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Abstract: This review paper provides an extensive analysis of the rapidly evolving convergence
of deep learning and long non-coding RNAs (lncRNAs). Considering the recent advancements in
deep learning and the increasing recognition of lncRNAs as crucial components in various biological
processes, this review aims to offer a comprehensive examination of these intertwined research areas.
The remarkable progress in deep learning necessitates thoroughly exploring its latest applications
in the study of lncRNAs. Therefore, this review provides insights into the growing significance
of incorporating deep learning methodologies to unravel the intricate roles of lncRNAs. By scruti-
nizing the most recent research spanning from 2021 to 2023, this paper provides a comprehensive
understanding of how deep learning techniques are employed in investigating lncRNAs, thereby
contributing valuable insights to this rapidly evolving field. The review is aimed at researchers and
practitioners looking to integrate deep learning advancements into their lncRNA studies.

Keywords: deep learning; lncRNA; long non-coding RNA; gene transcription; protein regulation;
machine learning

1. Introduction

In the evolving landscape of machine learning, deep learning has revolutionized our
understanding and application of technology, paving the way for breakthroughs and novel
explorations in a plethora of fields [1–4]. It has spurred the advent of innovative methods,
such as image generation [5–7] and natural language processing techniques [8–11], each
contributing to expanding the horizons of deep learning applications. This emerging area
of study has also found its relevance in molecular biology, particularly in understanding
long non-coding RNAs (lncRNAs) [12–14].

Our focus in this review is on lncRNAs, which are a category of RNAs that lack protein-
coding potential and consist of nucleotide sequences longer than 200 nucleotides, which
are transcribed and processed mostly from intergenic regions, introns with or without some
exons, or enhancer regions of the genome [12], yet have emerged as significant contributors
to numerous biological processes. lncRNAs, with their intricate and diverse functions, have
gained increasing attention from the scientific community as their aberrations have been
implicated in various diseases. The fast-paced research dedicated to lncRNAs, in parallel
with the rapid advancements in deep learning, necessitates a comprehensive overview of
the intersection of these two vital areas of study.

As signal molecules, lncRNAs play a crucial role in the transcription of downstream
genes, often exhibiting a high degree of context specificity [15–17]. Recent studies have
shown lncRNAs to be highly organized in their transcription processes, responding and
adapting to different environmental stimuli to influence particular signaling pathways [18–20].
This detailed orchestration of transcription by lncRNAs, often in association with specific
proteins, such as transcription factors, underscores the integral role they play in transcrip-
tional regulation.
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In their capacity as decoy molecules, lncRNAs perform a variety of functions, in-
cluding interference in various molecular pathways. These RNAs interact directly with
specific protein molecules after their transcription, leading to a disruption in the normal
functioning of these proteins [21,22]. This interaction with transcription regulators inhibits
the transcription factors’ functionality, thus suppressing downstream gene transcription.
Furthermore, lncRNAs can impede protein functionality, affecting their ability to regulate
mRNA expression. Furthermore, lncRNAs have been found to play vital roles in tumor
progression, participating in the regulation of gene expression at the epigenetic, transcrip-
tional, and post-transcriptional levels [23,24]. Some lncRNAs influence gene expression
by altering the chromatin structure, histone modification status, and DNA methylation
status [25,26].

In the current technological landscape, deep learning has rapidly evolved to influence
a range of scientific fields significantly. This remarkable evolution, combined with the
emerging importance of lncRNAs, underscores the necessity to explore the confluence
of these two spheres critically. Recognizing this need, we aim to deliver an exhaustive
analysis of how deep learning is employed in the study of lncRNAs, thereby providing
fresh insights into this fast-growing intersection.

This review is a testament to our commitment to keeping abreast with the most
recent advancements in the field, specifically those from 2021 to 2023. As deep learning
continues to evolve at a rapid pace, it is imperative to stay up-to-date with the latest
research developments. The significance of such a review cannot be overstated, as it will
be invaluable to researchers and practitioners who strive to integrate the advancements of
deep learning into their lncRNA studies.

2. Literature Analysis
2.1. Paper Selection Process

The primary aim of the paper selection process was to ensure the inclusion of high-
quality, relevant research within the domain. To achieve this, we adopted an algorithmic
approach centered around the academic search engine, Web of Science (WOS). Carefully
selected search keywords were used, focusing on central themes, such as deep learning,
lncRNA, and neural networks, to identify pertinent articles for review.

While recognizing the existence of preprints and conference papers, we chose to
concentrate solely on peer-reviewed journal articles. This selection criterion enhances
the reliability and validity of the review by ensuring the inclusion of studies that have
undergone a stringent review process. This decision was driven by two principal factors.
First, the peer-review process serves as a crucial mechanism for maintaining the quality
and reliability of scientific literature by subjecting research to thorough scrutiny by domain
experts. Second, peer-reviewed journals are traditionally esteemed as trustworthy and
credible sources for publishing scientifically sound and influential research.

To maintain the novelty and uniqueness of the review, certain categories of articles,
such as review articles and perspective pieces, were intentionally excluded. This approach
aimed to emphasize the incorporation of primary research-focused studies, in alignment
with the purpose of this review.

The review’s temporal scope was restricted to articles published within the last three
years, from 2021 to 2023. This period was selected to assure the relevance and contem-
poraneity of the review, and to provide a comprehensive understanding of the latest
developments and trends in deep learning for lncRNA research. It is worth noting that data
collection for 2023 was carried out until May. This was done to ensure that the review’s
currency aligns with the most recent advancements in the field. The selected studies are
summarized in Table 1.
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Table 1. Summary of investigations employing deep learning approaches in lncRNA studies between
2021 and 2023.

Research Topics Deep Learning Approaches

Prediction of
lncRNA–disease
associations

ACLDA, combining autoencoders, CNN, and attention mechanism [27]; CapsNet–LDA, predicting
lncRNA–disease associations using capsule network and attention [28]; DBNLDA, deep belief network-based
lncRNA–disease association prediction [29]; Deep learning cluster analysis of lncRNAs in heart failure [30];
DeepMNE, deep multi-network embedding for lncRNA–disease prediction [31]; DHNLDA, deep hierarchical
network with stacked autoencoder and ResNet [32]; DMFLDA, deep matrix factorization for predicting
lncRNA–disease associations [33]; Dual attention network, enhances the learning of lncRNA–disease feature
sets [34]; GCRFLDA, graph convolutional matrix completion-based lncRNA–disease prediction [35];
gGATLDA, lncRNA–disease associations prediction via graph-level attention networks [36]; GSMV, learning
of global dependencies and multi-semantics within heterogeneous graphs [37]; GTAN, graph neural network
for predicting lncRNA–disease associations [38]; HGATLDA, heterogeneous graph attention network for
lncRNA–disease associations [39]; HGNNLDA, heterogeneous graph neural network for lncRNA–disease
association [40]; Identifying cancer transcriptome signatures via deep learning interpretation [41];
iLncRNAdis–FB, CNN with fusing biological feature blocks [42]; LDACE, combining extreme learning
machine with CNN [43]; LDICDL, identifying lncRNA–disease associations using collaborative deep
learning [44]; LGDLDA, predicting disease-related lncRNAs via multiomics data and machine learning [45];
LR–GNN, graph neural network-based prediction of molecular associations [46]; MAGCNSE, lncRNA–disease
association prediction via multi-view graph convolutional network [47]; MCA–Net, predicting
lncRNA–disease associations using attention CNN [48]; MLMKDNN, predicting ncRNA–disease associations
via deep multiple kernel learning [49]; MLGCNET, predicting lncRNA–disease associations using multi-layer
graph embedding [50]; Multi-run concrete autoencoder identifying prognostic lncRNAs for cancers [51];
NELDA, predicting lncRNA–disease associations via deep autoencoder models [52]; Novel computational
approach, lncRNA–disease prediction via BPSO and ML–ELM [53]; PANDA, graph convolutional
autoencoders predicting novel lncRNA–disease associations [54]; Prognostic and diagnostic value of lncRNA
in colorectal cancer [55]; VADLP, predicting lncRNA–disease associations with attentional multi-level
encoding [56]; VGAELDA, predicting lncRNA–disease associations using variational inference and
autoencoders [57].

