemble the
training data, a feature that holds promise in drug discovery and personalized medicine.

Several other variants of deep learning techniques also exist. For instance, graph atten-
tion leverages the attention mechanism to weigh the influence of nodes in a graph, playing
a crucial role in molecular biology for structure recognition. Residual networks (ResNets)
use shortcut connections to solve the problem of vanishing gradients in deep networks, a
feature that can be valuable in medical image analysis. AdaBoost, a boosting algorithm,
works by combining multiple weak classifiers to create a strong classifier. Seq2Vec is an
approach for sequence data processing where the sequence is converted into a fixed-length
vector representation. Finally, variational autoencoders (VAE) are generative models that
can learn a latent representation of the input data, offering significant potential in tasks like
anomaly detection or dimensionality reduction in complex biomedical data.

2.2. Transformers and Attention Mechanism

The transformer model represents a watershed moment in the evolution of deep
learning models [33]. Distinct from conventional sequence transduction models, which
typically involve recurrent or convolutional layers, the transformer model solely harnesses
attention mechanisms, setting a new precedent in tasks such as machine translation and
natural language processing (NLP).

The principal component of a transformer model is the attention mechanism, and
it comes in two forms: self-attention (also referred to as intra-attention) and multi-head
attention. The attention mechanism’s core function is to model interactions between
different elements in a sequence, thereby capturing the dependencies among them without
regard to their positions in the sequence. In essence, it determines the extent to which to
pay attention to various parts of the input when producing a particular output.

Self-attention mechanisms operate by creating a representation of each element in a
sequence that captures the impact of all other elements in the sequence. This is achieved
by computing a score for each pair of elements, applying a softmax function to obtain
weights, and then using these weights to form a weighted sum of the original element
representations. Consequently, it allows each element in the sequence to interact with all
other elements, providing a more holistic picture of the entire sequence.

The multi-head attention mechanism, on the other hand, is essentially multiple self-
attention mechanisms, or heads, operating in parallel. Each head independently computes
a different learned linear transformation of the input, and their outputs are concatenated
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and linearly transformed to result in the final output. This enables the model to capture
various types of relationships and dependencies in the data.

In addition to the self-attention mechanism, another critical aspect of the transformer
architecture is the incorporation of positional encoding. Given that the model itself is
permutation-invariant (i.e., it does not have any inherent notion of the order of the input
elements), there is a necessity for some method to incorporate information about the
position of the elements within the sequence. Positional encoding serves this purpose.

Positional encodings are added to the input embeddings at the bottoms of the encoder
and decoder stacks. These embeddings are learned or fixed, and their purpose is to inject
information about the relative or absolute positions of the words in the sequence. The
addition of positional encodings enables the model to make use of the order of the sequence,
which is critical for understanding structured data like language.

One common approach to positional encoding is to use sine and cosine functions
of different frequencies. With this approach, each dimension of the positional encoding
corresponds to a sine or cosine function. These functions have a wavelength that forms a
geometric progression from 2π to 10,000 × 2π.

One of the key advantages of the transformer model is its ability to handle long-range
dependencies in the data, an aspect where traditional RNNs and CNNs may struggle due to
their sequential nature. By allowing all elements in the sequence to interact simultaneously,
transformers alleviate the need for compressing all information into a fixed-size hidden
state, which often leads to information loss in long sequences.

Additionally, transformers also introduce the concept of position encoding to counter
the absence of inherent positional information in attention mechanisms. This is crucial,
especially in tasks where the order of the elements carries significant information.

The transformer’s self-attention mechanism involves three crucial components: the
query (Q), key (K), and value (V). These components originate from the input representa-
tions and are created by multiplying the input by the respective learned weight matrices.
Each of these components carries a unique significance in the attention mechanism.

In detail, the query corresponds to the element for which we are trying to compute the
context-dependent representation. The key relates to the elements that we are comparing
the query against to determine the weights. Finally, the value is the element that gets
weighted by the attention score (resulting from the comparison of the query with the key)
to generate the final output.

The self-attention mechanism operates by calculating an attention score for a pair of
query and key. It does so by taking their dot product and then applying a softmax function
to ensure that the weights fall into the range of zero and one and sum to one. This provides
a normalized measure of importance, or attention, that the model assigns to each element
when encoding a particular element.

Following the calculation of attention scores, the model computes a weighted sum
of the value vectors, where the weights are given by the attention scores. This operation
results in the context-sensitive encoding of each element, where the context depends on all
other elements in the sequence. Such encodings are then used as inputs to the next layer in
the transformer model.

The use of the Q, K, and V matrices allows the model to learn to focus on different
aspects of the input data and enables it to discern which pieces of information are critical
when encoding a particular element. As such, the transformer’s attention mechanism
brings a significant degree of flexibility and power to the model, allowing it to handle a
wide variety of tasks in an efficient and effective manner. The structures of the transformer
architecture and the attention mechanism are depicted in Figure 1.
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Figure 1. Illustration of the transformer architecture and the attention mechanism. (A) Transformer
structure; (B) Attention mechanism.

3. Methods
3.1. Publication Selection Process

The paper selection process was designed to ensure the inclusion of high-quality
research contributions pertinent to our review’s focal area. To achieve this, we primarily
leveraged algorithmic approaches relying on the academic search engine, Web of Science
(WOS). We carefully chose our search keywords, focusing on core terminologies such
as “deep learning transformer”, “attention method”, “RNAs”, and “genome data”. This
meticulous selection of search keywords was instrumental in identifying relevant articles
for inclusion in our review.

To present a structured overview of the transformer architecture and the attention
mechanism in the context of genomic data, we classified the selected papers according to
research topic, i.e., the specific application of transformers and attention methods. This
classification aims to contribute to a comprehensive understanding of the intersection of
deep learning with transformers and attention mechanisms for genomic data. It accentuates
the comprehension of various methodologies employed within the field. For a concise
summary of the reviewed papers, refer to Table 1. We acknowledge that several papers
could fit multiple categories, but for the purpose of this review, each paper was classified
under a single category that best captures the paper’s core theme.

Our review focuses solely on peer-reviewed journal articles, knowingly excluding
preprints and conference papers, despite their abundance in the field. We enforced this
criterion to uphold the reliability and validity of the review, thereby ensuring that only
studies subjected to rigorous peer-review scrutiny were included. We aimed to maintain
the novelty and originality of the review and, thus, intentionally excluded specific types of
articles, such as review articles and perspectives. The objective was to emphasize primary
research-based studies as per our review’s intent.
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Table 1. Overview of Applications of Transformer Architecture and Attention Mechanism for
Genome Data.

Research Topic Studies

Sequence and Site Prediction

Raad et al. [34], Shen et al. [35], Li et al. [36], Ma et al. [37],
Zeng et al. [38], Mai et al. [39], Song et al. [40], Tang et al. [41],
Du et al. [42], Pan et al. [43], Zhuang et al. [44], Huang et al.
[45], Guan et al. [46], Li et al. [47], Liu et al. [48], Du et al. [49],
Wenjing et al. [50], Cao et al. [51], He et al. [52], Shen et al. [53],
Zhang et al. [54], Jiang et al. [55], Bhukya et al. [56], Muneer et
al. [57], Wekesa et al. [58], Liang et al. [59], Zhang et al. [60],
Xie et al. [61], Fan et al. [62], Tsukiyama et al. [63], Gao et al. [64],
Ullah et al. [65], Guo et al. [66], Wang et al. [67], Sun et al. [68]

Gene Expression and Phenotype Prediction

Zhang et al. [69], Lee et al. [70], Chen et al. [71], Kang et al.
[72], Liao et al. [73], Angenent-Mari et al. [74], Zuo et al. [75],
Karbalayghareh et al. [76], Pham et al. [77], Dominic et al. [78],
Lee et al. [79], Li et al. [80], Bu et al. [81], Schapke et al. [82]

ncRNA and circRNA Studies

Liu et al. [83], Song et al. [84], Wekesa et al. [85],
Wu et al. [86], Yang et al. [87], Liu et al. [88], Gao and Shang [89],
Yuan and Yang [90], Song et al. [91], Chen et al. [92],
Yang et al. [93], Li et al. [94], Wang et al. [95], Li et al. [96],
Fan et al. [97], Sheng et al. [98], Niu et al. [99], Zhang et al. [100],
Liu et al. [101], Guo et al. [102]

