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Abstract: In this paper, we present a rigorous mathematical examination of generative pre-trained
transformer (GPT) models and their autoregressive self-supervised learning mechanisms. We begin
by defining natural language space and knowledge space, which are two key concepts for under-
standing the dimensionality reduction process in GPT-based large language models (LLMs). By
exploring projection functions and their inverses, we establish a framework for analyzing the lan-
guage generation capabilities of these models. We then investigate the GPT representation space,
examining its implications for the models’ approximation properties. Finally, we discuss the limita-
tions and challenges of GPT models and their learning mechanisms, considering trade-offs between
complexity and generalization, as well as the implications of incomplete inverse projection func-
tions. Our findings demonstrate that GPT models possess the capability to encode knowledge into
low-dimensional vectors through their autoregressive self-supervised learning mechanism. This com-
prehensive analysis provides a solid mathematical foundation for future advancements in GPT-based
LLMs, promising advancements in natural language processing tasks such as language translation,
text summarization, and question answering due to improved understanding and optimization of
model training and performance.

Keywords: generative pre-trained transformer; GPT; ChatGPT; self-supervised learning; deep
learning; natural language processing; NLP
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1. Introduction

The recent advent of generative pre-trained transformer (GPT) models [1–4], a class
of large-scale deep learning models, has led to an increasing focus on their applica-
tions in the field of natural language processing (NLP) [5–11] and artificial intelligence
(AI) [12–15]. These GPT-based models, including notable instances such as ChatGPT [2],
have demonstrated remarkable capabilities in generating human-like text and understand-
ing intricate linguistic patterns. As a result, their potential to transform various domains,
ranging from machine translation to question-answering systems, has garnered significant
attention from both academia and industry. Despite the widespread interest in GPT-based
large language models (LLMs) and their impressive performance [16,17], the mathematical
underpinnings of these models and their training methods, specifically autoregressive
self-supervised learning, remain relatively unexplored.

This paper aims to bridge the gap between the empirical success of GPT-based LLMs
and the theoretical understanding of their fundamental properties. To this end, we delve
into the mathematical framework that underlies GPT models and autoregressive self-
supervised learning [18–20], seeking a mathematical interpretation of the mechanisms that
contribute to their impressive language generation capabilities. By providing a formal
analysis of GPT-based LLMs, we hope to lay the groundwork for a more systematic
exploration of their properties, limitations, and potential improvements.
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In order to establish a comprehensive mathematical foundation, we begin by defining
the concept of a natural language space, which encompasses all possible human language
expressions. We then introduce the notion of a knowledge space, a lower-dimensional
space containing abstract representations of the information conveyed by expressions in
the natural language space. By considering projection functions and their inverses, we
develop a framework for understanding the process of dimensionality reduction in the
context of GPT-based LLMs while preserving the meaning of linguistic expressions.

Furthermore, we examine the representation space of GPT models, which is used to
encode input sentences or expressions as high-dimensional vectors. We discuss the smoothness
of this space and its implications for the functionality of GPT models as approximations of
projection functions. By considering the interplay between the natural language space, the
knowledge space, and the GPT representation space, we provide insights into the inner
workings of these models and their capacity to capture and manipulate linguistic information.

Additionally, we address the challenges and limitations of GPT models and autore-
gressive self-supervised learning, focusing on the trade-offs between model complexity
and generalization capabilities. We also investigate the implications of incomplete inverse
projection functions, which may hinder the ability of GPT-based models to accurately
represent certain types of knowledge or meaning.

Given the context, this paper is dedicated to exploring several critical research aspects:

• First, it seeks to formally define the natural language space and the knowledge space
to foster an understanding of the dimensionality reduction process in GPT-based
LLMs.

• Second, it aims to elucidate the role of projection functions and their inverses in the
language generation capabilities of these models.

• Third, it endeavors to identify the properties of the GPT representation space and
analyze how these properties affect the models’ approximation capabilities.

• Lastly, it contemplates the limitations and challenges of GPT models and autoregres-
sive self-supervised learning, with a special focus on aspects such as model complexity,
generalization capabilities, and the completeness of inverse projection functions.

Through this comprehensive analysis, we hope to contribute to the ongoing discourse
surrounding GPT-based LLMs and provide a solid mathematical foundation for future
advancements in the field.

2. Preliminaries

In this section, we establish a solid foundation on the underlying principles and
mechanics of deep learning and GPT models, which is vital for readers who may not
be intimately familiar with these concepts. This understanding is indispensable for the
more advanced discourse that follows in the subsequent sections, where we delve into
the functional intricacies of GPT models in the context of autoregressive self-supervised
learning. We introduce formalized definitions and concepts, which are instrumental in
these discussions, to provide a rigorous, mathematical depiction of how GPT-based models
work. This includes a thorough understanding of how GPT models, comprised of stacked
non-linear neural network layers with attention mechanisms, map the natural language
space into the knowledge space via the intermediate layers, thus enabling these models to
effectively capture and represent the semantic essence of natural language.

2.1. Deep Learning Models

Deep learning models are a class of machine learning models that consist of multiple
layers of interconnected artificial neurons [21]. These models are designed to learn hierar-
chical representations from input data by minimizing a loss function that quantifies the
discrepancy between the model’s predictions and the ground truth. A deep learning model
f : X → Y is a function that maps input data from a space X to a target space Y . The
model is composed of L layers, and each layer l ∈ {1, . . . , L} consists of a set of neurons
Nl = {nl

1, . . . , nl
kl
}, where kl is the number of neurons in layer l.
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Definition 1 (Activation function [21]). An activation function σ : R→ R is a non-linear func-
tion applied element-wise to the output of a neuron. It is assumed to be differentiable and monotonic.

For each neuron nl
i ∈ Nl , let al

i denote its pre-activation value and zl
i denote its post-

activation value. The pre-activation value is a linear combination of the outputs from the
neurons in the previous layer, and the post-activation value is obtained by applying the
activation function to the pre-activation value:

al
i =

kl−1

∑
j=1

wl
ijz

l−1
j + bl

i , (1)

zl
i = σ(al

i), (2)

where wl
ij is the weight connecting neuron nl−1

j to neuron nl
i , and bl

i is the bias term for

neuron nl
i . In this context, σ(·) represents the activation function as defined in Definition 1.

