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Abstract: In this paper, we present a comprehensive mathematical analysis of the hallucination
phenomenon in generative pretrained transformer (GPT) models. We rigorously define and measure
hallucination and creativity using concepts from probability theory and information theory. By
introducing a parametric family of GPT models, we characterize the trade-off between hallucination
and creativity and identify an optimal balance that maximizes model performance across various tasks.
Our work offers a novel mathematical framework for understanding the origins and implications of
hallucination in GPT models and paves the way for future research and development in the field of
large language models (LLMs).

Keywords: generative pretrained transformers; large language model; LLM; GPT; ChatGPT; halluci-
nation; creativity

MSC: 68T27

1. Introduction

Large language models (LLMs) have gained prominence as powerful instruments
for addressing a diverse array of natural language processing tasks [1–10]. The essential
foundation of LLMs is their capacity to generate and process natural language through the
exploitation of extensive data resources and sophisticated learning algorithms [11]. Notably,
generative pretrained transformers (GPT), such as ChatGPT, stand out among LLMs, having
exhibited exceptional performance in various tasks [12] such as question-answering [13]
and machine translation [14–17].

The driving force behind GPT’s achievements is its self-supervised learning
paradigm [18–20], which facilitates learning from copious amounts of unlabeled data [21].
The training process involves predicting the subsequent token in a sequence, using the con-
text furnished by prior tokens. This process is framed as a maximum likelihood estimation
challenge, with the goal of optimizing the likelihood of producing the observed data given
the model’s parameters.

Despite the impressive performance of GPT models, they are known to exhibit a
phenomenon called hallucination, wherein they generate outputs that are contextually
implausible or inconsistent with the real world [22,23]. The hallucination phenomenon
has been attributed to the model’s inherent limitations, particularly its inability to discern
when there is no well-defined correct answer for a given input. Consequently, GPT models
can generate low-likelihood outputs that deviate from the expected output based on the
input context and the true data distribution.

In this paper, we embark on a mathematical analysis of the hallucination phenomenon
in GPT models to better understand its origins, characteristics, and implications. Our
investigation reveals a fundamental trade-off between hallucination and creativity in GPT
models, which we rigorously formalize through the development of novel mathematical
concepts and tools. By exploring this trade-off, we aim to provide a deeper understanding

Mathematics 2023, 11, 2320. https://doi.org/10.3390/math11102320 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11102320
https://doi.org/10.3390/math11102320
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-2562-172X
https://doi.org/10.3390/math11102320
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11102320?type=check_update&version=1


Mathematics 2023, 11, 2320 2 of 17

of the challenges and opportunities associated with GPT models, laying the groundwork
for future research and development in the field of large language models.

Additionally, we derive mathematical formulations and results that capture the in-
tricate relationship between hallucination and creativity in GPT models. Our analysis
rests on a rigorous foundation of probability theory, information theory, and optimization,
allowing us to uncover deep insights into the nature of hallucination in these models. By
quantifying the trade-offs between hallucination and creativity, we pave the way for the
development of more robust and versatile GPT models capable of handling diverse tasks
with improved performance.

To characterize the trade-off between hallucination and creativity, we formulate a
parametric family of GPT models, where each model is governed by a trade-off parameter
that balances the hallucination-related prediction error and the creativity of the model.
We demonstrate the existence of an optimal trade-off parameter that maximizes the per-
formance of the model across a range of tasks, as assessed by a suitable performance
metric. Our analysis also reveals the potential for multiple local optima in the optimization
landscape, each corresponding to a distinct balance between hallucination and creativity.

The main contributions of this paper to the mathematics community are threefold.
First, we develop a rigorous mathematical framework for analyzing the hallucination
phenomenon in GPT models, building upon the concepts of probability theory, information
theory, and optimization. Second, we introduce a measure of uncertainty to quantify
the hallucination in GPT model predictions, which enables us to systematically study
the impact of hallucination on model performance. Third, we derive a mathematical
characterization of the trade-off between hallucination and creativity in GPT models, which
provides insights into the optimal balance between these competing factors and provides a
solid foundation for further research in this area.

A key insight emerging from our analysis is that hallucinations may be an intrinsic
property of GPT models, stemming from their inherent limitations in handling ambigu-
ous contexts. In this paper, we will demonstrate that hallucinations in GPT models can
occur even when a well-trained GPT is provided. As a result, it may be impossible to
entirely eliminate hallucinations without sacrificing other desirable aspects of GPT model
performance, such as creativity and adaptability.