Transcription Process Insights
Clauwaert et al. [103], Feng et al. [104], Han et al. [105],
Tao et al. [106], Asim et al. [107], Park et al. [108], Yan et al. [109],
Song et al. [110]

Multi-omics/modal Tasks
Gong et al. [111], Kayikci and Khoshgoftaar [112], Ye et al. [113],
Kang et al. [114], Wang et al. [115], Chan et al. [116]

CRISPR Efficacy and Outcome Prediction
Liu et al. [117], Liu et al. [118], Wan and Jiang [119], Xiao et al.
[120], Mathis et al. [121], Zhang et al. [122], Zhang et al. [123]

Gene Regulatory Network Inference
Lin and Ou-Yang [124], Xu et al. [125], Feng et al. [126], Ullah and
Ben-Hur [127], Xie et al. [128]

Disease Prognosis Estimation
Lee [129], Choi and Lee [130], Dutta et al. [131], Xing et al. [132],
Meng et al. [133], Feng et al. [134]

Gene Expression-based Classification
Gokhale et al. [135], Beykikhoshk et al. [136], Manica et al. [137],
Lee et al. [138]

Proteomics
Hou et al. [139], Gong et al. [140], Armenteros et al. [141],
Littmann et al. [142]

Cell-Type Identification
Song et al. [143], Feng et al. [144], Buterez et al. [145],
Zhang et al. [146]

Predicting Drug-Drug Interactions
Schwarz et al. [147], Kim et al. [148], Liu and Xie [149],
Wang et al. [150]

Other Topics
Yu et al. [151], Yamaguchi and Saito [152], Zhou et al. [153],
Cao et al. [154], Gupta and Shankar [155], Zhang et al. [156], Choi
and Chae [157]

We limited our review’s temporal span to articles published from 2019 to 2023. This
constraint ensures that our review remains concurrent and relevant, providing a compre-
hensive understanding of the most recent advancements and trends in the field of deep
learning for genomic data. It is noteworthy that our review focuses solely on peer-reviewed
journal articles. This decision was driven by two main factors: First, the peer review process
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is a crucial mechanism to uphold the quality and reliability of the scientific literature by
subjecting research to rigorous examination by domain experts. Second, peer-reviewed
journals are traditionally deemed reliable and trusted sources for publishing scientifically
sound and influential research.

We carried out data collection for 2023 up until May, aligning with our current schedule,
thereby ensuring that the review’s currency aligns with the field’s latest developments.
During the data collection process, we compiled information on the number of citations
and publication logs for each selected article. These data were paramount for evaluating
the scope, impact, and acceptance of the research within the scientific community. We shall
analyze these data in the subsequent sections of this review.

Certain studies were excluded based on specific criteria. Review articles were not
considered due to our focus on primary research. Studies employing only machine learning
methodologies without deep learning elements were also excluded. Furthermore, papers
that did not directly relate to genomic data, such as those focusing on image segmentation,
were left out, despite the general applicability of the attention mechanism to image data.
Hence, such image-related studies were manually removed from our review.

3.2. Journals of Published Papers

Table 2 illustrates the distribution of published articles focusing on the application of the
transformer architecture and the attention mechanism for genome data, across a variety of
scientific journals.

Table 2. Distribution of Published Articles across Different Journals.

Journal Counts Percentage (%)

Briefings in Bioinformatics 20 16.1
Bioinformatics 9 7.3
BMC Bioinformatics 9 7.3
Frontiers in Genetics 9 7.3
IEEE-ACM Transactions on Computational Biology and Bioinformatics 7 5.6
PLOS Computational Biology 4 3.2
Nature Communications 4 3.2
Interdisciplinary Sciences-Computational Life Sciences 4 3.2
Computational and Structural Biotechnology Journal 3 2.4
Scientific Reports 3 2.4
Biology-Basel 2 1.6
Mathematical Biosciences and Engineering 2 1.6
Frontiers in Oncology 2 1.6
Computational Biology and Chemistry 2 1.6
Proceedings of the National Academy of Sciences of the United States of America 2 1.6
Methods 2 1.6
Nucleic Acids Research 2 1.6
Cells 2 1.6
Frontiers in Cell and Developmental Biology 2 1.6
Others (<2 Publications) 34 27.4

It is evident from Table 2 that ‘Briefings in Bioinformatics’ has the highest number of
publications (20), constituting 16.1% of the total studies in this domain. The ‘Bioinformatics’,
‘BMC Bioinformatics’, and ‘Frontiers in Genetics’ journals follow closely, each contributing
7.3% of the total publications. Journals such as ‘PLOS Computational Biology’, ‘Nature
Communications’, and ‘Interdisciplinary Sciences-Computational Life Sciences’ account
for about 3.2% each.

Furthermore, there is a considerable portion of articles (27.4%) distributed in various
other journals, each contributing fewer than two publications. These results exhibit a wide
dissemination of research on this topic across various journals, suggesting cross-disciplinary
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interest and influence of transformer architecture and attention mechanism applications
within the field of genome data analysis.

3.3. Year-Wise Analysis of Publications

As illustrated in Figure 2A, the trend of publications on the use of the transformer
architecture and the attention mechanism for genome data shows a significant increase
over the past few years. The growth and intensity of publications, year after year, illustrate
the fast-emerging interest and intensive research activity in this field.

In 2019, the number of publications was relatively small, with only four documented
studies, indicating the nascent stage of research in this area. However, the number of publi-
cations experienced a substantial rise by more than double, to nine, in 2020. This indicates
the field’s emerging development, as more research communities started recognizing the
transformative potential of transformer architectures and attention mechanisms for genome
data analysis.

The year 2021 marked a significant breakthrough in this field, with 32 publications,
more than three times as many as in 2020. This sudden surge can be attributed to the
maturation of the methodologies and the growing acknowledgment of their utility and
effectiveness in genome data interpretation.

In 2022, the research activity peaked with a record high of 59 publications, indicating a
major turning point and signifying the field’s transition into a more mature phase. The pro-
liferation of these techniques in genome data analysis could be attributed to their profound
ability to handle large genomic datasets and generate meaningful biological insights.

Figure 2. Distribution Patterns of Publication Years and Citation Frequencies (A) Distribution of
Publication Years. (B) Distribution of Citation Frequencies. (C) Relationship between Citations and
Publication Year.

In 2023, up until May, there have already been 20 publications, indicating a continued
strong interest in the field. Despite being only partway through the year, the number of
publications has reached approximately one-third of the total for 2022, suggesting that the
momentum of research in this area is expected to continue.

The upward trend in the number of publications over the years signifies the grow-
ing acknowledgment and adoption of transformer architecture and attention mechanism
techniques in genome data analysis. It underscores the importance of further research to
leverage these promising deep learning methodologies for more advanced, precise, and
insightful interpretation of complex genomic data.
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3.4. Analysis of Citation Distribution

The citation distribution of the reviewed papers provides insightful data about their
scholarly impact and recognition within the academic community. As depicted in Figure 2B,
which illustrates the histogram of citations, and Figure 2C, which represents the correlation
between the number of citations and the publication year of papers, there is a notable
pattern in citation distribution.

The median number of citations is 2, and the mean is 9.7, suggesting a positively
skewed distribution of citations. This skewness indicates that while most papers receive
few citations, a minority of papers are highly cited, which considerably raises the mean. It
is noteworthy that a large number of studies have not been cited yet, primarily because they
have been recently published and have not had adequate time for review. This scenario
underscores the significance of the present review, which aims to provide a thorough
examination of these studies.

Considering the incomplete citation data for 2023, it is apparent that almost every
paper published this year has not been cited yet, with a median citation count of zero. This
observation aligns with the expected academic trend where newer publications generally
have fewer citations due to the time lag inherent in the citation process.

However, earlier publications exhibit a higher citation count, signifying their broader
impact and established status in the field. For instance, the median citation count for the
papers published in 2019 and 2020 is 42 and 17, respectively. This shows a substantial
scholarly impact, demonstrating that the topic reviewed here is of considerable interest and
value to the research community.

In this regard, a few highly cited papers have made a particularly significant impact
on the field. For example, the work by Armenteros et al. [141], which introduced TargetP
2.0, a state-of-the-art method to identify N-terminal sorting signals in proteins using deep
learning, has garnered significant attention, with 333 citations to date. The attention layer
of their deep learning model highlighted that the second residue in the protein, following
the initial methionine, has a strong influence on classification, a feature not previously
emphasized. This highlights how deep learning methods can generate novel insights into
biological systems.