A deep learning model can be viewed as a composition of functions f = f L ◦ · · · ◦ f 1,
where each function f l : Rkl−1 → Rkl represents the operation performed by layer l. The
model’s parameters, Θ = {W l , bl}L

l=1, where W l ∈ Rkl×kl−1 is the weight matrix for layer
l and bl ∈ Rkl is the bias vector for layer l, are optimized by minimizing a loss function
L(Θ;D), where D denotes the training dataset.

Remark 1. The backpropagation algorithm computes the gradient of the loss function with respect
to the model’s parameters, ∇ΘL(Θ;D), by applying the chain rule of differentiation. This gradient
is used to update the model’s parameters iteratively via gradient-based optimization methods, such
as stochastic gradient descent (SGD) or variants thereof.

Theorem 1 (Universal Approximation Theorem [22]). Let σ : R → R be a continuous and
nonconstant activation function. Given any continuous function g : Rd → R defined on a compact
set C ⊆ Rd and any ε > 0, there exists a feedforward neural network with one hidden layer and
width k1, using activation function σ(·), such that the neural network can approximate g(·) with
an error less than ε, i.e.,

sup
x∈K
| f (x)− g(x)| < ε. (3)

Theorem 1 states that a sufficiently wide neural network with a single hidden layer
can approximate any continuous function with arbitrary accuracy. This theorem highlights
the expressive power of deep learning models.

2.2. Generative Pre-Trained Transformer

A GPT model is composed of several layers of neural network modules, each consist-
ing of layer normalization, multi-head attention, and dropout functionalities. The model
integrates L number of transformer blocks, each of which houses a residual module encap-
sulating layer normalization, multi-head attention, dropout, and a fully connected layer.
This systematic arrangement and interaction of modules and layers contribute to the robust
performance of the GPT model. Figure 1 illustrates the architecture of the GPT model, and
Definition 2 provides a formal description of the GPT model.
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Figure 1. Neural Network Architecture of GPT.

Definition 2 (Generative Pre-trained Transformer (GPT) [4]). A GPT is an autoregressive
self-supervised learning model that employs the Transformer architecture for natural language
processing tasks. Given an input sequence of tokens x = (x1, x2, . . . , xT), where xt ∈ X for
t = 1, 2, . . . , T, the GPT model learns a probability distribution P(xt|x<t) over the vocabulary X ,
which is conditioned on the preceding tokens x<t = (x1, x2, . . . , xt−1). The conditional probability
distribution P(xt|x<t) esimated by a GPT can be represented by

P(xt|x<t) = fΘ(xt|x<t), ∀t = 1, 2, . . . , T. (4)

In the GPT model, the position information of tokens in the input sequence is crucial
for maintaining the autoregressive property and capturing the sequential dependencies
between tokens. To incorporate this information, the GPT model utilizes a technique called
positional encoding, which adds a fixed sinusoidal encoding to the input embeddings.

Definition 3 (Positional Encoding [23]). The positional encoding function PE : N×N → R
computes the position encoding for each position p ∈ N and each dimension i ∈ N in the input
embedding space as follows [24,25]:

PE(p, i) =


sin
(

p

10000
2i
d

)
if i is even,

cos
(

p

10000
2i−1

d

)
if i is odd.

(5)

The positional encoding function incorporates a 10,000 constant, which serves as a
hyperparameter. This value was determined empirically during the original development
of the Transformer model. It is designed to create a balance between the higher and lower
frequency components of the positional encoding. To facilitate the optimization process,
the GPT model employs layer normalization, which is applied to the input of both the
multi-head self-attention and position-wise feedforward sublayers. Layer normalization
helps alleviate the vanishing and exploding gradient problems and accelerates training.
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Definition 4 (Layer Normalization [26]). Given an input matrix H ∈ RT×d, layer normaliza-
tion computes the normalized output matrix Ĥ ∈ RT×d as follows:

Ĥij =
Hij − µj√

σ2
j + ε

, (6)

where µj =
1
T ∑T

i=1 Hij and σ2
j = 1

T ∑T
i=1(Hij − µj)

2 are the mean and variance of the j-th feature
across all positions, respectively, and ε > 0 is a small constant for numerical stability.

Definition 5 (Scaled Dot-Product Attention [23]). The scaled dot-product attention function
Attention : RT×d × RT×d × RT×d → RT×d takes as input a query matrix Q ∈ RT×d, a key
matrix K ∈ RT×d, and a value matrix V ∈ RT×d, and it computes the output as follows:

Attention(Q, K, V) = softmax

(
QK>√

d

)
V, (7)

where
√

d is a scaling factor that prevents the dot products from becoming too large.

In addition to the scaled dot-product attention mechanism, the GPT model employs
the multi-head attention mechanism to capture different aspects of the input sequence.
By having multiple attention heads, the model can learn different types of relationships
between tokens in parallel.

The GPT model consists of a stack of L identical layers, each containing a multi-
head self-attention mechanism, followed by position-wise feedforward networks. The
self-attention mechanism computes a weighted sum of the input embeddings, where the
weights are determined by the compatibility between input tokens.

Definition 6 (Multi-Head Attention [23]). The multi-head attention function MultiHead :
RT×d×RT×d×RT×d → RT×d takes as input a query matrix Q ∈ RT×d, a key matrix K ∈ RT×d,
and a value matrix V ∈ RT×d, and it computes the output as follows [27,28]:

MultiHead(Q, K, V) = Concat(head1, head2, . . . , headh)WO, (8)

where headi = Attention(QWQ
i , KWK

i , VWV
i ) for i = 1, 2, . . . , h, with WQ

i , WK
i , WV

i ∈ Rd× d
h

being learnable weight matrices, h being the number of attention heads, and WO ∈ Rd×d being a
learnable output weight matrix.

Beyond the attention mechanism, the GPT model utilizes position-wise feedforward
networks (FFNs) within each layer. These FFNs consist of two linear layers with a non-
linear activation function in between, which allows the model to learn complex non-linear
transformations of the input sequence.

Definition 7 (Position-wise Feedforward Networks [23]). Given an input matrix H ∈ RT×d,
the position-wise feedforward network computes the output matrix H′ ∈ RT×d as follows:

H′ = σH(HW1 + b1)W2 + b2, (9)

where W1 ∈ Rd×d′ , W2 ∈ Rd′×d are learnable weight matrices, and b1 ∈ Rd′ , b2 ∈ Rd are
learnable bias vectors. The activation function σH introduces non-linearity.