Prediction of
lncRNA–protein
interactions

BiHo–GNN, using bipartite graph embedding [58]; Capsule–LPI, a multichannel capsule network for
lncRNA–protein interaction prediction [59]; DeepLPI, a multimodal deep learning method for
lncRNA–protein isoform interactions [60]; DFRPI, deep autoencoder and marginal Fisher analysis [61];
EnANNDeep, ensemble-based framework with adaptive k-nearest neighbor for the lncRNA–protein
interaction [62]; iEssLnc, graph neural network-based estimation of lncRNA gene essentiality [63];
LGFC–CNN, using deep learning with feature combination [64]; LPI–CSFFR, CNN-based lncRNA–protein
interaction prediction with serial fusion and feature reuse [65]; LPI–deepGBDT, gradient boosting decision
trees-based lncRNA–protein interaction identification [66]; LPI–DLDN, dual-net neural architecture for
lncRNA–protein interactions prediction [67]; LPI–HyADBS, hybrid framework with DNN, XGBoost, SVM for
lncRNA–protein interaction [68]; LPICGAE, predicting lncRNA–protein interactions using combined graph
autoencoders [69]; PRPI–SC, ensemble deep learning for plant lncRNA–protein interactions prediction [70];
RLF–LPI, ensemble learning framework with residual LSTM and fusion attention [71].

Prediction of
lncRNA–miRNA
interactions

BoT–Net, efficient lncRNA–miRNA interaction prediction using the bag of tricks-based neural network [72];
DeepWalk–LMI, inferring lncRNA–miRNA associations via comprehensive graph [73]; GCNCRF, predicting
lncRNA–miRNA interactions using graph convolution and conditional random field [74]; MD–MLI, predicting
lncRNA–miRNA interactions using multiple features and hierarchical deep learning [75]; ncRNAInter, a novel
strategy using a graph neural network to discover lncRNA–miRNA interactions [76]; Optimized ensemble
deep learning, predicting plant lncRNA–miRNA based on artificial gorilla troops algorithm [77]; PmliHFM,
plant lncRNA–miRNA interaction prediction via hybrid feature mining network [78]; PmliPEMG, multi-level
information enhancement and greedy fuzzy decision for plant lncRNA–miRNA interaction prediction [79];
preMLI, uncovering potential lncRNA–miRNA interactions through pre-training and deep feature mining [80].

Classification and
Prediction of
lncRNA
characteristics

Class similarity network, identifying lncRNAs using relationships among samples [81]; DeepLncPro, CNN for
identifying lncRNA promoters [82]; DeepPlnc, high accuracy plant lncRNA identification using bimodal
CNN [83]; Genome-wide analysis, exploring features related to human lncRNA stability [84]; LncDLSM,
lncRNA identification using the deep learning-based sequence model [85]; LncReader, identifying
dual-functional lncRNAs using multi-head self-attention [86]; lncIBTP, predicting interaction biomolecule type
for a given lncRNA using ensemble deep learning [87]; RNA prediction based on neural network integration
of CNN and Bi-LSTM [88]; Xlnc1DCNN, interpretable deep learning model, lncRNA identification using 1D
CNN [89].
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Table 1. Cont.

Research Topics Deep Learning Approaches

Prediction of
lncRNA
subcellular
localization

DeepLncLoc, a deep learning framework for lncRNA subcellular localization using subsequence
embedding [90]; EVlncRNA–Dpred, an improved prediction method of experimentally validated lncRNAs
using deep learning [91]; GM–lncLoc, lncRNA subcellular localization prediction based on graph neural
network with meta-learning [92]; GraphLncLoc, predicting lncRNA subcellular localization using graph
convolutional networks and sequence-to-graph transformation [93]; PlncRNA–HDeep, a plant long
non-coding RNA prediction method that utilizes hybrid deep learning with two encoding styles [94].

Prediction of
functional roles of
lncRNAs in
immune response
pathways

CD8–Net, constructing ceRNA networks for CD8 T cells in breast cancer [95]; JD–lncRNA–ID, identifying
lncRNA associated with bovine Johne’s disease using neural networks and logistic regression [96];

Deep learning
applications
through the
utilization of
lncRNA input
data

MVMTMDA, predicting miRNA–disease associations through lncRNA–miRNA interactions [97]; Predicting
microsatellite instability in colorectal cancer using multimodal deep learning [98]; Predicting miRNA–disease
associations, a method based on lncRNA–miRNA interactions and graph convolution networks [99];
WGAN–psoNN, tumor lymph node metastasis prediction using WGAN and psoNN [100].

Identification of
lncRNA–protein-
coding gene
(PCG)
associations

GAE-LGA, deep learning prediction of lncRNA–PCG associations with cross-omics correlation learning [101].

An exploration of previous deep learning methodologies utilized in the study of
lncRNA prior to 2021, as compared to the more recent developments from 2021 to 2023
will certainly provide a comprehensive understanding. A wealth of knowledge on the
subject can be found in several representative articles. For example, Baek et al. [102]
developed a deep learning-based approach, lncRNAnet, to identify lncRNAs, incorporating
recurrent neural networks for RNA sequence modeling and convolutional neural networks
for detecting stop codons to obtain an open reading frame indicator. Another study by
Fan et al. [103] constructed a powerful predictor, lncRNA–MFDL, to identify lncRNAs by
fusing multiple features of the open reading frame, k-mer, the secondary structure, and the
most likely coding domain sequence, using deep learning classification algorithms. In 2019,
Liu et al. [104] developed a deep learning model, which included a bidirectional long
short-term memory model layer and a convolutional layer with three additional hidden
layers for distinguishing lncRNAs from mRNAs. These methodologies provided significant
advancements in the field. Moreover, the detailed review by Shaath et al. [105] further
discusses the interplay between lncRNAs and RBPs and their involvement in epigenetic
regulation via histone modifications, highlighting the potential for RNA-based therapeutics
in cancer treatment. It is anticipated that the recent surge in research during 2021–2023 has
built upon these foundational methodologies and will continue to push the frontier in our
understanding and utilization of lncRNA in deep learning.

During the data collection process, we compiled information on the citation count and
publication log for each selected article. These details played a significant role in evaluating
the scope, impact, and acceptance of the research within the scientific community.

To provide a structured overview of the deep learning methodologies utilized in
lncRNA research, the selected papers were categorized, based on the specific objectives of
the studies. This categorization contributes to a comprehensive understanding of the deep
learning landscape for lncRNA research, by enhancing the understanding of the diverse
methodologies employed in the field. The objectives of the studies are summarized in
Table 1.
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2.2. Brief Analysis of Deep Learning Approaches in lncRNA Research

The application of deep learning methodologies to the study of lncRNAs has surged in
recent years, as is reflected by the varied research areas illustrated in Table 1. This analysis
provides a comprehensive view of the considerable strides made in this emerging field,
emphasizing the necessity and relevance of this review.

From the assortment of categories that have emerged, one of the most extensively
researched topics is the lncRNA–disease association. Multiple studies have endeavored
to harness the predictive capabilities of various deep learning architectures to ascertain
the relationship between lncRNAs and diseases [29,34,48]. The prodigious quantity of
investigations in this domain highlights the compelling implications these associations
could potentially have on clinical diagnostics and therapeutics.

Another critical domain in lncRNA research pertains to lncRNA–protein interactions.
In an attempt to uncover the myriad roles that lncRNAs play in molecular biology, nu-
merous researchers have applied deep learning models to predict potential interactions
between lncRNAs and proteins [62,70]. By illuminating these interactions, we can elucidate
the complex regulatory networks that underpin biological systems.

Similarly, the prediction of lncRNA–miRNA interactions has also gained substantial
interest. These investigations capitalize on the ability of deep learning models to discern
patterns and predict interactions [72,75], providing vital insights into the modulation of
gene expression by lncRNAs.

A further significant facet of lncRNA research that has reaped the benefits of deep learn-
ing involves the identification and prediction of characteristics inherent to lncRNAs [88,100].
By leveraging the ability of deep learning models to learn complex representations from
data, researchers have made inroads in understanding the fundamental properties that
define lncRNAs.

An interesting development has been the application of deep learning in predicting
lncRNA subcellular localization. This growing area of study is vital in comprehending
the functional mechanisms of lncRNAs since the location of a lncRNA within a cell often
indicates its potential role and function.

The investigation of the role lncRNAs play in immune responses using deep learning
methods is less explored, yet equally important. While such studies are currently limited
in number, they reflect an area that is ripe for further exploration, given the significant
implications for immunology and disease pathology. Moreover, identifying lncRNA–
protein-coding gene (PCG) associations is another emerging area in lncRNA research where
deep learning has been applied.

The diverse application of deep learning in lncRNA research signals an exciting conver-
gence of computational and biological sciences. The rapid development and wide-reaching
applicability of deep learning models have significantly enriched our understanding of
lncRNAs, highlighting the need to assess and review the state-of-the-art in this field con-
tinually. By providing a comprehensive overview of recent studies and emerging trends,
this review aspires to be an invaluable resource for researchers exploring the promising
intersection of deep learning and lncRNA research.