Another influential paper is the work by Manica et al. [137], which proposed a novel
architecture for interpretable prediction of anticancer compound sensitivity using a multi-
modal attention-based convolutional encoder. This work received 56 citations, and its
predictive model significantly outperformed the previous state-of-the-art model for drug
sensitivity prediction. The authors also provided a comprehensive analysis of the attention
weights, further demonstrating the interpretability of the approach.

Lastly, the study by Angenent-Mari et al. [74], which used deep learning to predict
the behavior of engineered RNA elements known as toehold switches, also stands out.
With 50 citations, this work showed that DNNs trained on nucleotide sequences vastly
outperformed previous models based on thermodynamics and kinetics.

These highly cited works underscore the transformative potential of deep learning
methods, particularly those leveraging the transformer architecture and attention mecha-
nisms, in enhancing our understanding of biological systems and in advancing predictive
modeling in biomedicine. The citation distribution reflects the temporal dynamics of the
field’s influence and the increasing recognition of deep learning with transformer architec-
ture and attention mechanism techniques in genome data analysis. Further reviews and
analyses of recent papers are required to stimulate discussion and increase their visibility
and impact within the academic community.

4. Overview of Recent Studies in Transformer Architectures and Attention
Mechanisms for Genome Data
4.1. Sequence and Site Prediction

In pre-miRNA prediction, Raad et al. [34] introduced miRe2e, a deep learning model
based on transformers. The model demonstrated a ten-fold improvement in performance
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compared to existing algorithms when validated using the human genome. Similarly,
Zeng et al. [38] introduced 4mCPred-MTL, a multi-task learning model coupled with a
transformer for predicting 4mC sites across multiple species. The model demonstrated a
strong feature learning ability, capturing better characteristics of 4mC sites than existing
feature descriptors.

Several studies have leveraged deep learning for RNA–protein binding preference
prediction. Shen et al. [35] developed a model based on a hierarchical LSTM and attention
network which outperformed other methods. Du et al. [42] proposed a deep multi-
scale attention network (DeepMSA) based on CNNs to predict the sequence-binding
preferences of RNA-binding proteins (RBPs). Pan et al. [43] developed a deep learning
model, CRMSNet, that combined CNN, ResNet, and multi-head self-attention blocks to
predict RBPs for RNA sequences.

The work by Sun et al. [68] presents a deep learning tool known as PrismNet, designed
for predicting RBP interactions, which are integral to RNA function and cellular regulation.
This tool stands out as it was built to reflect the dynamic and condition-dependent nature of
RBP–RNA interactions, in contrast to existing tools that primarily rely on RNA sequences
or predicted RNA structures. The study proposed PrismNet by integrating experimental in
vivo RNA structure data with RBP binding data from seven different cell types. This method
enables accurate prediction of dynamic RBP binding across diverse cellular conditions.

An important aspect that distinguishes PrismNet is the application of an attention
mechanism that identifies specific RBP-binding nucleotides computationally. The study
found enrichment of structure-changing variants (termed riboSNitches) among these dy-
namic RBP-binding sites, potentially offering new insights into genetic diseases associated
with dysregulated RBP bindings. Thus, PrismNet provides a method to access previously
inaccessible layers of cell-type-specific RBP–RNA interactions, potentially contributing to
our understanding and treatment of human diseases. Despite its merits, PrismNet also has
potential limitations. For example, the effectiveness of PrismNet relies heavily on the qual-
ity and quantity of experimental in vivo RNA structure data and RBP-binding data. This
dependence could limit its usefulness in scenarios where such extensive datasets are not
available or are incomplete. Furthermore, while PrismNet uses an attention mechanism to
identify exact RBP-binding nucleotides, interpreting these attention scores in the biological
context may not be straightforward, requiring additional investigation or expertise.

Li et al. [36] proposed an ensemble deep learning model called m6A-BERT-Stacking
to detect m6A sites in various tissues of three species. The experimental results demon-
strated that m6A-BERT-Stacking outperformed most existing methods based on the same
independent datasets. Similarly, Tang et al. [41] presented Deep6mAPred, a deep learning
method based on CNN and Bi-LSTM for predicting DNA N6-methyladenosine sites across
plant species.

For promoter recognition, Ma et al. [37] proposed a deep learning algorithm, DeeP-
roPre. The model demonstrated high accuracy in identifying the promoter region of
eukaryotes. Mai et al. [39] employed and compared the performance of popular NLP
models, including XLNET, BERT, and DNABERT, for promoter prediction in freshwater
cyanobacterium Synechocystis sp. PCC 6803 and Synechococcus elongatus sp. UTEX 2973.

In predicting RNA solvent accessibility, Huang et al. [45] proposed a sequence-
based model using only primary sequence data. The model employed modified attention
layers with different receptive fields to conform to the stem-loop structure of RNA chains.
Fan et al. [62] proposed a novel computational method called M(2)pred for accurately
predicting the solvent accessibility of RNA. The model utilized a multi-shot neural network
with a multi-scale context feature extraction strategy.

To predict transcription factor binding sites, Bhukya et al. [56] proposed two models,
PCLAtt and TranAtt. The model outperformed other state-of-the-art methods like DeepSEA,
DanQ, TBiNet, and DeepATT in the prediction of binding sites between transcription
factors and DNA sequences. Cao et al. [51] proposed DeepARC, an attention-based
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hybrid approach that combines a CNN and an RNN for predicting transcription factor
binding sites.

Muneer et al. [57] proposed two deep hybrid neural network models, namely GCN_GRU
and GCN_CNN, for predicting RNA degradation from RNA sequences. In the prediction
of RNA degradation, He et al. [52] introduced RNAdegformer, a model architecture for
predicting RNA degradation. RNAdegformer outperformed previous best methods at
predicting degradation properties at nucleotide resolution for COVID-19 mRNA vaccines.

In the identification of pseudouridine (psi) sites, Zhuang et al. [44] developed
PseUdeep, a deep learning framework for identifying psi sites in three species: H. sapiens,
S. cerevisiae, and M. musculus. The model uses a modified attention mechanism with
different receptive fields to conform to the stem-loop structure of RNA chains.

In the prediction of miRNA-disease associations, Zhang et al. [54] developed the
Deep Attentive Encoder–Decoder Neural Network (D-AEDNet) to identify the location
of transcription factor binding sites (TFBSs) in DNA sequences. Xie et al. [61] presented
a new computational method based on positive point-wise mutual information (PPMI)
and an attention network to predict miRNA-disease associations (MDAs), called PATMDA.
Liang et al. [59] developed a deep learning model, DeepEBV, to predict Epstein–Barr virus
(EBV) integration sites. The model leverages an attention-based mechanism to learn local
genomic features automatically.

Recent studies have shown a growing interest in utilizing attention mechanisms for
analyzing genome data. Attention-based models have gained popularity due to their ability
to capture informative patterns and long-range dependencies in genomic sequences. These
models have been applied to various tasks, including sequence and site prediction, RNA-
protein binding preference prediction, survival prediction, and identification of functional
elements in the genome. The use of attention mechanisms in these studies has demonstrated
improved performance and accuracy, highlighting the effectiveness of this approach in
extracting meaningful information from genome data.

4.2. Gene Expression and Phenotype Prediction

Deep learning models have been extensively employed to predict gene expression and
phenotypes, demonstrating significant improvements over traditional methods. These mod-
els have been particularly effective in capturing complex gene–gene and gene–environment
interactions and integrating diverse types of genomic and epigenomic data.

A particularly noteworthy study in gene expression and phenotype prediction is that
of Angenent-Mari et al. [74]. Their work explores the application of DNNs for the prediction
of the function of toehold switches, which serve as a vital model in synthetic biology. These
switches, engineered RNA elements, can detect small molecules, proteins, and nucleic
acids. However, the prediction of their behavior has posed a considerable challenge—a
situation that Angenent-Mari and colleagues sought to address through enhanced pattern
recognition from deep learning.