The GPT model is trained to maximize the likelihood of the target tokens given the
context tokens. The objective function is the negative log-likelihood of the target tokens:

L(Θ;D) = − ∑
(x,y)∈D

T

∑
t=1

log P(yt|x<t; Θ), (10)
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where D is the dataset of input-target pairs (x, y) with y = (y1, y2, . . . , yT) being the
target sequence.

A multitude of research endeavors have been undertaken to investigate the architec-
ture of GPT models and their practical applications. However, the majority of these studies’
pursuits emphasize the exploration of architectural alterations and the development of
fine-tuning methodologies that enhance empirical results [1,3,4,29].

For instance, Radford et al. [4] revealed that language models, when subjected to
training on a novel dataset consisting of millions of webpages, exhibit an inherent ability
to learn specific tasks without the need for any explicit supervision. They identified the
significance of the language model’s capacity in the success of zero-shot task transfer, with
performance improving in a log-linear fashion across tasks. Their most extensive model,
GPT-2, showcased an unparalleled performance on a majority of tested language modeling
datasets, underscoring the potential of language processing systems that learn to perform
tasks via naturally occurring demonstrations.

Similarly, Brown et al. [3] discovered that scaling up language models substantially en-
hances task-agnostic, few-shot, and GPT-3. They trained an autoregressive language model
with a large parameter set, which was significantly larger than any previous non-sparse
language model, and tested its performance in the few-shot setting. Despite acknowledg-
ing certain areas where GPT-3’s few-shot learning struggles, their findings attest to the
remarkable performance of GPT-3 across a range of NLP tasks.

Kaplan et al. [29] investigated the empirical scaling laws pertinent to language model
performance on the cross-entropy loss, observing that the loss scales as a power-law with
model, dataset size, and the amount of computation used in the training process. They
noted the minimal effects of other features such as network width, despite the fact that
larger models are significantly more sample-efficient.

However, notwithstanding the compelling empirical results of these studies, there
exists a conspicuous gap in our understanding of the model’s behavior from a mathematical
perspective. This gap is exactly what our research aspires to fill. We aim to provide
a functional analysis of GPT, contributing to a deeper comprehension of the model’s
properties and elucidating the mechanisms that drive its performance.

2.3. Autoregressive Self-Supervised Learning

Definition 8 (Autoregressive Self-Supervised Learning [4]). Autoregressive self-supervised
learning is a learning paradigm in which a model is trained to predict the next token in a se-
quence, given the preceding tokens, without using any labeled data [19]. The model learns a
probability distribution P(xt|x<t; Θ) over the vocabulary X , conditioned on the context tokens
x<t = (x1, x2, . . . , xt−1), where Θ denotes the model’s parameters.

Definition 9 (Token Probability Estimation [4]). In autoregressive self-supervised learning,
token probability estimation refers to the process of computing the probability of a token xt ∈ X
given the context tokens x<t. Given a model with parameters Θ, the token probability estimation
can be defined as:

P̂(xt|x<t; Θ) = fΘ(x<t), (11)

where fΘ is a function parameterized by Θ that maps the context tokens x<t to the estimated
probability distribution over the vocabulary X .

In the context of autoregressive self-supervised learning, the function fΘ in Definition 9
is often implemented using deep neural networks, such as transformers or recurrent neural
networks (RNNs). These architectures are designed to capture complex dependencies
between tokens and are capable of representing a wide range of probability distributions
over the vocabulary X . In particular, the choice of the function fΘ and its parameterization
can have a significant impact on the model’s ability to learn the true underlying data-
generating process.
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Assumption 1 (Markov Assumption). For autoregressive self-supervised learning, it is assumed
that the conditional probability of a token xt depends only on a fixed number of preceding tokens x<t.
This is also known as the Markov assumption, which simplifies the modeling of the joint probability
distribution over token sequences.

Assumption 2 (Smoothness). For autoregressive self-supervised learning, we assume that the
function fΘ in Definition 9 is smooth with respect to the model parameters Θ. This implies that
small changes in the model parameters will result in small changes in the estimated probability
distribution over the vocabulary X .

A key implication of Assumption 2 is that the optimization landscape of the autoregres-
sive self-supervised learning problem is characterized by a continuous and differentiable
space with respect to the model parameters Θ. This property allows the use of gradient-based
optimization techniques, such as Adam and RMSProp, to iteratively update the model param-
eters and minimize the objective function in Equation (15). Furthermore, under appropriate
conditions, convergence to a local minimum or stationary point can be guaranteed.

Definition 10 (Token Context Window [4]). A token context window of size w ∈ N is a fixed-
size sliding window that captures the w most recent tokens in a sequence. Given a sequence
x = (x1, x2, . . . , xT), the token context window Cw

t (x) at position t ∈ 1, . . . , T is defined as
Cw

t (x) = (xt−w+1, xt−w+2, . . . , xt), where 1 ≤ t− w + 1.

Remark 2. In practice, the token context window size w is often chosen to balance the trade-off
between computational complexity and the capacity to capture long-range dependencies in the
input sequences.

It is important to note that the choice of the token context window size w in
Definition 10 can be influenced by the inherent structure and dependencies in the data. A
larger context window can potentially capture longer-range dependencies, but it may also
increase the computational complexity of the model and lead to overfitting. Conversely, a
smaller context window reduces computational complexity but may fail to capture impor-
tant dependencies between tokens. In practice, the optimal context window size is often
determined using model selection techniques, such as cross-validation.

Definition 11 (Token Autocorrelation). Token autocorrelation is a measure of the dependency
between tokens at different positions in a sequence. Given a sequence x = (x1, x2, . . . , xT), the
token autocorrelation at lag k ∈ 1, 2, . . . , T − 1 is defined as:

ρk(x) =
∑T

t=k+1(xt − x̄)(xt−k − x̄)

∑T
t=1(xt − x̄)2

, (12)

where x̄ denotes the mean of the sequence x.

Remark 3. The token autocorrelation can be used to analyze the statistical dependencies be-
tween tokens in a sequence, which can inform the choice of the token context window size w in
Definition 10.