2. Preliminaries

Section 2 introduces the fundamentals of GPT model training and several assumptions,
which are essential for understanding and discussing the hallucination phenomenon.
Assumption 5, Remark 3, and Proposition 3 assume a well-trained GPT model, which
enables us to explore the hallucination phenomenon in subsequent sections.

2.1. GPT Model Training

To understand the hallucination phenomenon in GPT models, we first describe the
loss function utilized in their training. Let X = {x1, x2, . . . , xn} be a sequence of tokens,
with xi representing the i-th token in the sequence, and V representing the vocabulary of
possible tokens.

Assumption 1. The GPT model posits that the probability of observing token xi+1, given the
preceding tokens x1, x2, . . . , xi, can be expressed as p(xi+1|x1, x2, . . . , xi).

The primary goal of GPT training is to minimize the negative log-likelihood of the
observed sequences [16]. Let Θ denote the model parameters. The loss function L(Θ)
is defined as the average negative log-likelihood of tokens across all sequences in the
dataset D:

L(Θ) = − 1
|D| ∑

X∈D

n−1

∑
i=1

log p(xi+1|x1, x2, . . . , xi; Θ). (1)
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Remark 1. The loss function in (1) corresponds to the cross-entropy between the true token
distribution and the distribution predicted by the GPT model.

Considering a GPT model based on the transformer architecture, the probability
distribution of the subsequent token is computed using the softmax function applied to the
output logits zi+1:

p(xi+1|x1, x2, . . . , xi; Θ) =
exp(zi+1(xi+1; Θ))

∑x′∈V exp(zi+1(x′; Θ))
, (2)

where zi+1(x′; Θ) denotes the logit for token x′ at position i + 1.

Proposition 1. Minimizing the loss function L(Θ) in (1) is equivalent to maximizing the likelihood
of the observed data.

Proof. Minimizing the negative log-likelihood corresponds to maximizing the log-likelihood
of the observed data:

max
Θ

1
|D| ∑

X∈D

n−1

∑
i=1

log p(xi+1|x1, x2, . . . , xi; Θ).

Given that the logarithm is a monotonically increasing function, maximizing the
log-likelihood is tantamount to maximizing the likelihood of the observed data.

Theorem 1. Subject to specific assumptions, minimizing the loss function L(Θ) results in a
consistent estimator of the genuine data-generating distribution.

A comprehensive proof demands the imposition of conditions on the model’s capacity,
presumptions regarding the data-generating process, and the regularity of the optimization
landscape. We offer an outline of the proof, emphasizing the key concepts.

1. Model Capacity: We presume that the GPT model, with its parameter set Θ, possesses
sufficient expressiveness to approximate the authentic data-generating distribution.
Formally, there exists a Θ∗ such that the Kullback–Leibler (KL) divergence between
the true distribution and the model distribution is minimized:

Θ∗ = arg min
Θ

DKL(Ptrue||Pmodel(·; Θ)). (3)

2. Data-generating Process: We assume that the dataset D originates from a stationary
and ergodic process. This guarantees that, as the size of D expands, the empirical
distribution approaches the genuine data-generating distribution.

3. Regularity Conditions: We assume that the loss function L(Θ) exhibits continuity
and differentiability concerning the parameters Θ, and that the optimization landscape
lacks abnormal features such as flat regions or saddle points.

Given these assumptions, we can now demonstrate the consistency of the estimator.

Proof of Theorem 1. We provide an informal proof for this theorem. Owing to the er-
godicity of the data-generating process and the expressiveness of the GPT model, a Θ∗

exists that minimizes the KL divergence in (3). Furthermore, the authentic data-generating
distribution can be approximated with increasing accuracy by enlarging the size of D.

Considering the regularity conditions imposed on the loss function L(Θ), we can
employ standard results from statistical learning theory, such as uniform convergence [24]
and empirical risk minimization [25], to demonstrate that the minimizer of L(Θ) approaches
the minimizer of the expected risk as the size of D becomes infinite:

lim
|D|→∞

arg min
Θ

L(Θ) = arg min
Θ

E(x1,...,xn)∼Ptrue

[
−

n−1

∑
i=1

log p(xi+1|x1, x2, . . . , xi; Θ)

]
. (4)
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Since the right-hand side of (4) corresponds to the minimizer of the KL divergence,
Θ∗, we can deduce that the GPT model converges to a consistent estimator of the authentic
data-generating distribution as the size of D approaches infinity.