2.3. Distributive Analysis of Publications Across Various Journals

In the quest to examine the widespread diffusion of selected articles in a multitude
of academic journals, a conspicuous pattern was brought to the fore. The compendium of
selected literature exhibits an extensive array of publication outlets, which emphasizes the
interdisciplinarity of the topic at hand, i.e., deep learning for lncRNA.

The journal wielding the most considerable influence, as measured by the sheer
number of published papers, appears to be Briefings in Bioinformatics. This esteemed
periodical has been the host to no fewer than 21 of the 75 papers evaluated, thus constituting
an impressive 28% of the corpus.

BMC Bioinformatics follows on the leaderboard, which accounts for approximately
17% of the selected papers, with a tally of 13. Furthermore, the IEEE-ACM Transactions on
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Computational Biology and Bioinformatics journal has been instrumental in disseminating
seven papers within our studied selection.

This distribution implicitly suggests that specific journals maintain a predilection for
publishing research in the domain of deep learning applied to lncRNA. Figure 1 provides a
comprehensive analysis, illustrating the allocation of papers among diverse journals.

Figure 1. Journal distribution of 75 research papers. (A) Proportional representation of papers in
various journals, where the distinct journals represented by different colors; (B) journals with multiple
publications. The Misc. category represents 20 journals with single publications.

3. Deep Learning Approaches in the Prediction of lncRNA–Disease Associations

LncRNAs have been increasingly recognized as critical components in numerous bio-
logical functions and disease processes [106]. The application of deep learning to elucidate
lncRNA–disease associations provides an avenue for understanding the complex inter-
actions of lncRNAs with other biological components, including genes and proteins [13].
The richness and complexity of these interactions necessitate computational models that
can handle high-dimensional, context-dependent data, a challenge ideally suited to deep
learning methodologies.

Notably, trends in lncRNA–disease association research are veering toward the inte-
gration of diverse biological data into predictive models. The incorporation of lncRNA
sequence data, gene expression data, protein interaction data, and disease phenotype data
into deep learning models is enriching the understanding of lncRNA–disease associa-
tions [107].

Additionally, the introduction of attention mechanisms has enhanced these models’
ability to focus on the most informative parts of input data. This trend is particularly
valuable given the context-specific nature of certain lncRNAs or disease phenotypes. Fur-
thermore, the field is seeing an increased adoption of unsupervised and semi-supervised
learning techniques to leverage the abundant amount of unlabeled data in the learning
process. The summary of recent studies is provided in Table 2.
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Table 2. Summary of recent studies regarding the prediction of lncRNA–disease association. It
is important to acknowledge that each study utilized diverse datasets, cross-validation methods,
and simulation settings to assess accuracy, thus rendering direct comparisons potentially inconclusive.
The best accuracy was selected if the model was assessed with various datasets.

Ref. Methods Accuracy Merits Disadvantages

[27]
ACLDA, fully connected
autoencoder and CNN with
attention mechanisms

AUC: 0.956
AUPR: 0.393

Improved prediction
performance; potential for
disease exploration

Failure to deeply integrate
topology information

[28]

CapsNet–LDA, attention
mechanism, stacked
autoencoder, adaptive allocation,
CapsNet architecture

AUC: ≈0.97 Superior performance and
robustness, good generalization

Complexity due to the use of
vector neurons

[29]
DBNLDA, node embedding,
DBN, and neural network
regression model

AUC: 0.96
AUPR: 0.968

Better prediction performance,
potential in disease therapy

Complexity due to diverse
network structured data

[30]
Deep belief network for HF
lncRNAs, topic model-based
network cluster analysis

AUC: 0.92 Identification of key lncRNAs,
potential diagnostic biomarkers

Focused only on HF, needs
wider disease scope

[31]
DeepMNE, deep multi-network
embedding, network fusion
based on deep learning

AUC: 0.9462
AUPR: 0.9505

Superior performance in
identifying new associations
between lncRNAs and diseases

Complexity due to multiomics
data integration

[32]

DHNLDA, deep hierarchical
network, stacked autoencoder,
ResNet, stacked ensemble
module

AUC: 0.975
High predictive performance,
potential for identifying disease
associations

The complexity of the
hierarchical network structure

[33]
DMFLDA, deep matrix
factorization, non-linear hidden
layers

AUC: 0.8393

Better than SIMCLDA, TPGLDA,
MFLDA, LDAP; capable of
complex relationship
representation

More experimentation needed

[34] Dual attention network method,
feature fusion networks

AUC: 0.914
AUPR: 0.339

Superior performance in
recognizing potential
lncRNA-disease associations
across 10 categories of diseases

Not specified

[35]

GCRFLDA, scoring
lncRNA–disease associations,
graph convolution matrix
completion, conditional random
field

AUC: 0.9630
Outperforms DMFLDA and
LDASR; confirmed associations
in case studies

Not specified

[36]
gGATLDA, GNN model with
enclosing subgraphs and
integrated feature vectors

AUC: 0.9888
AUPR: 0.9890

High accuracy, F1-Score, stable
prediction performance

Sensitivity to different datasets,
possible lower accuracy and
precision for some data

[37]

GSMV, global dependencies,
semantic
information, multi-view features,
self-attention mechanism,
dilated convolution-based
learning module

AUC: 0.983
AUPR: 0.589

Superior performance, rich
semantic information extraction Not specified

[38]
GTAN, GNN with three
attention mechanisms,
multi-layer CNN

AUC: 0.983
AUPR: 0.454

High accuracy; potential for
discovering new disease-related
lncRNA candidates

Not specified

[39]
HGATLDA, heterogeneous
graph attention network,
meta-paths

AUC: 0.9424
AUPR: 0.4701

Efficient in fusing node features,
topological structures and
semantic info; handles imbalance
in prediction

Not specified
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Table 2. Cont.

Ref. Methods Accuracy Merits Disadvantages

[40]

HGNNLDA, GNN,
heterogeneous network, restart
random walk, type-based
neighbor aggregation

AUC: 0.9786
AUPR: 0.8891

Exploits network topology for
better predictions; potential for
predicting new diseases

Not specified

[41] Feedforward neural networks
based on gene expression

Acc.: 0.9862
AUPR: 0.9988

High prediction accuracy, useful
for identifying commonly
deregulated features across
cancer types

Model performance can vary
with fewer samples

[42]
iLncRNAdis–FB, fusing
biological feature blocks using
CNN

AUC: 0.909
AUPR: 0.363

Better performance compared to
other predictors; web server for
potentially associated disease
detection

Fails to remove noise and
irrelevant information

[43] LDACE, CNN for feature
mining, ELM for prediction tasks

Acc: 0.8252
AUC: 0.8995

Remarkable performance in
cross-validation, case studies for
robustness

Adequate feasibility in
bioinformatics not verified

[44]

LDICDL, collaborative deep
learning, autoencoder for feature
denoising, matrix decomposition
for potential association
prediction

AUC: 0.8651
AUPR: 0.0306

Outperforms other methods,
handles new lncRNA or diseases

Limited matrix decomposition
for prediction

[45]

LGDLDA, non-linear feature
learning of neural networks and
node representation
approximation

AUC: 0.926
Better stability and performance
in cancer-related lncRNA
prediction, utilized diverse data

Complexity due to diverse
data integration

[46]

LR–GNN, GNN based on link
representation for predicting
molecular associations; GCN
encoder for node embedding
and layer-wise fusing rule for
the output

AUC: 0.9474
AUPR: 0.9497

Outperforms state-of-the-art
methods in molecular
association predictions, versatile
in different association types

May need an optimal
layer-fusing rule design for
performance

[47]

MAGCNSE, multi-view
attention graph convolutional
network and stacking ensemble
model

Acc.: 0.9395

Enhanced performance in
lncRNA–disease associations
predictions, effective utilization
of multi-view data

Complexity of the stacking
ensemble model

[48]
MCA–Net, multi-feature coding,
six similarity features, attention
convolutional neural network

Acc.: 0.967
AUC: 0.994

Outperforms state-of-the-art
methods on three datasets

Requires careful tuning of model
parameters

[49]

MLMKDNN, multi-layer
multi-kernel DNN, feature
matrices, kernel space mapping,
DNN

AUC: 0.976
AUPR: 0.92

High AUPR value on three types
of datasets

Complexity due to
multiple-feature integration

[50]

MLGCNET, graph convolutional
network, reconstructed
similarity networks, latent
feature representations of nodes,
extra trees method

AUC: 0.982
AUPR: 0.408

Superior prediction performance,
effective for specific diseases

Complexity due to multi-layer
graph convolutional network

[51]
mrCAE, multi-run concrete
autoencoder, lncRNA expression
profiles, multiple runs

Acc.: 0.95
Better feature selection,
identified 128 lncRNAs related
to 12 cancers

Stochastic nature of CAE may
affect reproducibility
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Table 2. Cont.