Token autocorrelation, as defined in Definition 11, can also provide insights into the ap-
propriate choice of the function fΘ in Definition 9. For example, if the token autocorrelation
decays rapidly with increasing lag, it may indicate that a simpler model, such as an RNN
with a small hidden state, could be sufficient to capture the dependencies between tokens.
On the other hand, if the token autocorrelation decays slowly or exhibits periodic patterns,
more complex models, such as transformers with multiple layers and attention mechanisms,
might be necessary to accurately represent the underlying data-generating process.



Mathematics 2023, 11, 2451 8 of 19

Definition 12 (Conditional Entropy [30]). The conditional entropy H(Xt|X<t) is a measure of
the uncertainty in a random variable Xt given the values of X<t. The conditional entropy is defined as

H(Xt|X<t) = − ∑
xt∈X

∑
x<t∈X t−1

P(xt, x<t) log P(xt|x<t), (13)

where P(xt, x<t) denotes the joint probability of observing the sequence (x<t, xt), and P(xt|x<t)
represents the conditional probability of xt given x<t.

Definition 13 (Perplexity [31]). Perplexity is a measure of the average uncertainty in predicting
the next token in a sequence given the context tokens. The perplexity of a probability distribution
P(xt|x<t; Θ), given the context tokens x<t, is defined as the exponential of the conditional entropy:

Perplexity(P(xt|x<t; Θ)) = exp(H(Xt|X<t)), (14)

where H(Xt|X<t) denotes the conditional entropy as defined in Definition 12.

Remark 4. Lower perplexity values indicate a better model fit, as the model assigns higher proba-
bilities to the observed sequences. Perplexity is often used as a performance metric for autoregressive
self-supervised learning models.

Given Definition 8, Assumption 1, and Definition 10, the objective function for training
an autoregressive self-supervised learning model can be formulated as follows:

L(Θ;D) = − ∑
x∈D

T

∑
t=1

log P(xt|Cw
t (x); Θ), (15)

where D is the dataset of input sequences x and Θ denotes the model’s parameters.

Proposition 1. Under the Markov assumption in Assumption 1 and given a token context window
of size w as in Definition 10, the autoregressive self-supervised learning objective in Equation (15)
converges to the true conditional probability distribution of the underlying data-generating process
as the size of the dataset D goes to infinity, provided that the model has sufficient capacity and
appropriate optimization techniques are employed.

Proposition 2. The conditional entropy H(Xt|X<t) of the true data-generating process is upper-
bounded by the logarithm of the size of the vocabulary X , i.e., H(Xt|X<t) ≤ log |X |.

Proof. The conditional entropy H(Xt|X<t) is a function of the joint probability distri-
bution P(xt, x<t) and the conditional probability distribution P(xt|x<t). By definition,
0 ≤ P(xt|x<t) ≤ 1, and the maximum value of the conditional entropy occurs when
P(xt|x<t) =

1
|X | for all xt ∈ X . In this case, the conditional entropy becomes H(Xt|X<t) =

log |X |. Therefore, H(Xt|X<t) ≤ log |X |.

It is worth noting that the bound on the conditional entropy in Proposition 2 has
important implications for the optimization of autoregressive self-supervised learning
models. Since the conditional entropy is upper-bounded by the logarithm of the size of
the vocabulary X , it follows that the perplexity, as defined in Definition 13, is also upper-
bounded by |X |. This provides an absolute reference point for comparing the performance of
different models as well as a theoretical limit on the achievable perplexity. In practice, however,
the true conditional entropy of the data-generating process may be much lower than the bound,
and the choice of an appropriate model and optimization technique can lead to significant
improvements in perplexity over a naïve uniform distribution over the vocabulary.

Definition 14 (GPT Autoregressive Self-Supervised Learning [4]). Let G be a GPT model as
defined in Definition 2. The autoregressive self-supervised learning of G is the process of training
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the model by optimizing the objective function in Equation (15), where Θ represents the parameters
of G and D is the dataset of input sequences.

Assumption 3 (Stationary Data-generating Process). We assume that the datasetD is generated
by a stationary data-generating process; i.e., the joint probability distribution of the tokens in the
sequences does not change over time.

Remark 5. Assumption 3 simplifies the analysis of the convergence properties of autoregressive
self-supervised learning. In practice, the data-generating process may be non-stationary, and the
model may need to adapt to the changing distribution over time.

Proposition 3. Under the Markov assumption in Assumption 1 and given a token context window
of size w as in Definition 10, the GPT autoregressive self-supervised learning process in Definition 14
converges to the true conditional probability distribution of the underlying data-generating process
as the size of the dataset D goes to infinity, provided that the model has sufficient capacity and
appropriate optimization techniques are employed.

Proof. Given Definition 8 and Definition 14, the objective function for training a GPT
model using autoregressive self-supervised learning can be formulated as in Equation (15).
The proof of Proposition 3 follows directly from Proposition 1.

Example 1 (GPT and Autoregressive Self-Supervised Learning). Let G be a GPT model and
D be a dataset of text sequences. We can train G using autoregressive self-supervised learning, as
described in Definition 14. By optimizing the objective function in Equation (15), we can learn a
conditional probability distribution over the vocabulary X that captures the statistical dependencies
between tokens in the input sequences. Consider a GPT model, G, trained on the dataset D that
contains English sentences. When the model encounters the sentence "The quick brown fox jumps
over the lazy dog", it predicts the next word in the sentence given the previous words. For example,
after processing "The quick brown fox jumps", the model predicts "over" as the most likely next
word. This demonstrates the use of autoregressive self-supervised learning, where the model learns
the conditional probability distribution over the vocabulary that captures the statistical dependencies
between words in a sentence.

3. Natural Language Space

Definition 15 (Natural Language Space). The natural language space L is a high-dimensional
space that contains all possible human language sentences or expressions, where each point in the
space corresponds to a unique sentence or expression. Each point can be represented as a vector in a
high-dimensional space with dL being the dimensionality of the natural language space.

Definition 16 (Vector Representation of Sentences). A vector representation function f : L→
RdL maps sentences or expressions in the natural language space L to points in a high-dimensional
space, typically RdL , where each point is represented as a unique vector. The function f ensures that
each sentence or expression s ∈ L has a corresponding vector vs ∈ RdL .