The methodology employed by the authors involved the synthesis and characteri-
zation of a dataset comprising 91,534 toehold switches, spanning 23 viral genomes and
906 human transcription factors. The DNNs trained on these nucleotide sequences notably
outperformed prior state-of-the-art thermodynamic and kinetic models in the prediction
of the toehold switch function. Further, the authors introduced human-understandable
attention-visualizations (VIS4Map) which facilitated the identification of successful and
failure modes. The network architecture comprised MLP, CNN, and LSTM networks
trained on various inputs, including one-hot encoded sequences and rational features.
An ensemble MLP model was also proposed, incorporating both the one-hot encoded
sequences and rational features.

The advantages of this method are manifold. The authors leveraged deep learning to
predict the function of toehold switches, a task that had previously presented considerable
challenges. The outperformance of prior state-of-the-art models is a testament to the
efficacy of the proposed approach. Furthermore, the inclusion of VIS4Map attention-
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visualizations enhances the interpretability of the model, providing valuable insights
into the model’s workings and facilitating the identification of areas of success and those
that need improvement. Despite these significant strides, the methodology also bears
certain limitations. The training process is computationally demanding, necessitating
high-capacity hardware and graphic processing units which may not be accessible to all
researchers. Furthermore, as with any model, the generalizability of this approach to other
classes of RNA or DNA elements remains to be validated. It is also worth noting that while
the model outperforms previous models, there is still considerable room for improvement,
as the highest R-squared value achieved was 0.70, indicating that the model could explain
70% of the variability in the data.

A key area of focus has been the prediction of gene expression based on histone
modifications. Lee et al. [70] developed Chromoformer, a transformer-based deep learning
architecture considering large genomic windows and three-dimensional chromatin interac-
tions. Similarly, Chen et al. [71] introduced TransferChrome, a model that uses a densely
connected convolutional network and self-attention layers to aggregate global features
of histone modification data. Liao et al. [73] also proposed a hybrid convolutional and
bi-directional long short-term memory network with an attention mechanism for this task.
These models have demonstrated their ability to predict gene expression levels based on
histone modification signals accurately.

Several studies have also focused on predicting gene expression and phenotypes based
on other genomic and epigenomic data types. For instance, Zhang et al. [69] developed
T-GEM, an interpretable deep learning model for gene-expression-based phenotype predic-
tions. Kang et al. [72] proposed a multi-attention-based deep learning model that integrates
multiple markers to characterize complex gene regulation mechanisms. These models
have shown their ability to integrate diverse data types and capture complex interactions,
leading to improved prediction performance.

Several studies have also focused on the prediction of specific types of phenotypes.
For instance, Lee et al. [79] proposed BP-GAN, a model that uses generative adversarial
networks (GANs) combined with an attention mechanism for predicting RNA Branchpoints
(BPs). These studies have shown the potential of deep learning models in predicting specific
types of phenotypes.

Recent studies have focused on utilizing deep learning models with attention mecha-
nisms to predict gene expression and phenotypes based on diverse genomic and epigenomic
data. These models have shown improvements over traditional methods by capturing
complex gene–gene and gene–environment interactions and integrating various data types.
Specifically, attention-based models have been employed to predict gene expression levels
using histone modification data, such as Chromoformer [70], TransferChrome [71], and
a hybrid convolutional and bi-directional LSTM network [73]. Additionally, researchers
have explored the prediction of specific phenotypes, such as toehold switch functions [74]
and RNA Branchpoints [79], showcasing the versatility and potential of deep learning with
attention mechanisms in gene expression and phenotype prediction.

4.3. ncRNA and circRNA Studies

The application of deep learning models, particularly those incorporating transformer
architectures and attention mechanisms, has been extensively explored in the study of
non-coding RNAs (ncRNAs) and circular RNAs (circRNAs). These models have shown
promising results in predicting ncRNA-disease associations, lncRNA–protein interactions,
and circRNA-RBP interactions, among other tasks.

Yang et al. [93] presented a novel computational method called iCircRBP-DHN that
leverages a deep hierarchical network to distinguish circRNA–RBP-binding sites. The core
of this approach is a combination of a deep multi-scale residual network and bidirectional
gated recurrent units (BiGRUs) equipped with a self-attention mechanism. This architecture
simultaneously extracts local and global contextual information from circRNA sequences.
The study proposed two novel encoding schemes to enrich the feature representations.
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The first, KNFP (K-tuple Nucleotide Frequency Pattern), is designed to capture local
contextual features at various scales, effectively addressing the information insufficiency
issue inherent in conventional one-hot representation. The second, CircRNA2Vec, is based
on the Doc2Vec algorithm and aims to capture global contextual features by modeling long-
range dependencies in circRNA sequences. This method treats sequences as a language
and maps subsequences (words) into distributed vectors, which contribute to capturing the
semantics and syntax of these sequences. The effectiveness of iCircRBP-DHN was validated
on multiple circRNAs and linear RNAs datasets, and it showed superior performance over
state-of-the-art algorithms.

While iCircRBP-DHN exhibits several advantages, it also presents potential limitations.
The method’s strengths include its ability to model both local and global contexts within se-
quences, its robustness against numerical instability, and its scalability, demonstrated by the
performance on extensive datasets. However, the method’s performance is heavily reliant
on the quality of sequence data and the effectiveness of the CircRNA2Vec and KNFP encod-
ing schemes, which might not capture all nuances of circRNA–RBP interactions. While the
self-attention mechanism can provide some insights into what the model deems important,
it might not provide a full explanation of the reasoning behind the model’s predictions.

Several studies have focused on predicting lncRNA–disease associations. Liu et al. [83]
developed a dual attention network model, which uses two attention layers, for this task,
outperforming several latest methods. Similarly, Gao and Shang [89] proposed a new
computational model, DeepLDA, which used DNNs and graph attention mechanisms
to learn lncRNA and drug embeddings for predicting potential relationships between
lncRNAs and drug resistance. Fan et al. [97] proposed GCRFLDA, a novel lncRNA–
disease association prediction method based on graph convolutional matrix completion.
Sheng et al. [98] developed VADLP, a model designed to predict lncRNA–disease asso-
ciations using an attention mechanism. These models have demonstrated their ability to
accurately predict lncRNA–disease associations, providing valuable insights into the roles
of lncRNAs in disease development and progression.

In addition to predicting lncRNA–disease associations, deep learning models have also
been used to predict lncRNA–protein interactions. Song et al. [84] presented an ensemble
learning framework, RLF-LPI, for predicting lncRNA–protein interactions. Wekesa et
al. [85] developed a graph representation learning method, GPLPI, for predicting plant
lncRNA–protein interactions (LPIs) from sequence and structural information. These
models have shown their ability to capture dependencies between sequences and structures,
leading to improved prediction performance.

In the task of distinguishing circular RNA (circRNA) from other long non-coding
RNA (lncRNA), Liu et al. [101] proposed an attention-based multi-instance learning (MIL)
network. The model outperformed state-of-the-art models in this task.

Several studies have also focused on the prediction of circRNA–RBP interactions.
Wu et al. [86] proposed an RBP-specific method, iDeepC, for predicting RBP-binding sites
on circRNAs from sequences. Yuan and Yang [90] developed a deep learning method,
DeCban, to identify circRNA–RBP interactions. Niu et al. [99] proposed CRBPDL, a
calculation model that employs an Adaboost integrated deep hierarchical network to
identify binding sites of circular RNA–RBP. These models have demonstrated their ability
to accurately predict circRNA–RBP interactions, providing valuable insights into the roles
of circRNAs in post-transcriptional regulation. Guo et al. [102] proposed a deep learning
model, circ2CBA, for predicting circRNA–RBP-binding sites. The model achieved an AUC
value of 0.8987, outperforming other methods in predicting the binding sites between
circRNAs and RBPs.

In addition to predicting interactions, deep learning models have also been used
to predict and interpret post-transcriptional RNA modifications and ncRNA families.
Song et al. [91] presented MultiRM, a method for the integrated prediction and interpre-
tation of post-transcriptional RNA modifications from RNA sequences. Chen et al. [92]
developed ncDENSE, a deep-learning-model-based method for predicting and interpreting



Biology 2023, 12, 1033 14 of 29

non-coding RNAs families from RNA sequences. These models have shown their ability
to accurately predict and interpret RNA modifications and ncRNA families, providing
valuable insights into the roles of these modifications and families in gene regulation.