Ref. Methods Accuracy Merits Disadvantages

[52]

NELDA, SVM classifier-based
model, deep autoencoder
models, weighted average
strategy

AUC: 0.9827
Superior AUC result, high
potential in disease diagnosis
and treatment

Relies on quality negative
samples selection

[53]
Novel method using BPSO and
ELM models, wrapper feature
extraction method

Acc.: ≈0.93
Highest accuracy, effective in
predicting key lncRNA–disease
relationships

Necessity of optimal lncRNA
subset selection

[54]

PANDA, graph-based method,
heterogeneous graph, graph
autoencoder, neural network for
prediction

AUC: 0.976
AUPR: 0.956

Impressive AUC-ROC,
promising for predicting novel
lncRNA–disease associations

Depends on the quality of
graph-based information

[55]

Prognostic and diagnostic value
of lncRNA in colorectal cancer
with the classification of mRNA,
lncRNA, and circRNA in
exosomes

ND

Potential for exploring immune
infiltration levels in CRC,
diagnosis, therapy,
and prognosis

No quantitative classification
performance evaluation

[56]

VADLP, deeply embedded node
attributes, weighted inter-layer
and intra-layer edges,
convolutional autoencoder,
variance autoencoder

AUC: 0.956
AUPR: 0.449

Improved recall rates, powerful
in discovering true
disease-related lncRNAs

Complex due to
multiple representations

[57]

VGAELDA, integrates
variational inference and graph
autoencoders, alternate training
via variational inference

AUC: 0.968
AUPR: 0.838

Robustness and preciseness for
predicting unknown
lncRNA–disease associations

Complex due to the alternate
training approach

3.1. Recent Advances from 2021 to 2023

The field of lncRNA–disease associations has seen an influx of diverse prediction
models, with the recent trend leaning heavily toward deep learning approaches. The deep
learning paradigm, through its effective non-linear data processing capabilities, enables the
extraction of complex features and dependencies within the lncRNA–disease association
data. The typical models employed in this field incorporate varied architectures, such
as deep belief networks (DBNs), convolutional neural networks (CNNs), and attention
mechanisms. These methodologies provide improved performance metrics, including the
area under the receiver operating characteristic curve (AUC), the area under the precision–
recall curve (AUPR), and accuracy values. Notably, graph-based methodologies and
multiomics data incorporation are often employed due to their ability to capture complex
lncRNA–disease associations and provide comprehensive insights into the role of lncRNA
in diseases. However, the choice of the prediction model is largely contingent on the specific
requirements of each research, thereby carrying distinct merits and challenges.

In several studies, autoencoders and CNNs were used to improve prediction perfor-
mance and explore potential disease associations [27,28,38,42–45,53]. Despite achieving
high accuracy rates, a shared disadvantage among these studies is the complexity intro-
duced by the use of autoencoders and CNN. These models require careful parameter tuning
and have difficulties integrating information from diverse data types or topologies. Some
studies also noted issues with noise in the data, such as [42], which could not effectively
remove noisy and irrelevant information.

The second group of studies implemented GNNs to predict lncRNA–disease associa-
tions [35,36,38–41,46,47,50]. These studies demonstrated superior performance in making
predictions, and were able to handle multi-view data and efficiently fuse node features,
topological structures, and semantic information. However, they have a sensitivity to
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different datasets and can be complex due to the implementation of multiple attention
mechanisms and the integration of multi-layer graph convolutional networks.

The final group of studies utilized matrix factorization or other machine learning
techniques, such as support vector machines (SVM) and extreme learning machines
(ELM) [33,34,37,49,51,52,54]. They were able to handle complex relationships and diverse
features and achieved high accuracy rates. However, they were not without challenges.
Some methods required optimal parameter selection, and there were concerns about the
quality of the negative samples or graph-based information used in these studies.

In recent studies, while all of these studies have shown promising results in predicting
lncRNA–disease associations, each approach has its advantages and potential areas for
improvement. Future studies should consider these points when developing prediction
models for lncRNA–disease associations.

3.2. Emerging Research Trends in Recent Studies

A major shift in recent studies revolves around the application of diverse network
architectures, such as DBN, CNN, and attention mechanisms. The primary objective of these
trends is to exploit the non-linear data processing potential of deep learning algorithms for
complex feature extraction and elucidating the intricate dependencies in lncRNA–disease
association data. From a quantitative perspective, models implementing these techniques
have persistently demonstrated superior performance metrics.

Another trend gaining momentum is the utilization of graph-based methodologies,
with notable contributions by Guo et al. [43], Zeng et al. [33], and Zhao et al. [39]. The in-
herent strength of these methods lies in their capability to effectively leverage the graph
structure of lncRNA–disease associations, thereby capturing the complex interrelation-
ships between lncRNAs and diseases with a higher degree of accuracy. This improved
representation of data facilitates more accurate and robust prediction models.

Lastly, the incorporation of multiomics data in lncRNA–disease association prediction,
as exemplified by Yuan et al. [45], stands out as a promising trajectory. Quantitatively, this
comprehensive approach enables an increased understanding of lncRNA’s role in diseases,
substantially enhancing the quality of prediction. While these trends offer numerous
advantages, it is important to consider the possible trade-offs. The complexity of these
methods can lead to increased computational costs and complexities, and the need for large,
high-quality datasets. The benefits and limitations of these trends need to be carefully
balanced to maximize their potential in real-world applications.

4. Deep Learning Approaches in the Prediction of lncRNA–Protein Interactions

The prediction of lncRNA–protein interactions, a cornerstone in understanding lncRNA
functionality, has seen a surge in the use of deep learning models [108]. Predominantly,
these models integrate biological features to discern complex patterns. Ensemble learn-
ing and hybrid frameworks are often the preferred choices due to their robustness and
resilience to overfitting. Moreover, novel methods for quantifying lncRNA gene essentiality
are gaining prominence, allowing researchers to further investigate the implications of
these interactions in gene functionality. Lastly, the incorporation of cutting-edge techniques,
such as serial fusion, capsule networks, and graph autoencoders, signifies the continued
evolution of prediction models in lncRNA–protein interaction prediction.

LncRNA–protein interaction (LPI) predictions often start with sequence-based pre-
diction models, which transform the primary sequences of lncRNAs and proteins into
feature vectors. Deep learning has shown great potential in predicting lncRNA–protein
interactions, with models capable of automatically extracting meaningful features from
raw sequence data, including the amino acids of proteins. To manage proteins of different
lengths in these models, a process known as zero-padding is utilized, where zeros are
added to each sequence up to a common length [109]. This technique is crucial when using
raw amino acid sequences as input, as these models require input with the same shape.
Furthermore, to tackle the complexity of the three-dimensional structures of proteins, vari-
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ous methods have been proposed, including those that integrate sequence and structure
features of the lncRNA and protein, as well as those that apply machine learning algorithms
to extract features from sequences [110]. Despite the complexity of plant genome structures,
these techniques could be instrumental in predicting lncRNA–protein interactions in plants.
A summary of recent studies can be found in Table 3.

Table 3. Summary of recent studies regarding the prediction of lncRNA–protein interaction. It
is important to acknowledge that each study utilized diverse datasets, cross-validation methods,
and simulation settings to assess accuracy, thus rendering direct comparisons potentially inconclusive.
The best accuracy was selected if the model was assessed with various datasets.