Definition 17 (Knowledge Space). The knowledge space K is a lower-dimensional space that
contains abstract representations of the information or meaning conveyed by sentences or expressions
in the natural language space L. Each point in the knowledge space can be represented as a vector in a
relatively lower-dimensional space with DK < DL being the dimensionality of the knowledge space.

Assumption 4 (Smoothness of Natural Language Space). We assume that the natural language
space L is smooth, meaning that small changes in the coordinates of a point in the space correspond to
small changes in the meaning or information content of the corresponding sentence or expression.
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Assumption 5 (Smoothness of Knowledge Space). We assume that the knowledge space K is
smooth, meaning that small changes in the coordinates of a point in the space correspond to small
changes in the underlying information or meaning represented by the point.

Assumption 6 (Locality of Projection Function). We assume that the projection function p :
L → K is local, meaning that if two sentences or expressions s1, s2 ∈ L are similar in meaning
or information content, then their projections p(s1), p(s2) ∈ K are also similar in their abstract
representations of information or meaning.

Definition 18 (Projection Function). A projection function p : L → K maps points in the
natural language space L to points in the knowledge space K, such that the information or meaning
conveyed by a sentence or expression in L is preserved as an abstract representation in K.

Lemma 1 (Existence of a Projection Function). There exists a projection function p : L→ K
that maps points in the natural language space L to points in the knowledge space K, preserving the
information or meaning conveyed by the corresponding sentence or expression.

Proof. Under Assumptions 4 and 5, both the natural language space L and the knowledge
space K are smooth. Thus, it is possible to define a continuous mapping between these
spaces. Furthermore, since the dimensionality of the knowledge space is lower than that
of the natural language space, there exists a projection function p : L → K that maps
points in L to points in K while preserving the information or meaning conveyed by the
corresponding sentence or expression.

This lemma establishes the foundational existence of the projection function, facilitating
Lemma 2, which discusses the composition of this projection function and its inverse.

Example 2 (Projection of Natural Language Space to Knowledge Space). Consider a sentence
in the natural language space L. Let s ∈ L represent a specific sentence or expression, with vector
representation vs ∈ RdL . We can define a projection function p : L→ K that maps the sentence s to
a point k ∈ K, with vector representation vk ∈ RdK , such that vk = p(vs). Consider the sentence
"London is the capital of England" in the natural language space L. This sentence or expression
s ∈ L can be represented as a vector vs ∈ RdL . Using a projection function p : L → K, we map
this sentence to a point k ∈ K in the knowledge space, which is, indeed, challenging to illustrate,
but it might be a set of relationships of ("London", "is capital of", "England"). This illustrates
how a projection function can convert a sentence from the natural language space to a more formal
representation in the knowledge space.

Definition 19 (Similarity Metric [32]). A similarity metric d : K×K → R≥0 is a function that
measures the similarity between two points in the knowledge space K. It satisfies the following
properties for all k1, k2, k3 ∈ K:

1. d(k1, k2) ≥ 0 (non-negativity);
2. d(k1, k2) = 0 if and only if k1 = k2 (identity of indiscernibles);
3. d(k1, k2) = d(k2, k1) (symmetry); and
4. d(k1, k3) ≤ d(k1, k2) + d(k2, k3) (triangle inequality).

Remark 6. Under the smoothness Assumptions 4 and 5, the projection function p preserves the
similarity between sentences or expressions in L as measured by the similarity metric d in K. In
other words, if s1, s2 ∈ L are similar in meaning or information content, then d(p(s1), p(s2)) will
be small.

Definition 20 (Inverse Projection Function). An inverse projection function p−1 : K → L
maps points in the knowledge space K back to points in the natural language space L, such that the
information or meaning represented by a point in K is transformed into a corresponding sentence or
expression in L.
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Assumption 7 (Existence of an Inverse Projection Function). We assume that there exists an
inverse projection function p−1 : K → L that maps points in the knowledge space K back to points
in the natural language space L, transforming the information or meaning represented by a point in
K into a corresponding sentence or expression in L.

Remark 7. A human can be considered as an example of an inverse projection function p−1 : K →
L. When a person is given an abstract representation of information or meaning from the knowledge
space K, they can generate a corresponding sentence or expression in the natural language space L.
This process involves the cognitive ability to understand the meaning or information represented by
a point in K and to transform it into a coherent and comprehensible sentence or expression in L.
Thus, the human ability to communicate and express information can be viewed as an instantiation
of the inverse projection function p−1.

Lemma 2 (Projection-Inverse Projection Composition). Given a projection function p : L→ K
and an inverse projection function p−1 : K → L, the composition of these functions, denoted by
p−1 ◦ p : L→ L, is an approximate identity mapping on the natural language space L.

Proof. Let s ∈ L be an arbitrary sentence or expression, and let k = p(s) ∈ K be the
projection of s into the knowledge space. Since p−1 : K → L is an inverse projection
function, it maps k back to a sentence or expression s′ = p−1(k) ∈ L.

Now, consider the composition of the projection and inverse projection functions: p−1 ◦
p(s) = p−1(k) = s′. By Assumption 7, the information or meaning represented by k is trans-
formed into the corresponding sentence or expression s′. Under
Assumptions 4 and 5, we can deduce that s′ is similar in meaning or information con-
tent to the original sentence s.

While s′ might not be identical to s, their similarity in meaning or information content
implies that the composition p−1 ◦ p is an approximate identity mapping on the natural
language space L. This holds for any arbitrary s ∈ L.

This lemma builds upon Lemma 1 and forms the underpinning of Theorem 2, which
uses this approximate identity mapping for dimensionality reduction.

Theorem 2 (Dimensionality Reduction of Natural Language Space). Given a natural language
space L with dimensionality DL and a knowledge space K with dimensionality DK, where DK <
DL, there exists a projection function p : L→ K and an inverse projection function p−1 : K → L
that allows for dimensionality reduction while preserving the information or meaning conveyed by
sentences or expressions in L.

Proof. By Lemma 1, we have the existence of a projection function p : L→ K that maps
points in the natural language space L to points in the knowledge space K, preserving the
information or meaning conveyed by the corresponding sentence or expression.

By Assumption 7, there exists an inverse projection function p−1 : K → L that
maps points in the knowledge space K back to points in the natural language space L,
transforming the information or meaning represented by a point in K into a corresponding
sentence or expression in L.