Several studies have also focused on predicting circRNA–disease associations.
Li et al. [96] proposed a method called GATGCN that utilizes a graph attention network
and a convolutional graph network (GCN) to explore human circRNA–disease associations
based on multi-source data. Wang et al. [95] proposed CDA-SKAG, a deep learning model
for predicting circRNA–disease associations. Li et al. [94] introduced a deep learning model,
GGAECDA, to predict circRNA–disease associations. These models have demonstrated
their ability to accurately predict circRNA–disease associations, providing valuable insights
into the roles of circRNAs in disease development and progression.

Recent studies have focused on utilizing deep learning models with transformer archi-
tectures and attention mechanisms for the analysis of ncRNAs and circRNAs. These models
have shown promise in various tasks, including the prediction of ncRNA–disease associa-
tions, lncRNA–protein interactions, circRNA–RBP interactions, and the identification of
RNA modifications and ncRNA families. The integration of attention mechanisms in these
models has improved prediction accuracy and facilitated the interpretation of complex
interactions and patterns in genomic data.

4.4. Transcription Process Insights

In recent advancements, deep learning, specifically attention mechanisms and trans-
former models, have been significantly employed in decoding the transcription process
of genome data. Clauwaert et al. [103], Park et al. [108], and Han et al. [105] have pro-
posed transformative models centered on transcription factor (TF)-binding site prediction
and characterization.

As one of the specific examples, Yan et al. [109] introduced an innovative deep learning
framework for circRNA–RBP-binding site discrimination, referred to as iCircRBP-DHN, In-
tegrative Circular RNA–RBP-binding sites Discrimination by Hierarchical Networks. They
addressed common issues with previous computational models, such as poor scalability
and numerical instability, and developed a transformative method that amalgamates local
and global contextual information via deep multi-scale residual network BiGRUs with a
self-attention mechanism.

One of the key advantages of this approach is the fusion of two encoding schemes,
CircRNA2Vec and the K-tuple nucleotide frequency pattern, which allows for the represen-
tation of different degrees of nucleotide dependencies, enhancing the discriminative power
of feature representations. The robustness and superior performance of this method were
evidenced through extensive testing on 37 circRNA datasets and 31 linear RNA datasets,
where it outperformed other state-of-the-art algorithms.

Clauwaert et al. [103] used a transformer-based neural network framework for
prokaryotic genome annotation, primarily focusing on Escherichia coli. The study empha-
sized that a substantial part of the model’s subunits or attention heads were attuned to
identify transcription factors and characterize their binding sites and consensus sequences.
This method opened the door to understanding well-known and possibly novel elements
involved in transcription initiation. Furthering the area of TF-binding site prediction,
Park et al. [108] introduced TBiNet, an attention-based deep neural network model that
quantitatively outperformed state-of-the-art methods and demonstrated increased effi-
ciency in discovering known TF-binding motifs. This study aimed to augment the inter-
pretability of TF-binding site prediction models, an aspect critical to comprehending gene
regulatory mechanisms and identifying disease-associated variations in non-coding regions.
Han et al. [105] proposed MAResNet, a deep learning method combining bottom-up and
top-down attention mechanisms and a ResNet to predict TF-binding sites. The model’s
robust performance on a vast test dataset reaffirmed the potency of attention mechanisms
in capturing complex patterns in genomic sequences.
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Another interesting application of deep learning is seen in the study by Feng et al. [104],
where they developed a model, PEPMAN, that predicts RNA polymerase II pausing sites
based on NET-seq data, which are data from a high-throughput technique used to precisely
map and quantify nascent transcriptional activity across the genome. PEPMAN utilized
attention mechanisms to decipher critical sequence features underlying the pausing of Pol
II. Their model’s predictions, in association with various epigenetic features, delivered
enlightening insights into the transcription elongation process.

Regarding RNA localization, Asim et al. [107] developed EL-RMLocNet, an explain-
able LSTM network for RNA-associated multi-compartment localization prediction, uti-
lizing a novel GeneticSeq2Vec statistical representation learning scheme and an attention
mechanism. This model surpassed the existing state-of-the-art predictor for subcellular
localization prediction.

In predicting RBP-binding sites, Song et al. [110] proposed AC-Caps, an attention-
based capsule network. The model achieved high performance, with an average AUC of
0.967 and an average accuracy of 92.5%, surpassing existing deep-learning models and
proving effective in processing large-scale RBP-binding site data.

Tao et al. [106] presented a novel application in oncology; they developed an inter-
pretable deep learning model, CITRUS, which inferred transcriptional programs driven by
somatic alterations across different cancers. CITRUS utilized a self-attention mechanism
to model the contextual impact of somatic alterations on TFs and downstream transcrip-
tional programs. It revealed relationships between somatic alterations and TFs, promoting
personalized therapeutic decisions in precision oncology.

Deep learning models with attention mechanisms and transformer architectures have
emerged as powerful tools for gaining insights into the transcription process and decoding
genome data. These models have been applied to various tasks, such as TF-binding site
prediction and characterization. Many studies have proposed transformative models
that utilize attention mechanisms to identify TFs, characterize their binding sites, and
understand gene regulatory mechanisms. Additionally, deep learning models have been
employed to predict RNA polymerase II pausing sites, RNA localization, RBP-binding
sites, and transcriptional programs driven by somatic alterations in cancer. These studies
highlight the effectiveness of attention mechanisms in capturing complex patterns in
genomic sequences and providing valuable insights into the transcription process and
gene regulation.

4.5. Multi-Omics/Modal Tasks

Exploring and integrating multi-omics and multi-modal data are substantial tasks in
understanding complex biological systems. Deep learning methods, particularly attention
mechanisms and transformer models, have seen profound advancements and deployments
in this regard. Studies by Gong et al. [111], Kayikci and Khoshgoftaar [112], Ye et al. [113], and
Wang et al. [115] have extensively utilized such methods for biomedical data classification
and disease prediction.

In the study by Kang et al. [114], a comprehensive ensemble deep learning model
for plant miRNA–lncRNA interaction prediction is proposed, namely PmliPEMG. This
method introduces a fusion of complex features, multi-scale convolutional long short-
term memory (ConvLSTM) networks, and attention mechanisms. Complex features, built
using non-linear transformations of sequence and structure features, enhance the sample
information at the feature level. By forming a matrix from the complex feature vector, the
ConvLSTM models are used as the base model, which is beneficial due to their ability to
extract and memorize features over time. Notably, the models are trained on three matrices
with different scales, thus enhancing sample information at the scale level.

An attention mechanism layer is incorporated into each base model, assigning different
weights to the output of the LSTM layer. This attentional layer allows the model to focus
on crucial information during training. Finally, an ensemble method based on a greedy
fuzzy decision strategy is implemented to integrate the three base models, improving
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efficiency and generalization ability. This approach exhibits considerable advantages.
Firstly, the use of multi-level information enhancement ensures a more comprehensive
understanding of the underlying data, increasing the robustness of the method. The
greedy fuzzy decision enhances the model’s efficiency and overall generalization ability.
Furthermore, the application of attention mechanisms allows the model to focus on the
most informative features, improving predictive accuracy.

Gong et al. [111] proposed MOADLN, a multi-omics attention deep learning net-
work, which is adept at exploring correlations within and across different omics datasets
for biomedical data classification. This methodology showcased its effectiveness in deep-
learning-based classification tasks. Kayikci and Khoshgoftaar [112] proposed AttentionDDI,
a gated attentive multi-modal deep learning model for predicting breast cancer by inte-
grating clinical, copy number alteration, and gene expression data. It demonstrated the
potential for significant improvements in breast cancer detection and diagnosis, suggesting
better patient outcomes. Ye et al. [113] implemented a novel gene prediction method
using a Siamese neural network, a deep learning architecture that employs twin branches
with shared weights to compare and distinguish similarity or dissimilarity between in-
put samples, containing a lightweight attention module for identifying ovarian cancer
causal genes. This approach outperformed others in accuracy and effectiveness. Similarly,
Wang et al. [115] proposed a deep neural network model that integrates multi-omics data to
predict cellular responses to known anti-cancer drugs. It employs a novel graph embedding
layer and attention layer that efficiently combines different omics features, accounting for
their interactions.