Ref. Methods Accuracy Merits Disadvantages

[58] BiHo–GNN, bipartite graph
embedding based on GNN

AUC: 0.950
AUPR: 0.899

High AUC and recall,
outperforms existing methods Not specified

[59]
Capsule–LPI, multimodal
features, multichannel capsule
network framework

AUC: 0.951
AUPR: 0.932

Superior performance,
integration of multimodal
features

Absence of detailed evaluation
for each feature

[60]

DeepLPI, interactions between
lncRNAs and protein isoforms
with the hybrid framework of
deep neural networks

AUC: 0.866
AUPR: 0.703

Use of isoforms, application of
multiple instance learning

Lower performance metrics
compared to other methods

[61]
DFRPI, deep autoencoder and
marginal Fisher analysis, random
forest-based predictor

AUC: 0.906 Constructing a discriminative
feature space, high precision

Necessity to generate a
reasonable and effective feature
space

[62]

EnANNDeep, an
ensemble-based framework with
an adaptive k-nearest neighbor
classifier and deep models

AUC: 0.916
AUPR: 0.905

Incorporates multiple source
features, performs well in
cross-validations

May produce prediction bias
with single dataset evaluation

[63]

iEssLnc, graph neural network
with meta-path-guided random
walks on the lncRNA–protein
interaction network

AUC: 0.912
AUPR: 0.921

Provides quantitative essentiality
scores for lncRNA genes

Specific to essential lncRNA
genes, not general
lncRNA–protein interactions

[64]

LGFC–CNN, deep
learning-based prediction
combining raw sequence
composition, hand-designed,
and structure features

AUC: 0.976
AUPR: 0.970

Multiple-feature integration,
highly accurate performance Not specified

[65]
LPI–CSFFR, a feature fusion
method based on CNN with
feature reuse and serial fusion

AUC: 0.879
Integrates diverse features of
lncRNAs and proteins, high
accuracy

Requires complex feature fusion

[66]
LPI–deepGBDT, multiple-layer
deep framework based on
gradient boosting decision trees

AUC: 0.9073
AUPR: 0.8849

Uses diverse biological
information of lncRNAs and
proteins

Limited application for new
lncRNAs or proteins

[67]
Deep learning framework with
dual-net neural architecture,
LPI–DLDN

AUC: 0.911
AUPR: 0.898

Best average AUC and AUPR,
outperforms six other LPI
prediction methods

Requires dimension reduction for
feature concatenation

[68]
LPI–HyADBS, AdaBoost-based
feature selection, combined with
DNN, XGBoost, C-SVM

AUC: 0.851
AUPR: 0.841

Hybrid approach integrates
multiple classifiers, surpasses six
other models

Requires complex integration
of classifiers

[69] LPICGAE, combined graph
autoencoders

AUC: 0.974
Acc.: 0.985

Low-dimensional
representations, outperforms six
other computational methods

May need alternate loss
minimization for optimal results

[70]
PRPI–SC, ensemble deep
learning model using stacked
denoising autoencoder and CNN

Acc.: 0.889
AUC: 0.950

Predicts plant LPIs, generalizes
well beyond plant data

Only reports accuracy for
plant data

[71] RLF–LPI, AE–ResLSTM with
fuzzy decision

Acc.: 0.921
AUC: 0.980

Potential for high performance
due to the use of AE–ResLSTM
and fuzzy decision

Not specified
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4.1. Recent Advances from 2021 to 2023

Recent studies can approximately be categorized into three groups: The first cluster
comprises methods that apply GNNs, demonstrated in [58] and [63]. They harnessed
the power of GNN to predict lncRNA–protein interactions, achieving high AUC and
AUPR scores. For instance, BiHo–GNN, a bipartite graph-embedding method based on
GNN, reported an impressive AUC of 0.950 and AUPR of 0.899 [58]. iEssLnc, another
graph neural network, leveraged meta-path-guided random walks on the lncRNA–protein
interaction network to attain an AUC of 0.912 and AUPR of 0.921 [63]. Despite the clear
advantages of these methods in terms of accuracy and recall, certain disadvantages exist.
For instance, iEssLnc is specialized for essential lncRNA genes and is not generalized for
all lncRNA–protein interactions.

In the second group, we see models that have integrated multiple features of lncRNAs
and proteins to predict interactions, such as capsule–LPI [59], EnANNDeep [62], LGFC–
CNN [64], and LPI–CSFFR [65]. These models demonstrated superior performance by
integrating multimodal features or combining raw sequence composition, hand-designed,
and structure features. For instance, the capsule–LPI’s multimodal features and multi-
channel capsule network framework achieved an AUC of 0.951 and AUPR of 0.932, while
LGFC–CNN delivered an exceptional AUC of 0.976 and AUPR of 0.970 [59,64]. However,
the main limitation of these methods lies in their increased complexity, especially when
fusing diverse features. Additionally, some methods, such as capsule–LPI, lack detailed
evaluations for each feature [59].

The third group is characterized by models that use deep learning frameworks with
different architectures or hybrid approaches. These include DeepLPI [60], DFRPI [61],
LPI–deepGBDT [66], LPI–DLDN [67], LPI–HyADBS [68], and RLF–LPI [71]. These models
demonstrated high performance due to their unique approaches. For instance, DeepLPI
incorporates interactions between lncRNAs and protein isoforms with a hybrid framework
of deep neural networks, while LPI–DLDN utilizes a deep learning framework with a
dual-net neural architecture. However, these advanced models often require complex
integration or feature dimension reduction.

4.2. Emerging Research Trends in Recent Studies

The analysis of the recent studies on lncRNA–protein interactions, as summarized
in Table 3, reveals several notable trends. Firstly, the integration of deep learning models
and various biological features stands out as a common and effective strategy in the field.
The studies of Zhou et al. [70], Peng et al. [62,67], and Huang et al. [64] are characteristic
of this approach. Their contributions attest to the powerful role deep learning algorithms
play in discerning complex patterns, especially when combined with biological features
that enhance the models’ understanding of lncRNA–protein interactions.

Secondly, the recent trend of employing ensemble learning and hybrid frameworks is
noticeable in studies, such as in the works by Zhou et al. [68] and Song et al. [71]. These
studies capitalize on the strength of diverse learning models, making the prediction of
lncRNA–protein interactions more robust and less prone to overfitting.

Moreover, the exploration of novel methods for quantifying lncRNA gene essentiality,
such as in the study by Zhang et al. [63], further expands the scope of lncRNA research.
This signifies a shift toward more comprehensive studies that not only predict interactions
but also investigate the implications of these interactions in gene functionality.

Lastly, the efforts of Huang et al. [65], Li et al. [59], and Zhao et al. [69] epitomize the
usage of novel techniques, such as serial fusion, capsule networks, and graph autoencoders.
These cutting-edge methods contribute to the evolution of prediction models, further
advancing the state-of-the-art in lncRNA–protein interaction prediction.

5. Deep Learning Approaches in the Prediction of lncRNA–miRNA Interactions

Recent studies on lncRNA–miRNA interactions are primarily centered around the
development of deep learning frameworks due to their superior accuracy and cross-species
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applicability. These interactions, central to post-transcriptional gene regulation, are ef-
fectively predicted using sophisticated models such as BoT–Net [72]. The integration of
attention mechanisms and neural networks into prediction models is becoming increasingly
common, contributing to their improved performance. Hybrid feature mining networks
are gaining traction due to their ability to extract useful feature information. Moreover,
certain studies are exploring the potential of lncRNA–miRNA interactions in predicting
miRNA–disease associations, thereby extending the scope of lncRNA–miRNA research into
biomedical applications. However, the model choice largely depends on the specificity and
sensitivity requirements of the study, each presenting unique advantages and challenges.
A summary of recent studies can be found in Table 4.

Table 4. Summary of recent studies regarding the prediction of the lncRNA–miRNA interaction. It
is important to acknowledge that each study utilized diverse datasets, cross-validation methods,
and simulation settings to assess accuracy, thus rendering direct comparisons potentially inconclusive.
The best accuracy was selected if the model was assessed with various datasets.

Ref. Methods Accuracy Merits Disadvantages

[72] BoT–Net, LSTM with
DropConnect, feature pooling

Acc.: 0.8738
AUC: 0.9449

Optimized lncRNA sequence
length, improved specificity Not specified

[73]
DWLMI, DeepWalk on lncRNA–
miRNA–disease–protein–drug
graph

Acc.: 0.9522
AUC: 0.9856

High accuracy, incorporation of
multi-dimensional data

Evaluation of each feature’s
influence not discussed

[74]
GCNCRF, GCN with
Conditional random field and
attention mechanism

AUC: 0.947
High AUC, inclusion of
lncRNA/miRNA similarity
network

Not specified

[75] MD–MLI, hierarchical deep
learning with multiple features Acc.: 0.9859 High accuracy, uses multiple

sequence-derived features Not specified

[76]
ncRNAInter, graph neural
network-based RNA
representation

AUC: 0.973
AUPR: 0.975

Robust performance, universal
applicability for diverse species Not specified

[77]

Optimized ensemble deep
learning model, leverages
independent recurrent neural
networks and convolutional
neural networks

Acc.: 0.977
Improved accuracy via optimal
hyperparameter tuning, works
with large-scale data

Not specified

[78]
PmliHFM, hybrid feature mining
network for predicting plant
miRNA–lncRNA interactions

Acc.: 0.938
AUC: 0.963

Different encodings for miRNA
and lncRNA, ensemble module
integration

Not specified

[79]

PmliPEMG, ensemble deep
learning model with multi-level
information enhancement and
greedy fuzzy decision

Acc.: 0.888
AUC: 0.971

Incorporates the fusion of
complex features and multi-scale
convolutional long short-term
memory networks

Not specified

[80]

preMLI, deep learning model
based on rna2vec pre-training
and deep feature mining
mechanism

Acc.: 0.924
AUC: 0.977

Uses rna2vec for RNA word
vector representation, excellent
cross-species prediction
capabilities

Not specified

5.1. Recent Advances from 2021 to 2023

In the domain of predicting lncRNA–miRNA interaction, numerous methodologies
have been utilized, each demonstrating varied performance metrics and innovative method-
ological elements.