As shown in the proof of Lemma 2, the composition p−1 ◦ p is an approximate identity
mapping on the natural language space L. Therefore, the information or meaning conveyed
by sentences or expressions in L is approximately preserved through the projection to K
and the inverse projection back to L.

We now introduce a new assumption concerning the preservation of information or
meaning when points are mapped between the natural language space and the knowl-
edge space.
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Assumption 8 (Preservation of Information). We assume that for any sentence or expression
s ∈ L and its projection k ∈ K, the inverse projection function p−1 preserves the information or
meaning conveyed by s such that p−1(k) ≈ s.

This assumption implies that the projection function p and the inverse projection
function p−1 can be used to perform dimensionality reduction on the natural language
space L while preserving the information or meaning conveyed by sentences or expressions
in L.

We proceed to show that the composition of the projection function p and the inverse
projection function p−1 can be used to approximately recover the original sentence or
expression in L.

Proposition 4 (Approximate Recovery). Given a sentence or expression s ∈ L, its projection
k ∈ K, and the inverse projection p−1(k), under Assumption 8, the composition p−1 ◦ p(s) ≈ s.

Proof. By Assumption 8, the inverse projection function p−1 preserves the information
or meaning conveyed by s such that p−1(k) ≈ s. Therefore, the composition p−1 ◦ p(s) =
p−1(p(s)) = p−1(k) ≈ s.

The above proposition demonstrates that the dimensionality reduction can be achieved
while approximately preserving the information or meaning conveyed by sentences or
expressions in the natural language space L. This result justifies the use of the projection
function p and the inverse projection function p−1 for dimensionality reduction in the
natural language space, allowing for a compact representation of human language in a
lower-dimensional knowledge space K.

4. Representation Space of GPT

Definition 21 (Representation Space of GPT). The representation space of a GPT model, denoted
by R, is a high-dimensional space that contains vector representations of tokens or sequences
typically obtained from an intermediate layer of the GPT model, such as the decoder output. Each
point in the representation space can be represented as a vector in a high-dimensional space, typically
RdR , with dR being the dimensionality of the representation space.

In the representation space of a GPT model, tokens and sequences from the natural
language space L are mapped to high-dimensional vectors. This mapping allows for the
manipulation and processing of language data in a continuous and differentiable space,
which is particularly useful for training deep learning models. Importantly, the structure of
the representation space should ideally capture the semantic and syntactic properties of
the language so that similar meanings or structures are represented by nearby points in
the space.

Definition 22 (GPT Vector Representation Function). A GPT vector representation function
h : L → R maps sentences or expressions in the natural language space L to points in the
representation spaceR, where each point is represented as a unique vector. The function h ensures
that each sentence or expression s ∈ L has a corresponding vector vs ∈ RdR in the representation
spaceR.

The GPT vector representation function h should be designed to preserve the semantic
and syntactic properties of the language in the representation space. This often involves the
use of continuous embeddings, which can be learned during the training process. As the
GPT model is trained to optimize the autoregressive self-supervised learning objective, the
model implicitly learns a mapping that captures the structure and relations between tokens
and sequences in the natural language space. The resulting representation space should
thus enable the GPT model to reason about and generate natural language text based on
the learned representations.
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Assumption 9 (Smoothness of Representation Space). We assume that the representation space
R is smooth, meaning that small changes in the coordinates of a point in the space correspond to
small changes in the information or meaning conveyed by the corresponding token or sequence in
the GPT model.

The smoothness assumption on the representation space implies that the GPT model
can generalize well to unseen examples, as the learned representations of similar tokens
and sequences are expected to be close in the representation space. This smoothness
property is crucial for the GPT model to perform well on a wide range of natural language
understanding and generation tasks, as it allows the model to exploit the structure of
the representation space and make meaningful predictions even for previously unseen
combinations of tokens and sequences.

Definition 23 (GPT Inverse Projection Function). A GPT inverse projection function g : K →
R maps points in the knowledge space K to points in the representation space R, such that the
information or meaning represented by a point in K is transformed into a corresponding vector
representation in R, which can be decoded into a sentence or expression in the natural language
space L by the GPT model.

The GPT inverse projection function g serves as a bridge between the knowledge
space K and the representation space R. By mapping points in the knowledge space
to corresponding vector representations in the representation space, the GPT model can
leverage its learned representations to reason about and manipulate information in the
knowledge space. The existence of such an inverse projection function is essential for
establishing a connection between the GPT model’s representation space and the underlying
knowledge space, allowing the model to effectively access and generate knowledge in the
form of natural language text.

Assumption 10 (Existence of a GPT Inverse Projection Function). We assume that there exists
a GPT inverse projection function g : K → R that maps points in the knowledge space K to points
in the representation spaceR, transforming the information or meaning represented by a point in K
into a corresponding vector representation inR, which can be decoded into a sentence or expression
in the natural language space L by the GPT model.

Lemma 3 (GPT as an Approximation of p−1 ◦ p). Under Assumptions 9 and 10, a GPT model
trained using autoregressive self-supervised learning, as described in Definition 14, can be considered
as an approximation of the function p−1 ◦ p : L→ L.

Proof. Let x ∈ L be a sentence or expression in the natural language space. By Definition 18,
we have p(x) ∈ K, which is the corresponding point in the knowledge space.

Now, consider the GPT inverse projection function g as defined in Definition 23. We
have g(p(x)) ∈ R, which is a point in the representation space. Since GPT is trained
using autoregressive self-supervised learning as described in Definition 14, it learns to
approximate the function p−1 ◦ p : L→ L by minimizing the difference between its own
output and the original input.

Let x̂ ∈ L be the output of the GPT model for the input x. By the assumption of the
existence of the GPT inverse projection function (Assumption 10), there exists a function
g : K → R such that g(p(x)) ∈ R.

Under the assumption of smoothness of the representation space (Assumption 9),
small changes in the coordinates of a point in the space correspond to small changes in
the information or meaning conveyed by the corresponding token or sequence in the GPT
model. Since the GPT model is trained to minimize the difference between its output and
the input, we have x̂ ≈ x.