Chan et al. [116] proposed a deep neural network architecture combining structural
and functional connectome data, which refers to the comprehensive mapping and analysis
of neural connections within the brain, with multi-omics data for disease classification.
They utilized graph convolution layers for the simultaneous modeling of functional Mag-
netic Resonance Imaging (fMRI) and Diffusion Tensor Imaging (DTI) data, which are
neuroimaging techniques used to, respectively, measure blood flow changes and diffusion
patterns within the brain; and separate graph convolution layers for modeling multi-omics
datasets. An attention mechanism was used to fuse these outputs, highlighting which omics
data contributed the most to the classification decision. This approach demonstrated a high
efficacy in Parkinson’s disease classification using various combinations of multi-modal
imaging data and multi-omics data.

These studies highlight the potential of attention mechanisms and transformer models
in decoding complex biological systems and addressing multi-omics and multi-modal
challenges in genomics research.

4.6. CRISPR Efficacy and Outcome Prediction

The efficacy and outcome prediction of CRISPR-Cas9 gene editing have significantly im-
proved due to the development of sophisticated deep learning models. Several studies, including
Liu et al. [118], Wan and Jiang [119], Xiao et al. [120], Mathis et al. [121], Zhang et al. [122], and
Zhang et al. [123], have extensively used such models to predict CRISPR-Cas9 editing out-
comes, single guide RNAs (sgRNAs) knockout efficacy, and off-target activities, enhancing
the precision of gene editing technologies.

The research by Zhang et al. [123] introduced a novel method for predicting on-target
and off-target activities of CRISPR/Cas9 sgRNAs. They proposed two deep learning
models, CRISPR-ONT and CRISPR-OFFT, which incorporate an attention-based CNN to
focus on sequence elements most decisive in sgRNA efficacy. These models offer several
key advantages. First, they utilize an embedding layer that applies k-mer encoding to
transform sgRNA sequences into numerical values, allowing the CNN to extract feature
maps. This technique has been demonstrated to outperform other methods in sequential
analysis. Second, these models use attention mechanisms to improve both prediction
power and interpretability, focusing on the elements of the input sequence that are the
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most relevant to the output. This mirrors how RNA-guide Cas9 nucleases scan the genome,
enhancing the realism of the model.

Liu et al. [118] presented Apindel, a deep learning model utilizing the GloVe model,
a widely used unsupervised learning algorithm that captures the semantic relationships
between words by analyzing the global statistical co-occurrence patterns of words within a
large corpus. By integrating the GloVe, positional encoding, and a deep learning model
embedding BiLSTM and attention mechanism, the proposed model predicts CRISPR-Cas9
editing outcomes by capturing the semantic relationships. It outperformed most advanced
models in DNA mutation prediction and provided more detailed prediction categories. In
the same vein, Wan and Jiang [119] introduced TransCrispr, a model combining transformer
and CNN architectures for predicting sgRNA knockout efficacy in the CRISPR-Cas9 system.
The model exhibited superior prediction accuracy and generalization ability when tested
on seven public datasets.

Moreover, Xiao et al. [120] proposed AttCRISPR, an interpretable spacetime model for
predicting the on-target activity of sgRNA in the CRISPR-Cas system. The model incorpo-
rated encoding-based and embedding-based methods using an ensemble learning strategy
and achieved a superior performance compared to state-of-the-art methods. Notably, the
model incorporated two attention modules, one spatial and one temporal, to enhance
interpretability. Similarly, Liu et al. [117] developed an interpretable machine learning
model for predicting the efficiency and specificity of the CRISPR-Cas system.

Mathis et al. [121] utilized attention-based bidirectional RNNs to develop PRIDICT,
an efficient model for predicting prime editing outcomes. The model demonstrated reliable
predictions for small-sized genetic alterations and highlighted the robustness of PRIDICT
in improving prime editing efficiencies across various cell types.

In line with off-target activities prediction, Zhang et al. [122] presented a novel
model, CRISPR-IP, for effectively harnessing sequence pair information to predict off-target
activities within the CRISPR-Cas9 gene editing system. Their methodology integrated
CNN, BiLSTM, and the attention layer, demonstrating superior performance compared to
existing models.

Recent studies have made significant advancements in predicting the efficacy and
outcomes of CRISPR-Cas9 gene editing using deep learning models. These models have
demonstrated superior accuracy and performance in predicting CRISPR-Cas9 editing
outcomes, sgRNA knockout efficacy, and off-target activities. The integration of attention
mechanisms in these models has improved interpretability and provided valuable insights
into the mechanisms of CRISPR-Cas9 gene editing.

4.7. Gene Regulatory Network Inference

The emergence of deep learning has revolutionized the inference of gene regulatory
networks (GRNs) from single-cell RNA-sequencing (scRNA-seq) data, underscoring the
utility of transformative machine learning architectures such as the attention mechanism
and transformers. Prominent studies, including Lin and Ou-Yang [124], Xu et al. [125],
Feng et al. [126], Ullah and Ben-Hur [127], and Xie et al. [128], have utilized these ar-
chitectures to devise models for GRN inference, highlighting their superior performance
compared to conventional methodologies.

The study by Ullah and Ben-Hur [127] presented a novel model, SATORI, for the infer-
ence of GRNs. SATORI is a Self-ATtentiOn-based model engineered to detect regulatory
element interactions. SATORI leverages the power of deep learning through an amalga-
mation of convolutional layers and a self-attention mechanism. The convolutional layers,
assisted by activation and max-pooling, process the input genomic sequences represented
through one-hot encoding. The model further incorporates an optional RNN layer with
long short-term memory units for temporal information capture across the sequence.

The multi-head self-attention layer in SATORI is its most pivotal component, designed
to model dependencies within the input sequence irrespective of their relative distances.
This feature enables the model to effectively capture transcription factor cooperativity. The
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model is trained and evaluated through a random search algorithm for hyperparameter
tuning and the area under the ROC curve for performance measurement. One of the most
distinctive features of SATORI is its ability to identify interactions between sequence motifs,
contributing to its interpretability. It uses integrated gradients to calculate attribution scores
for motifs in a sequence. Changes in these scores after motif mutation can suggest potential
interactions. In benchmarking experiments, SATORI demonstrated superior detection rates
of experimentally validated transcription factor interactions compared to existing methods
without necessitating computationally expensive post-processing.

Lin and Ou-Yang [124] proposed DeepMCL, a model leveraging multi-view contrastive
learning to infer GRNs from multiple data sources or time points. DeepMCL represented
each gene pair as a set of histogram images and introduced a deep Siamese convolutional
neural network with contrastive loss, a loss function commonly used in unsupervised or
self-supervised learning tasks that encourages similar samples to be closer in the embedding
space while pushing dissimilar samples farther apart; this allows the low-dimensional
embedding for each gene pair to be obtained. Moreover, an attention mechanism was
employed to integrate the embeddings extracted from different data sources and neighbor
gene pairs.

Similarly, Xu et al. [125] presented STGRNS, an interpretable transformer-based
method for inferring GRNs from scRNA-seq data. The method leveraged the gene ex-
pression motif technique to convert gene pairs into contiguous sub-vectors, which then
served as the input for the transformer encoder. Furthermore, Feng et al. [126] introduced
scGAEGAT, a multi-modal model integrating graph autoencoders and graph attention
networks for single-cell RNA-seq analysis, exhibiting a promising performance in gene
imputation and cell clustering prediction.

Xie et al. [128] proposed MVIFMDA, a multi-view information fusion method for
predicting miRNA–disease associations. The model employed networks constructed from
known miRNA–disease associations and miRNA and disease similarities, processed with a
graph convolutional network, followed by an attention strategy to fuse topology represen-
tation and attribute representations.

The successful application of deep learning— particularly, attention mechanisms and
transformer models—in GRN inference highlights its potential to enhance the precision
of gene regulatory network predictions and other genetic analyses. These models have
demonstrated superior performance and interpretability, outperforming conventional
methods and providing valuable insights into gene regulation and disease mechanisms.

4.8. Disease Prognosis Estimation

Deep learning models with transformer architectures and attention mechanisms have
seen significant utilization in estimating disease prognosis, demonstrating their efficacy
in extracting meaningful patterns from complex genomic data. Among the trailblazing
studies in this area include those conducted by Lee [129], Choi and Lee [130], Dutta et al. [131],
Xing et al. [132], and Meng et al. [133].