Firstly, deep learning models exploiting recurrent neural network (RNN) structures
coupled with other strategies have shown substantial performance in predicting lncRNA–
miRNA interactions. The authors of [72] utilized a hybrid model consisting of a bidirec-
tional transformer (BoT–Net) and LSTM with DropConnect, in addition to feature pooling.
Despite not specifically indicating any disadvantages, the study successfully optimized the
lncRNA sequence length, thus improving specificity. Moreover, an optimized ensemble
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deep learning model, which employs independent RNNs (IndRNNs) and CNNs, was de-
veloped by [77]. While the authors have not pointed out any disadvantages, their model’s
advantages lie in the improved accuracy achieved through optimal hyperparameter tuning,
suitable for large-scale data.

In the second group of studies, graph-based models were significantly utilized, exploit-
ing the potential of deep learning and attention mechanisms. A representative study [73]
implemented DWLMI, using the DeepWalk algorithm on an lncRNA–miRNA–disease–
protein–drug graph, achieving high accuracy; however, it did not discuss the evaluation
of each feature’s influence. Similarly, GCNCRF [74] applied a graph convolutional net-
work (GCN) coupled with a conditional random field (CRF) and an attention mecha-
nism. Despite not mentioning specific disadvantages, the method managed to integrate
an lncRNA-miRNA similarity network to achieve high AUC scores. The study by [76]
applied a graph neural network-based RNA representation technique, termed ncRNAInter,
and demonstrated robust performance and broad applicability across different species.

The third group of studies incorporated hybrid feature mining networks and multi-
level information enhancement models to forecast lncRNA–miRNA interaction. Pmli-
HFM [78] uses a hybrid feature mining network tailored for predicting plant miRNA–
lncRNA interactions. Despite not specifying any disadvantages, this model uniquely
integrated different encodings for miRNA and lncRNA, along with ensemble modules.
PmliPEMG [79] employs an ensemble deep learning model, leveraging multi-level infor-
mation enhancement and a greedy fuzzy decision, thereby incorporating complex fusion
features and multi-scale convolutional LSTM networks.

Finally, some studies have developed models that utilize word vector representation
and deep feature mining mechanisms. Notably, preMLI [80] is a deep learning model
based on rna2vec pre-training and a deep feature mining mechanism. The approach
uses rna2vec for RNA word vector representation and displays exceptional cross-species
prediction capabilities.

5.2. Emerging Research Trends in Recent Studies

As we delve into the intricacies of lncRNA–miRNA associations, one can observe
a clear trend toward leveraging advanced machine learning models for predicting these
interactions, as evidenced by the studies summarized in Table 4. A noteworthy focus has
been on developing deep learning frameworks that offer both improved accuracy and
applicability across various species [75–77,80].

BoT–Net, a network approach that utilizes long short-term memory networks, pro-
vides a good illustration of the potential of these methods [72]. Furthermore, a substantial
number of recent studies have shown a strong preference for incorporating attention mecha-
nisms and neural networks into their models, leading to higher performance metrics [74,75].

Moreover, there is an emerging trend of integrating hybrid feature mining networks,
which are known to effectively extract useful feature information, thus improving predictive
accuracy for lncRNA–miRNA interactions [78]. The commitment to prediction accuracy is
further underpinned by the DeepWalk-based method proposed by Yang et al., which offers
a high average prediction accuracy [73]. Beyond the application of machine learning in
prediction models, some studies have explored the promise of using these interactions to
forecast potential miRNA–disease associations, hence pushing the boundaries of lncRNA–
miRNA research into biomedical applications.

6. Deep Learning Approaches in the Classification and Prediction of
lncRNA Characteristics

In the domain of lncRNA characteristics, deep learning has emerged as an effective
tool for predicting lncRNA functions, identifying novel lncRNAs, and discovering lncRNA–
disease associations. The recent trend is largely geared toward the utilization of machine
learning and deep learning models, such as CNN and LSTM, to analyze lncRNA expression
profiles, predict lncRNA interactions, and classify different RNA types. Concurrently,
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the design and application of ensemble methods are growing popular due to their superior
predictive performance. Investigations into lncRNA stability and the factors influencing
it also provide a more comprehensive understanding of lncRNA biology. However, each
approach carries its own strengths and weaknesses, and the choice often depends on the
specific objectives of the study.

lncRNAs, in contrast to their protein-coding counterparts, exhibit less conservation,
thereby posing considerable challenges for computational models. However, certain unique
properties of lncRNAs provide advantageous elements for deep learning. Large lncRNA
datasets offer a wealth of data suitable for the training of deep learning algorithms. Addi-
tionally, the multi-level regulatory roles of lncRNAs provide multi-modal data (sequence,
structure, interactions, expression levels), enabling a comprehensive analysis through
multi-modal learning approaches. Importantly, lncRNAs can originate from various ge-
nomic regions, including intergenic regions, intronic regions, and antisense transcripts,
with each category potentially bearing distinct functional implications. In terms of the pre-
diction of lncRNA characteristics and their source genomic regions, several recent methods
have emerged. For instance, multiple studies proposed CNN structures to handle these
challenges [82,83,89]. Additionally, LSTM structures were commonly employed for the
prediction of lncRNA characteristics [88].

6.1. Recent Advances from 2021 to 2023

Deep learning has paved the way for significant advancements in understanding
lncRNA characteristics, primarily focusing on the prediction of lncRNA functions and
lncRNA identification. Numerous studies have developed models to decipher the hidden
complexities of lncRNA biology.

In the domain of predicting lncRNA functions, Zhang et al. [87] utilized an ensemble
deep learning model, lncIBTP, for predicting interactions between lncRNAs and different
types of biomolecules. The model demonstrated an impressive degree of effectiveness,
presenting the potential of deep learning to provide insights into lncRNA functionality.
The identification of lncRNAs is another crucial aspect in which deep learning approaches
have been employed. Lin and Wichadakul [89] proposed Xlnc1DCNN, a one-dimensional
convolutional neural network-based tool. It distinguishes lncRNAs from protein-coding
transcripts and provides a rationalization for its predictions. This tool outperformed
several others in accuracy and F1-score, demonstrating the effective application of convolu-
tional neural networks in lncRNA identification. Another notable contribution came from
Wang et al. [85], who developed LncDLSM, a deep learning-based framework capable of
differentiating lncRNAs from protein-coding transcripts without requiring prior biologi-
cal knowledge. This model excelled in lncRNA identification and exhibited a promising
potential for transfer learning.

A unique approach was taken by Zhang et al. [81], who designed a class similarity net-
work for classifying coding and long non-coding RNA. The network explores relationships
between input samples and those from the same or different classes, thus obtaining high-
level features. The method consistently achieved high accuracy, precision, and F1 scores,
signifying its proficiency in lncRNA classification. Ritu et al. [83] also proposed a novel
bimodal CNN-based deep learning system, DeepPlnc, which integrated both sequence
and structural properties for the identification of plant lncRNAs. DeepPlnc outperformed
other tools even when dealing with ambiguous boundaries and incomplete sequences,
solidifying its superior applicability in genome and transcriptome annotation tasks.

Promising developments were also made in understanding the stability of lncRNAs.
Shi et al. [84] performed a genome-wide RNA-seq study on human lung adenocarcinoma
cells and used deep learning-based regression to identify a non-linear relationship between
the half-lives of lncRNAs and associated factors. This research illuminated a comprehensive
understanding of lncRNA stability, showing the powerful potential of deep learning in
elucidating ncRNA characteristics.
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Deep learning’s contributions extend to the identification of dual-functional lncRNAs
as well; Liu et al. [86] developed LncReader, a deep learning model with a multi-head
self-attention mechanism. LncReader outperformed various classical machine learning
methods, reiterating the superior performance of deep learning in lncRNA research.