Therefore, the GPT model can be considered as an approximation of the function
p−1 ◦ p : L→ L.
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Lemma 3 suggests that a well-trained GPT model can approximate the composition of
the projection function p and its inverse p−1. This approximation enables the GPT model to
effectively learn the structure and relations in the natural language space by transforming
input sentences and expressions into a suitable representation space, processing them,
and then transforming the resulting representations back into the natural language space.
This capability allows the GPT model to perform a wide range of natural language under-
standing and generation tasks, as it can manipulate and reason about language data in a
continuous and differentiable space.

Theorem 3 (GPT Representation Space as an Approximation of Knowledge Space). Under
Assumptions 9 and 10, the representation space R of a GPT model trained using autoregressive
self-supervised learning can be considered as an approximation of the knowledge space K, where the
GPT model serves as an approximation of the function p−1 ◦ p.

Proof. Let x ∈ L be a sentence or expression in the natural language space. By Lemma 3,
the GPT model serves as an approximation of the function p−1 ◦ p : L→ L, meaning that
the GPT model learns to approximate the transformation from the natural language space
to the knowledge space and back to the natural language space.

By Definition 18, we have p(x) ∈ K, which is the corresponding point in the knowl-
edge space. Now, consider the GPT inverse projection function g as defined in Definition 23.
We have g(p(x)) ∈ R, which is a point in the representation space.

As the GPT model is an approximation of p−1 ◦ p : L → L, it should also learn to
approximate the inverse projection function g that maps points from the knowledge space
to the representation space. Thus, the GPT model learns to approximate the transformation
from the knowledge space to the representation space. Since the GPT model is trained to
minimize the difference between its output and the input, we have g(p(x)) ≈ p(x).

Therefore, under Assumptions 9 and 10, the representation spaceR of a GPT model
trained using autoregressive self-supervised learning can be considered as an approxima-
tion of the knowledge space K.

Theorem 3 serves as a crucial mathematical underpinning in our exploration of GPT-
based models. It enables us to unravel the internal mathematical workings of these models
by positing the GPT representation spaceR as an approximation of the knowledge space
K. This formalized definition brings a mathematical rigor to the understanding of the
transformation process that the GPT model performs in mapping the natural language space
L to the knowledge space K and vice versa through its layers of non-linear transformations
and attention mechanisms. The proof of the theorem further buttresses this interpretation.

This assertion can be viewed as an encapsulation of the intuition prevalent among
experts studying GPT-based models. The GPT model is essentially learning to transform
natural language inputs into a dense representation space and vice versa. This dense
representation is what we are referring to as the GPT representation space R. Thus, the
R serves as an approximation of K, capturing the semantic essence of the sentences or
expressions in the natural language space L.

5. Challenges and Limitations of GPT and Autoregressive Self-Supervised Learning

Definition 24 (Incomplete Inverse Projection Function). An incomplete inverse projection
function is an inverse projection function p−1 : K → L that may not perfectly map all points in the
knowledge space K to their corresponding points in the natural language space L. This implies that
certain types of information or meaning may not be adequately represented in L using the inverse
projection function p−1.

The projection function limitation refers to the inability of the projection function
p : L → K and its inverse p−1 : K → L to accurately capture and represent specific
knowledge or meaning within the natural language space L and knowledge space K. This
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limitation could be attributed to the complexity of the relationship between these spaces or
the insufficiency of the model’s architecture in representing certain types of knowledge.

Assumption 11 (Incomplete Inverse Projection Function). We assume that the inverse pro-
jection function p−1 : K → L, as described in Assumption 7, may be incomplete in the sense
that it may not adequately map certain types of knowledge or meaning from K to L, as defined in
Definition 24.

Assumption 12 (Projection Function Limitation Impact). We assume that the projection func-
tion limitation could adversely affect the performance of GPT-based models, such as ChatGPT, in
tasks that require precise mapping between the knowledge space K and the natural language space
L. This limitation could manifest as inaccuracies, ambiguities, or inconsistencies in the generated
responses, particularly when dealing with complex or nuanced information.

The impact of the projection function limitation on GPT-based models, as described
in Assumption 12, not only influences the quality of the generated responses but can also
affect the model’s ability to make reliable inferences. In particular, when the projection
function and its inverse fail to accurately map between the knowledge space and the natural
language space, the model may encounter difficulties in synthesizing relevant information,
comprehending contextual clues, and adapting to new or evolving concepts. This limitation
may be exacerbated when handling specialized domains or interdisciplinary subjects where
a precise understanding of terminology, relationships, and dependencies is paramount for
generating coherent and contextually accurate responses.

Remark 8 (Calculation Limitation). Assumption 11 implies that certain types of knowledge,
such as calculation, may be difficult to represent in the natural language space L using the inverse
projection function p−1. Consequently, GPT-based models may face challenges in performing
accurate calculations due to the limitations of their inverse projection function.

Another potential challenge arising from the limitations of the inverse projection
function in GPT-based models is the difficulty in processing and reasoning about abstract
concepts, particularly when they involve logical, mathematical, or scientific principles. Due
to the inherent complexity and often non-linear nature of these concepts, it can be difficult
for the inverse projection function to effectively represent the associated knowledge within
the natural language space. This may lead to suboptimal performance when attempting to
generate responses that require reasoning about abstract or complex ideas, as the model
may struggle to accurately represent and manipulate the relevant information within its
internal representations.

Assumption 12 suggests that GPT-based models might face challenges in accurately
understanding and interpreting certain types of information due to the limitations of
the projection function and its inverse. This could result in a lack of understanding
of the underlying meaning or context of the input data, leading to inappropriate or
irrelevant responses.

Definition 25 (Model Complexity). Model complexity refers to the number of parameters or the
depth of a deep learning model. A model with a higher complexity generally has more parameters or
deeper layers, enabling it to capture more intricate patterns and relationships within the input data.

Corollary 1 (Complexity and Approximation). Given Theorem 1, a deep learning model with a
larger complexity, as defined in Definition 25, is more likely to satisfy the conditions of the Universal
Approximation Theorem, allowing it to approximate a target function with higher accuracy.

Corollary 2 (Complexity and Efficiency Trade-off). Given Definition 25, there exists a trade-off
between model complexity and model efficiency in deep learning models. Increasing the complexity
of a model may improve its ability to approximate a target function, as stated in Corollary 1, but
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it may also lead to increased computational costs and resource requirements, thereby reducing the
model’s efficiency.