Lee [129] introduced the Gene Attention Ensemble NETwork (GAENET), a model
designed for prognosis estimation of low-grade glioma (LGG). GAENET incorporated a
gene attention mechanism tailored for gene expression data, outperforming traditional
methods and identifying HILS1 as the most significant prognostic gene for LGG. Similarly,
Choi and Lee [130] proposed Multi-PEN, a deep learning model that utilizes multi-omics
and multi-modal schemes for LGG prognosis. The model incorporated gene attention layers
for each data type, such as mRNA and miRNA, to identify prognostic genes, showing
robust performance compared to existing models.

The power of self-attention was highlighted by Dutta et al. [131] through their deep
multi-modal model, DeePROG, designed to forecast the prognosis of disease-affected genes
from heterogeneous omics data. DeePROG outperformed baseline models in extracting
valuable features from each modality and leveraging the prognosis of the biomedical data.
On the other hand, Xing et al. [132] developed MLA-GNN, a multi-level attention graph
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neural network for disease diagnosis and prognosis. Their model formatted omics data into
co-expression graphs and constructed multi-level graph features, achieving exceptional
performance on transcriptomic data from The Cancer Genome Atlas datasets (TCGA-
LGG/TCGA-GBM) and proteomic data from COVID-19/non-COVID-19 patient sera.

In a distinct but related context, Meng et al. [133] introduced a novel framework called
SAVAE-Cox for survival analysis of high-dimensional transcriptome data. The model
incorporated a novel attention mechanism and fully leveraged an adversarial transfer
learning strategy, outperforming state-of-the-art survival analysis models on the concor-
dance index. Feng et al. [134] applied a deep learning model with an attention mechanism.
The classifier could accurately predict survivals, with area under the receiver operating
characteristic (ROC) curves and time-dependent ROCs reaching 0.968 and 0.974 in the
training set, respectively.

Taken together, these studies collectively highlight the potential of attention mecha-
nisms in improving disease prognosis estimation, heralding a new paradigm in analyzing
genomic data for prognostic purposes. Their efficacy across a range of disease types and
data modalities signifies a promising avenue for future research in precision medicine.

4.9. Gene Expression-Based Classification

The implementation of deep learning models with transformer architectures and at-
tention mechanisms has significantly improved the classification accuracy based on gene ex-
pressions, as presented in numerous studies by Gokhale et al. [135], Beykikhoshk et al. [136],
Manica et al. [137], and Lee et al. [138].

Gokhale et al. [135] put forth GeneViT, a vision transformer method, which is a deep
learning architecture that applies the principles of self-attention and transformer models to
visual data for classifying cancerous gene expressions. This innovative approach started
with a dimensionality reduction step using a stacked autoencoder, followed by an improved
DeepInsight algorithm, which is a method to transform non-image data to be used for
convolution neural network architectures, achieving a remarkable performance edge over
existing methodologies, as observed from evaluations on ten benchmark datasets.

Similarly, in the quest to improve breast cancer subtype classification, Beykikhoshk et al. [136]
introduced DeepTRIAGE. This deep learning architecture adopted an attention mechanism
to derive personalized biomarker scores, thereby allocating each patient with interpretable
and individualized biomarker scores. Remarkably, DeepTRIAGE uncovered a significant
association between the heterogeneity within luminal A biomarker scores and tumor stage.

In a different application, Manica et al. [137] crafted a novel architecture for the
interpretable prediction of anti-cancer compound sensitivity. This model utilized a multi-
modal attention-based convolutional encoder and managed to outstrip both a baseline
model trained on Morgan fingerprints, a type of molecular fingerprinting technique used in
chemoinformatics to encode structural information of molecules, and a selection of encoders
based on the Simplified Molecular Input Line Entry System (SMILES), along with previously
reported state-of-the-art methodologies for multi-modal drug sensitivity prediction.

Lee et al. [138] developed an innovative pathway-based deep learning model with
an attention mechanism and network propagation for cancer subtype classification. The
model incorporated graph convolutional networks to represent each pathway and a multi-
attention-based ensemble model was used to amalgamate hundreds of pathways. The
model demonstrated high classification accuracy in experiments with five TCGA can-
cer datasets and revealed subtype-specific pathways and biological functions, providing
profound insights into the biological mechanisms underlying different cancer subtypes.

These studies highlight the effectiveness and innovative applications of attention mecha-
nisms in genomic data analysis, offering new insights in precision medicine and oncology.

4.10. Proteomics

The utilization of deep learning, particularly the incorporation of transformer archi-
tectures and attention mechanisms in proteomics, has led to groundbreaking developments
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in the prediction of protein functionality, as depicted in the studies by Hou et al. [139],
Gong et al. [140], Armenteros et al. [141], and Littmann et al. [142].

Hou et al. [139] constructed iDeepSubMito, a deep neural network model designed
for the prediction of protein submitochondrial localization. This model employed an
inventive graph embedding layer that assimilated interactome data as prior information for
prediction. Additionally, an attention layer was incorporated for the integration of various
omics features while considering their interactions. The effectiveness of this model was
validated by its outperformance of other computational methods during cross-validation
on two datasets containing proteins from four mitochondrial compartments.

Meanwhile, Gong et al. [140] proposed an algorithm, iDRO, aimed at optimizing
mRNA sequences based on given amino acid sequences of target proteins. Their algorithm
involved a two-step process consisting of open reading frame (ORF) optimization and
untranslated region (UTR) generation. The former step used BiLSTM-CRF for determining
the codon for each amino acid, while the latter step involved RNA-Bart for outputting the
corresponding UTR. The optimized sequences of exogenous genes adopted the pattern of
human endogenous gene sequences, and the mRNA sequences optimized by their method
exhibited higher protein expression compared to traditional methods.

Armenteros et al. [141] showcased TargetP 2.0, a state-of-the-art machine learning
model that identifies N-terminal sorting signals in peptides using deep learning. Their
model emphasized the second residue’s significant role in protein classification, revealing
unique distribution patterns among different groups of proteins and targeting peptides.

Littmann et al. [142] introduced bindEmbed21, a method predicting protein residues
binding to metal ions, nucleic acids, or small molecules. This model leveraged embeddings
from the transformer-based protein Language Model ProtT5, outperforming MSA-based
predictions using single sequences. Homology-based inference further improved perfor-
mance, and the method found binding residues in over 42% of all human proteins not
previously implied in binding. These studies demonstrate the significant potential of trans-
former architectures and attention mechanisms in deep learning models for precise protein
functionality prediction.

4.11. Cell-Type Identification

In recent studies, the application of transformer architectures and attention mecha-
nisms in deep learning has brought significant progress to cell-type identification, demon-
strating superior performance across various cell types, species, and sequencing depths.
The application of transformer architectures and attention mechanisms in deep learning for
cell-type identification has seen significant advancements, as evidenced in the studies by
Song et al. [143], Feng et al. [144], Buterez et al. [145], and Zhang et al. [146].

Song et al. [143] developed TransCluster, a hybrid network structure that leverages
linear discriminant analysis and a modified transformer for enhancing feature learning in
single-cell transcriptomic maps. This method outperformed known techniques on various
cell datasets from different human tissues, demonstrating high accuracy and robustness.

Feng et al. [144] proposed a directed graph neural network model named scDGAE for
single-cell RNA-seq data analysis. By employing graph autoencoders and graph attention
networks, scDGAE retained the connection properties of the directed graph and broadened
the receptive field of the convolution operation. This model excelled in gene imputation
and cell clustering prediction on four scRNA-seq datasets with gold-standard cell labels.

Furthermore, Buterez et al. [145] introduced CellVGAE, a workflow for unsupervised
scRNA-seq analysis utilizing graph attention networks. This variational graph autoen-
coder architecture operated directly on cell connectivity for dimensionality reduction and
clustering. Outperforming both neural and non-neural techniques, CellVGAE provided
interpretability by analyzing graph attention coefficients, capturing pseudotime and NF-
kappa B activation dynamics.

Zhang et al. [146] showcased RefHiC, an attention-based deep learning framework for
annotating topological structures from Hi-C, which is a genomic technique that measures
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the three-dimensional spatial organization of chromatin within the nucleus. Utilizing
a reference panel of Hi-C datasets, RefHiC demonstrated superior performance across
different cell types, species, and sequencing depths.