6.2. Emerging Research Trends in Recent Studies

In recent research trends, as encapsulated in Table 5, several innovative approaches
and methodologies have emerged in the study of lncRNA–disease associations. Various
machine learning and deep learning models are increasingly being employed to analyze
lncRNA expression profiles, predict lncRNA interactions, and classify different RNA types.
These computational tools are crucial in enabling more accurate, efficient, and scalable
analyses of lncRNA data.

Table 5. Summary of recent studies regarding the classification and prediction of lncRNA charac-
teristics. It is important to acknowledge that each study utilized diverse datasets, cross-validation
methods, and simulation settings to assess accuracy, thus rendering direct comparisons potentially
inconclusive.

Ref. Methods Accuracy Merits Disadvantages

[81]
Class similarity network,
Siamese neural
network-inspired model

Acc: 0.9843
Directly explores relationships
among input samples,
achieving high-level features

Insufficient exploration of
relationship among samples

[82]
DeepLncPro, convolutional
neural network model for
identifying lncRNA promoters

Acc: 0.8622

Superior to existing methods,
can extract and analyze
transcription factor binding
motifs

Not specified

[83]
DeepPlnc, bimodal
CNN-based system for plant
lncRNA discovery

Acc: 0.9806
AUC: 0.9955

High accuracy, can handle
ambiguous boundaries and
incomplete sequences

Not specified

[84]
Deep learning-based regression
for genome-wide analysis of
lncRNA stability

ND (Mainly focused
on genome-wide
analysis)

Comprehensive understanding
of lncRNA stability

Absence of a detailed
quantitative prediction model
for half-lives

[85]
LncDLSM, deep
learning-based sequence model
for lncRNA identification

Acc: 0.9652
AUC: 0.9962

No dependency on prior
biological knowledge, can be
applied to other species

Not specified

[86] LncReader, multi-head
self-attention mechanism

Acc.: 0.969
AUC: 0.803
AUPR: 0.265

Excels in dual-functional
lncRNA identification; superior
performance compared to
classical machine learning
methods

Not specified

[87] lncIBTP, ensemble deep
learning approach

Acc.: 0.704
AUC: 0.790
AUPR: 0.642

Novel approach to predicting
interaction biomolecule type
for lncRNA, performs well on
5-fold cross-validation

Does not specifically predict
lncRNA functions

[88] CNN and Bi–LSTM combined
model for RNA prediction Acc.: 0.977

Superior classification effect
compared to a single model,
demonstrates strong
generalization capacity

Not specified

[89] Xlnc1DCNN, 1D convolutional
neural network

Acc.: 0.945
AUC: 0.983

Outperforms other tools in
accuracy and the F1-score on
the human test set, provides
prediction explanations

Inconsistent annotations
among public databases

One remarkable trend observed is the utilization of CNN and LSTM in deep learning
models for the prediction and classification of lncRNA [82,83,88,89]. These sophisticated
tools offer high accuracy rates and demonstrate robust performance across various datasets.
Moreover, they provide an advantage over traditional bioinformatics approaches, which
may rely heavily on prior biological knowledge.
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Another noteworthy development is the focus on the design and application of ensem-
ble methods, which integrate multiple learning algorithms to obtain better predictive per-
formance [87]. These models, such as WGAN–psoNN and lncIBTP, incorporate advanced
concepts, such as NAS for optimal parameter tuning, thus alleviating data imbalance issues.

Furthermore, studies that examine the stability of lncRNAs, and the factors influencing
their stability, are gaining traction [84]. These investigations provide a more comprehensive
understanding of lncRNA biology and may inform future therapeutic strategies for diseases
associated with lncRNA dysfunction.

7. Other Deep Learning Research Domains and Utilization of lncRNA-Related Data as
Deep Learning Inputs

The exploration of lncRNAs has seen a significant shift toward the use of advanced
deep learning models to predict lncRNA subcellular localization and distinguish different
lncRNA types. Moreover, studies are increasingly focusing on the role of lncRNAs in
immune responses and disease processes, particularly cancer. Novel frameworks, such
as deep learning and graph neural networks, are being employed to handle the complex
nature of lncRNA sequences and structures. Moreover, deep learning has also found utility
in studies investigating the role of lncRNAs in immune responses and disease processes.
Researchers are employing sophisticated machine learning techniques to predict lncRNA
behavior and correlate it with disease states, offering insights into the complexities of
immune responses and disease pathogenesis. A summary of recent studies can be found in
Table 6.

Table 6. Summary of other recent studies and utilizations of lncRNA-related data as deep learning
inputs.

Ref. Methods Merits Disadvantages

[90]

DeepLncLoc: Uses a subsequence embedding
method that keeps the order information of lncRNA
sequences. Utilizes a text convolutional neural
network for feature extraction and prediction.

Effective for lncRNA subcellular
localization prediction.
Preserves sequence order
information.

Depends on the
quality of
subsequence
embedding. Might
miss some complex
patterns.

[91]

EVlncRNA–Dpred: Uses deep learning algorithms
to distinguish experimentally validated lncRNAs
from mRNAs and high-throughput lncRNAs.
Utilizes a three-layer deep learning neural network
with a small convolutional neural network.

Provides a method for
prioritizing potentially
functional lncRNAs for
experimental validations.

Accuracy can be
limited by the small
dataset sizes.

[92]

GM–lncLoc: Uses a graph neural network with
meta-learning to predict lncRNA subcellular
localization. Combines the initial sequence
information with graph structure information to
extract features.

Shows high accuracy, holds the
potential to solve the problem of
limited samples in lncRNA
subcellular localization.

Performance heavily
depends on the
quality of the
graph’s structure
information.

[93]

GraphLncLoc: Uses graph convolutional networks
to predict lncRNA subcellular localization.
Transforms lncRNA sequences into de Bruijn
graphs.

Can reveal sequence patterns
and motifs. Demonstrates
robustness against k-mer
frequency features.

Transforming
sequences into
graphs might lead to
the loss of certain
information.

[94]
PlncRNA–HDeep: Hybrid deep learning model that
uses LSTM and CNN trained on RNA sequences
encoded by p-nucleotide and one-hot encodings.

Achieves high accuracy on the
Zea mays dataset. More
effective than traditional
machine learning methods and
some existing tools.

Model complexity
could lead to
overfitting.
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Table 6. Cont.

Ref. Methods Merits Disadvantages

[95]

Uses lncRNAs to develop a prognostic model that
predicts the survival rates of BC patients. Constructs
ceRNA networks correlated with the infiltration of
CD8 T cells.

Can help understand the role of
lncRNA in BC. Useful for
predicting patient prognosis.

Relies on the
bioinformatic
prediction of CD8 T
cell abundances,
which might not
always be accurate.

[96]
A combined approach using logistic regression and
multilayered neural networks to identify lncRNAs
related to Bovine Johne’s Disease.

Identifies potential lncRNA
targets in host immunity against
Mycobacterium avium infection.

Not specified

[97]
Multi-view multitask learning method that predicts
microRNA–disease associations from
lncRNA–microRNA interactions.

Developed the MVMTMDA
model for predicting
miRNA–disease associations,
achieving an average AUC of
0.8410 ± 0.018.

Requires
comprehensive
lncRNA–miRNA
interaction data.

[98]
Multimodal deep learning integrating
histopathological and molecular data to evaluate the
microsatellite instability of colorectal cancer.

The developed model achieves a
high AUC of 0.952 when
combining an H&E image with
DNA methylation data.

Accuracy decreases
when combining an
H&E image with all
types of molecular
data.

[99]

Uses graph convolution networks with
multichannel attention mechanism to predict
miRNA–disease associations based on
lncRNA–miRNA interactions.

Achieves average AUC values of
0.8994, 0.9032, and 0.9044 in
different cross-validation setups.

Lacks comparative
analysis with
non-deep learning
models.

[100]

WGAN–psoNN: Combines the Wasserstein
distance-based generative adversarial network
(WGAN) and particle swarm optimization neural
network (psoNN) to predict lymph node metastasis
events using lncRNA expression profiles.

Reduces the requirement for
deep learning data quantity and
architecture selection.

Uses the novel
neural network
architecture search
(NAS) method,
which is untested in
other studies.

[101]
GAE–LGA: Uses graph autoencoders to integrate
multiomics data and identify lncRNA–PCG
associations.

Shows strong robustness in
capturing lncRNA–PCG
associations and outperforms
other machine learning-based
methods.