Moreover, the trade-off between model complexity and efficiency, as described in
Corollary 2, has implications for the practicality and accessibility of GPT-based models.
As these models grow in size and complexity to better approximate target functions, their
computational requirements can become increasingly demanding, making them more diffi-
cult to deploy and maintain in real-world applications. This can be particularly challenging
for smaller organizations or individuals with limited resources who may struggle to harness the
full potential of these large-scale models. Additionally, the increased computational demands
can lead to higher energy consumption and environmental concerns, further highlighting the
need to balance complexity and efficiency in the development of GPT-based models.

Corollary 3 (Model Complexity and Generalization). While increasing model complexity, as
defined in Definition 25, may improve the ability of a deep learning model to approximate a target
function, as stated in Corollary 1, it may also lead to overfitting, resulting in reduced generalization
capabilities. This trade-off between complexity and generalization is an important consideration
when designing and training GPT-based models.

Example 3 (Large Language Models and Universal Approximation). Large language models,
such as GPT-based models, have gained popularity due to their ability to satisfy the conditions of
the Universal Approximation Theorem. The large number of parameters in these models enables
them to capture intricate patterns and relationships within the input data, allowing them to perform
tasks such as natural language understanding and generation with high accuracy. Consider a
large language model such as GPT-3 being utilized for translation tasks. Given a complex sentence
in English, the model, due to its extensive parameter space, is able to understand the intricate
relationships between words and their context, translating it accurately to another language such
as French. This capability demonstrates how the large number of parameters enables GPT-3 to
approximate the intricacies of language translation.

The advantages of large language models, such as GPT-based models, in terms of their
ability to satisfy the conditions of the Universal Approximation Theorem, as described
in Example 3, should not overshadow the potential pitfalls associated with their scale.
As these models grow in size, they may become increasingly susceptible to overfitting,
noise, or biases present in the training data. This can manifest as a heightened sensitivity
to specific patterns, phrases, or concepts within the input data, potentially leading to the
generation of responses that are less adaptable, less diverse, or less contextually appropriate.
Consequently, it is important to carefully consider the impact of model size and complexity
on both the benefits and potential drawbacks associated with GPT-based models.

Example 4 (Large Language Models and Generalization Challenges). While large language
models, such as GPT-based models, excel at capturing intricate patterns and relationships within
input data, they may also face challenges related to generalization. As discussed in Corollary 3, the
trade-off between complexity and generalization can result in overfitting, limiting the model’s ability
to generalize to new, unseen data or contexts. Despite the impressive capabilities of large language
models, generalization remains a challenge. For instance, a GPT-3 model trained predominantly
on English literature might struggle to accurately generate text in the style of an obscure, regional
dialect or an emerging online slang despite its vast parameter space. This example illustrates the
trade-off between complexity and generalization and the resultant risk of overfitting to familiar data
at the expense of novel contexts.

6. Conclusions

In this paper, we have explored the mathematical foundations of GPT-based models
such as ChatGPT, delving into the intricate relationships between the natural language
space L, knowledge space K, and the representation space R. We have formalized key
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concepts, definitions, assumptions, and theorems to provide a rigorous understanding of
these models’ underlying mechanisms.

Our investigation has revealed that GPT-based models, when trained using autore-
gressive self-supervised learning, can be considered as approximations of the composition
of the projection function p : L→ K and the inverse projection function p−1 : K → L (refer
to the second research aspect in the introduction). Consequently, the GPT representation
spaceR serves as an approximation of the knowledge space K, capturing and preserving
the information or meaning conveyed by sentences or expressions in L (pertaining to the
first and third research aspects in the introduction).

Notwithstanding their remarkable capabilities, we have identified certain limitations
of GPT-based models stemming from incomplete inverse projection functions, which may
not adequately map all points in the knowledge space K to their corresponding points in
the natural language space L (as outlined in the fourth research aspect in the introduction).
This shortcoming results in challenges, such as difficulties in performing accurate calcu-
lations, which are inherently problematic for models such as ChatGPT (as illustrated in
Examples 3 and 4).

In the pursuit of elucidating the complex mathematical foundations underpinning the
GPT model, particularly its functional aspects denoted as p−1 ◦ p(s), we concede the inher-
ent challenge of directly validating these findings through empirical experimentation due
to their abstract nature. Nonetheless, our endeavor was not solely confined to the construc-
tion of mathematical arguments; instead, we endeavored to make these abstractions more
comprehensible to the readers. To this end, we integrated illustrative examples within our
discourse wherever feasible. These examples, coalesced with our theoretical discourse, are
aimed at providing the readers with a more tangible grasp of the mathematical constructs
that govern the GPT model. The objective of our study was twofold: firstly, to maintain the
requisite mathematical rigor, and secondly, to enhance the accessibility of our exposition to
a broad spectrum of readers. We trust that our efforts have been successful in striking a
harmonious balance between these two critical aspects of academic writing.

This study has provided a mathematical characterization of GPT-based LLMs, estab-
lishing a framework that can serve as a launchpad for future investigations in this domain.
Our findings, particularly the mathematical underpinnings of how GPT models capture and
represent the semantic essence of natural language, present avenues for the optimization
and expansion of these models. By unveiling the limitations of GPT-based models, we open
doors for future research to focus on addressing these challenges, potentially advancing
the development of LLMs that offer more accurate and comprehensive mappings between
natural language and knowledge spaces. Our exploration of GPT as an approximation of
the projection function and its inverse has potential implications for the development of
more efficient, effective, and robust LLMs, thereby driving advancements in the field of
language understanding and generation.

In the broader context, this work has several potential implications for future advance-
ments in the field of GPT-based LLMs. Firstly, our formal definition of the natural language
space L and the knowledge space K, along with the associated projection functions, pro-
vides a strong mathematical foundation for understanding the complex mechanisms under-
lying these models. This understanding can guide future efforts to develop more efficient
dimensionality reduction techniques, which could significantly improve the computational
efficiency of these models.

Moreover, our theoretical analysis of the projection function p and its inverse p−1 may
provide valuable insights for enhancing the language generation capabilities of GPT-based
LLMs. Specifically, our observations regarding the limitations of the inverse projection
function could spur research toward methods for improving these models’ ability to
generate accurate and contextually appropriate responses.
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