4.12. Predicting Drug–Drug Interactions

Recent studies have showcased the remarkable progress in predicting drug–drug
interactions (DDIs) through the use of deep learning models incorporating transformer
architecturesmand attention mechanisms, surpassing classical and other deep learning
methods while highlighting significant drug substructures. Deep learning with transformer
architectures and attention mechanisms has significantly advanced the prediction of DDIs.
Schwarz et al. [147] introduced AttentionDDI, a Siamese self-attention multi-modal neural
network that integrates various drug similarity measures derived from drug characteristics.
It demonstrated competitive performance compared to state-of-the-art DDI models on mul-
tiple benchmark datasets. Similarly, Kim et al. [148] developed DeSIDE-DDI, a framework
that incorporates drug-induced gene expression signatures for DDI prediction. This model
excelled with an AUC of 0.889 and an Area Under the Precision–Recall (AUPR) of 0.915,
surpassing other leading methods in unseen interaction prediction.

Furthermore, Liu and Xie [149] proposed TranSynergy, a knowledge-enabled and
self-attention transformer-boosted model for predicting synergistic drug combinations.
TranSynergy outperformed existing methods and revealed new pathways associated with
these combinations, providing fresh insights for precision medicine and anti-cancer thera-
pies. Wang et al. [150] also developed a deep learning model, DeepDDS, for identifying
effective drug combinations for specific cancer cells. It surpassed classical machine learning
methods and other deep-learning-based methods, highlighting significant chemical sub-
structures of drugs. Together, these studies highlight the utility of transformer architectures
and attention mechanisms in predicting drug–drug interactions, paving the way for further
advancements in the field.

4.13. Other Topics

Transformer architectures and attention mechanisms have found applications in var-
ious genomic research topics, highlighting the versatility of transformer architectures
and attention mechanisms in genomics research. For instance, Yu et al. [151] developed
IDMIL-III, an imbalanced deep multi-instance learning approach, which excellently pre-
dicts genome-wide isoform-isoform interactions, and Yamaguchi and Saito [152] enhanced
transformer-based variant effect prediction by proposing domain architecture (DA)-aware
evolutionary fine-tuning protocols, which are computational methods that leverage evo-
lutionary algorithms and consider the structural characteristics of protein domains to
optimize and refine protein sequence alignments.

On the other hand, Zhou et al. [153] combined convolutional neural networks with
transformers in a deep learning model, INTERACT, to predict the effects of genetic varia-
tions on DNA methylation levels. Cao et al. [154] presented DeepASmRNA, an attention-
based convolutional neural network model, showing promising results for predicting
alternative splicing events.

Gupta and Shankar [155] innovatively proposed miWords, a system that treats the
genome as sentences composed of words, to identify pre-miRNA regions across plant
genomes, achieving an impressive accuracy of 98%. Concurrently, Zhang et al. [156]
developed iLoc-miRNA, a deep learning model employing BiLSTM with multi-head self-
attention for predicting the location of miRNAs in cells, showing high selectivity for
extracellular miRNAs.

Choi and Chae [157] introduced moBRCA-net, a breast cancer subtype classification
framework, which significantly improved performance by integrating multiple omics
datasets. These studies showcase the versatility and potential of transformer architectures
and attention mechanisms in diverse genomic research contexts.
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5. Discussion

In consideration of the existing literature, it is evident that deep learning models
employing transformer architectures and attention mechanisms have shown promising
results in analyzing genome data. However, challenges persist, and opportunities for future
work are manifold.

5.1. Challenges

One of the principal challenges inherent in applying deep learning models to genomic
data pertains to the complex structure of these data. Specifically, gene expression data are
typically represented as high-dimensional vectors due to the number of genes captured in
each sample during the high-throughput sequencing. This representation poses a challenge
for conventional data analysis and interpretation methods. Although some studies, such as
those by Lee et al. [70] and Chen et al. [71], have made strides in this aspect by proposing
novel model architectures or preprocessing techniques, the high-dimensional nature of
genomic data remains a challenge.

Another significant challenge is the limited availability of labeled data. In many tasks
such as predicting lncRNA–disease associations or circRNA–RBP interactions, the amount
of experimentally confirmed positive and negative associations is often insufficient for
training deep learning models [83,86]. This can lead to models that are biased towards the
majority class and, therefore, provide poor performance on the minority class.

The inherent complexity of biological systems also poses significant challenges. For
instance, gene–gene and gene–environment interactions are complex and often non-linear,
making them challenging to capture with standard deep learning models [72,74]. Fur-
thermore, genomic and epigenomic data are often heterogeneous, consisting of diverse
data types such as sequence data, gene expression data, and histone modification data.
Integrating these diverse data types in a unified model can be challenging.

5.2. Future Work

One promising direction for future work is to develop novel model architectures
that can effectively handle the high-dimensional nature of genomic data. This could
involve designing models that can automatically extract relevant features from the data
or leveraging techniques such as dimensionality reduction or feature selection. Moreover,
the incorporation of biological prior knowledge into the design of these models could help
guide the feature extraction process and lead to more interpretable models.

There is also a need for methods that can effectively deal with the limited availability
of labeled data in genomics. One promising approach is to leverage unsupervised or
semi-supervised learning techniques, which can make use of unlabeled data to improve
model performance [158–160]. Transfer learning, where a model trained on a large dataset
is fine-tuned on a smaller, task-specific dataset, could also be a promising approach for
dealing with the scarcity of labeled data [161–163].

Addressing the complexity of biological systems could involve developing models
that can capture the intricate interactions and non-linear relationships that are typical in
biological systems. These models would need to be able to accommodate the heterogeneity
of genomic and epigenomic data. Recent work by Kang et al. [72] and Liao et al. [73] points
to the potential of multi-modal deep learning models in this regard. Further research is
needed to develop and refine such models for various tasks in genomics.

Also, the incorporation of domain knowledge into the models could be another
promising approach. By incorporating known biological mechanisms or relationships into
the models, we could guide the learning process and make the learned representations
more interpretable.

Finally, the emergence of transformer-based models, such as the GPT families, provides
an exciting opportunity for future work. These models have shown great promise in natural
language processing, and their ability to model long-range dependencies, where distant
genomic elements often interact with each other, could be highly beneficial in genomics.
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Therefore, adapting and applying these transformer-based models to genomic data is a
promising direction for future work.

6. Conclusions

In the rapidly advancing landscape of bioinformatics, the need for a comprehensive
synthesis of the most recent developments and methodologies is essential. This review
aims to provide an extensive examination of the transformative use of deep learning,
specifically transformer architectures and attention mechanisms, in the analysis of protein–
protein interactions. The swift evolution of these computational strategies has significantly
enhanced our capacity to process and decipher complex genomic data, marking a new
epoch in the field.

The analysis presented herein, drawn from the most recent studies from 2019 to 2023,
emphasizes the astounding versatility and superior performance of these deep learning
techniques in a multitude of applications. From sequence and site prediction and gene
expression and phenotype prediction, to the more complex multi-omics tasks and disease
prognosis estimation, deep learning techniques have proven their potential in elucidating
hidden patterns and relationships within genomic sequences. Furthermore, the application
of transformer architectures and attention mechanisms has not only expedited computa-
tions but also improved accuracy and interpretability, ultimately driving the field forward.

Despite the remarkable advancements and successes recorded, it is important to note
that the integration of deep learning in genome data analysis is still in its infancy. There
remain several challenges and limitations to be addressed, particularly in improving the
interpretability of these models and adapting them for use with smaller datasets, often
encountered in the domain of genomics. Moreover, with the ever-growing complexity and
scale of genomic data, there is a constant demand for even more advanced and efficient
computational tools.

Through this review, we hope to provide a platform for researchers to engage with the
latest advancements, familiarize themselves with the state-of-the-art applications, and iden-
tify potential gaps and opportunities for future exploration. This synthesis, encompassing
a wide array of research topics and applications, demonstrates the immense potential and
broad applicability of deep learning techniques in bioinformatics.

The integration of deep learning methodologies, particularly transformer architec-
tures and attention mechanisms, into the bioinformatics toolkit has greatly facilitated our
understanding of the ’language of biology’. These powerful computational techniques
have proven to be an invaluable asset in unraveling the mysteries encoded within genomic
sequences. As this research frontier continues to expand and evolve, we anticipate that the
insights provided by this review will spur continued innovation and exploration, propelling
us towards new discoveries in the dynamic world of genome data analysis.
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