Not specified

7.1. Recent Advances from 2021 to 2023

The exploration and prediction of lncRNAs have been widely adopted through ad-
vanced computational methods. Among them, DeepLncLoc is a noteworthy tool that uses
a subsequence embedding method to retain the order information of lncRNA sequences
and incorporates a text convolutional neural network for feature extraction and predic-
tion, proving its effectiveness for lncRNA subcellular localization prediction [90]. Along
similar lines, the GM–lncLoc model combines sequence information with graph structure
information, leveraging a graph neural network with meta-learning for prediction [92].
This approach demonstrates high accuracy and a promising solution for handling limited
sample sizes often seen in lncRNA subcellular localization studies.

Further, GraphLncLoc and PlncRNA–HDeep have shown promising results in lncRNA
prediction. The former employs graph convolutional networks and transforms lncRNA
sequences into de Bruijn graphs, unveiling sequence patterns and motifs [93]. PlncRNA–
HDeep implements a hybrid deep learning model using LSTM and CNN trained on RNA
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sequences encoded by p-nucleotide and one-hot encodings, achieving high accuracy on the
Zea mays dataset and outperforming traditional machine learning methods [94].

Turning to the functional roles of lncRNAs in immune response pathways, the study
by [95] utilizes lncRNAs to develop a prognostic model, predicting the survival rates of
breast cancer (BC) patients. The model constructs ceRNA networks correlated with the
infiltration of CD8 T cells, providing valuable insights into the role of lncRNA in BC. Simi-
larly, the authors of [96] employed a combination of logistic regression and multilayered
neural networks to identify lncRNAs related to Bovine Johne’s Disease, revealing potential
lncRNA targets in host immunity against Mycobacterium avium infection.

Deep learning applications utilizing lncRNA input data have significantly contributed
to the biomedical field. MVMTMDA, a multi-view multitask learning method, predicts
miRNA–disease associations from lncRNA–miRNA interactions with an average AUC
of 0.8410 ± 0.018 [97]. Another study employed a multimodal deep learning model by
integrating histopathological and molecular data to evaluate microsatellite instability
in colorectal cancer [98]. This model achieved a high AUC of 0.952 when combining
H&E image with DNA methylation data. Moreover, a model built on graph convolution
networks with a multichannel attention mechanism predicted miRNA–disease associations
based on lncRNA–miRNA interactions, achieving high average AUC values in different
cross-validation setups [99].

One particularly innovative approach, WGAN–psoNN, combines the WGAN and
particle swarm optimization neural network for predicting lymph node metastasis events
using lncRNA expression profiles [100]. Finally, for the identification of lncRNA–PCG
associations, the GAE–LGA model utilizes graph autoencoders to integrate multiomics data.
This method shows robust capacity in capturing lncRNA–PCG associations, outperforming
other machine learning-based approaches [101].

7.2. Emerging Research Trends in Recent Studies

The prevailing trend in recent studies, as encapsulated in Table 6, distinctly manifests
the increasing significance of computational and deep learning models in the domain of
lncRNAs research. A distinct transformation in methodological approaches and predictive
models can be observed, mirroring the swift expansion of artificial intelligence and deep
learning into biological and medical research fields.

Predominantly, it is seen that many recent studies are oriented toward exploring the
subcellular localization of lncRNAs, reflecting the importance of this aspect in understand-
ing the functional roles of lncRNAs. In this quest, researchers are investing significant
efforts in constructing robust and sophisticated models that can predict lncRNA localization
with high accuracy.

Moreover, the utilization of novel frameworks, such as deep learning and graph neural
networks, underscores a consistent theme in these investigations. Such models capitalize on
the intricate and complex nature of lncRNA sequences and structures, offering an exciting
promise of outperforming traditional machine learning techniques.

Additionally, the studies reflect an increasing interest in the role of lncRNAs in relation
to diseases. This manifests in developing models for predicting lncRNA associations with
various cell types and disease conditions, in particular, cancer. Such investigations are
integral for deepening our understanding of the role of lncRNAs in disease pathogenesis
and potential therapeutic interventions.

8. Challenges and Future Prospects

LncRNAs have shown substantial promise as novel biomarkers and therapeutic targets
in numerous diseases. Notwithstanding, there are still several significant challenges to
address and opportunities to seize in the application of deep learning in lncRNA research.
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8.1. Challenges

Firstly, the scarcity of large, well-annotated datasets is a significant obstacle [111].
Many existing lncRNA-related databases are either relatively small, lack comprehensive
annotation, or focus on a particular category of lncRNAs, which restricts the variety and
volume of data available for model training and validation. Given the importance of large
datasets in deep learning, this poses a substantial challenge to the development of highly
accurate and robust models. Moreover, these databases often contain biases, which can
inadvertently be learned by the model, leading to biased predictions [112].

Secondly, the heterogeneous nature of lncRNAs themselves presents a significant
challenge. LncRNAs are known for their diversity in terms of their biogenesis, structure,
function, and localization, which can complicate the feature extraction process in model
development [113]. Current methods may not fully capture the complexity and diversity
of lncRNAs, leading to the potential loss of valuable predictive information.

Finally, interpretability is a persistent problem in deep learning. Many deep learning
models, particularly those with many hidden layers, are often criticized as “black boxes”
due to their complex internal computations. This lack of transparency is particularly
problematic in biological and medical applications, where understanding the rationale
behind predictions is critical [114]. In lncRNA research, this could mean difficulty in
identifying key lncRNA features that drive the model’s predictions, impeding the biological
understanding of lncRNA functions.

8.2. Future Prospects and Directions

Despite these challenges, the application of deep learning in lncRNA research holds
significant potential for future advancements. Novel strategies for data augmentation, such
as transfer learning, can help to mitigate the issue of data scarcity and improve model
performance [115]. Furthermore, the development of more advanced feature extraction
techniques that can better capture the complex characteristics of lncRNAs will likely
enhance model accuracy and robustness.

Regarding interpretability, recent advancements in model interpretability, such as the
development of attention mechanisms and interpretation algorithms, provide promising
directions for improving the transparency of deep learning models [116]. In lncRNA
research, these tools can aid in identifying important lncRNA features and elucidating their
biological significance.

Finally, with the rapid advancement of sequencing technologies and the consequent
explosion of genomic data, there is enormous potential for the application of deep learn-
ing in lncRNA research. The integration of multiomics data, including transcriptomics,
proteomics, and metabolomics, can provide a comprehensive understanding of the com-
plex roles of lncRNAs in biological systems. Developing a multiomics-based deep learn-
ing model, especially an advanced multi-attention type encompassing lncRNA, miRNA,
mRNA, protein, and their pair matrices, for classification and prediction purposes, would
ideally provide a comprehensive understanding of the biological systems. However, there
exist substantial challenges in developing such a model, including the requirement for
extensive computational resources, the need for expertise in bioinformatics to gather and
integrate multiomics data, the difficulty in developing an efficient and effective feature
selection strategy due to the high-dimensionality and complexity of the data, and the
need to accommodate for the inherent high noise and heterogeneity present in biological
data. Despite these challenges, such a direction holds immense promise for future research.
For instance, in a recent study [117], mRNA and miRNA data were integrated and used in
the analysis. Although lncRNA was not involved in this particular instance, it is anticipated
that deep learning methods with multiomics data sources, such as the approach employed
in this study, will become a prevalent direction in the future.
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9. Conclusions

The journey through the landscape of deep learning applications in lncRNA research,
as charted in this review, reaches its culmination in this concluding section, where we
attempt to knit together the strands of discussions that have threaded their way through
the preceding discourse.

An unmistakable trend, revealed through a diligent combination of the literature,
is the considerable quantity of investigations that have concentrated on the association
between lncRNAs and diseases. This serves as a testament to the recognition within the
research community of the profound influence that lncRNAs wield on our physiological and
pathological states. These studies have exploited the power of deep learning architectures
to decipher the intricate interconnections between lncRNAs and various maladies.

From this multitude of lncRNA–disease association studies, it is clear that the tools and
techniques of deep learning are being increasingly harnessed to delve deeper into the com-
plexities of lncRNA functions and their roles in health and disease. This has undoubtedly
added significant depth and breadth to our understanding of lncRNA dynamics.

However, it is important to emphasize that this represents only a fraction of the im-
mense potential that deep learning holds for the further exploration of lncRNA. With the ac-
celerating advancements in deep learning methodologies and increasing availability of high-
throughput lncRNA data, there is much to look forward to in the realm of lncRNA research.

While the progress achieved thus far in lncRNA research via deep learning is certainly
commendable, the journey has just begun. The horizon is replete with possibilities waiting
to be uncovered, and it is our hope that this review has inspired further intellectual curiosity
and will act as a catalyst for novel studies in this rapidly evolving field.
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