Theorem 1 serves as a theoretical basis for the consistency of the GPT model estimator
under specific assumptions. Although these assumptions may not always hold in practice,
they provide valuable insights into the behavior of GPT models under ideal conditions.
Our analysis of hallucination in GPT models builds upon these insights, allowing us to
understand the generation of contextually implausible tokens in more realistic scenarios.

Assumption 2. We assume that a sequence of tokens X = {x1, x2, . . . , xn} has a joint probability
distribution that can be factorized using the chain rule of probability as follows:

P(X ) =
n

∏
i=1

p(xi|x1, x2, . . . , xi−1). (5)

The training of GPT models involves learning the conditional probabilities p(xi|x1, x2,
. . . , xi−1) for all tokens in the vocabulary V and all possible positions i ∈ 1, 2, . . . , n. To this
end, GPT employs a part of transformer architectures [26], which consists of self-attention
mechanisms [27–29], position-wise feed-forward networks, and layer normalization.

Example 1. Suppose we have a simple vocabulary V = a, b, c and a sequence of tokens X = a, b, c.
The joint probability of this sequence, according to Assumption 2, can be expressed as P(X ) =
p(a)p(b|a)p(c|a, b). The GPT model learns these conditional probabilities from the training data.

Given a dataset of sequences D, the GPT model parameters are learned by minimizing
the loss function L(Θ), defined in (1). The optimization is typically performed using
a variant of gradient descent methods, such as Adam [30], RMSProp [31], and other
optimization methods [32] for deep learning models.

In order to better understand the hallucination phenomenon in GPT models, we first
develop a mathematical framework for deep learning and GPT models. The conceptual
architecture of a GPT model is displayed in Figure 1.

Figure 1. Conceptual architecture of a GPT model.
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2.2. Deep Learning and GPT Models

Assumption 3. A GPT model, as a variant of the transformer model, is composed of L identical
layers, each containing two sublayers: a multihead self-attention mechanism and a position-wise feed-
forward neural network. This assumption specifically refers to the decoder part of the transformer,
which forms the basis of GPT models. Residual connections and layer normalization are integrated
into the model’s structure.

Let the input and output of the l-th layer be represented by H(l−1) and H(l), respec-
tively. The dimensions of H(l−1) and H(l) are n× d, where n denotes the sequence length
and d represents the hidden dimension. The multihead self-attention mechanism [26] can
be expressed as follows:

MultiHead(H(l−1)) = Concat(Head1, . . . , HeadK)WO, (6)

where Headk = Attention(H(l−1)WQ
k , H(l−1)WK

k , H(l−1)WV
k ), K is the number of attention

heads, and WQ
k , WK

k , WV
k , and WO are trainable weight matrices. The attention mechanism

is described by

Attention(Q, K, V) = softmax

(
QK>√

dk

)
V, (7)

where Q, K, and V correspond to the query, key, and value matrices, respectively, and dk is
the key dimension.

The position-wise feed-forward network consists of a two-layer neural network with
ReLU activation:

FFN(x) = ReLU(xW1 + b1)W2 + b2, (8)

where W1, W2, b1, and b2 are trainable weight matrices and bias vectors.
The output of each sublayer in the GPT architecture is combined with its input through

residual connections and is subsequently normalized [33]:

H(l) = LayerNorm
(

H(l−1) + SubLayer(H(l−1))
)

, (9)

where SubLayer denotes either the multihead self-attention mechanism or the position-wise
feed-forward network.

Assumption 4. The input tokens x1, x2, . . . , xn are first embedded into continuous representations
E ∈ Rn×d. Additionally, positional encodings are added to the embeddings to incorporate the order
information of the input sequence.

Combining the above assumptions and equations, we can formally define the GPT
model based on the transformer architecture as follows:

H(L) = GPT(E), (10)

where GPT denotes the stack of L layers with residual connections and layer normalization,
as described above.

Remark 2. In GPT models, causal masking is applied in the multihead self-attention mechanism to
ensure that the prediction of the next token only depends on the previous tokens.

Given the output of the GPT model H(L), the logits zi+1(x′; Θ) for each token x′ in the
vocabulary V can be computed as follows:

zi+1(x′; Θ) = H(L)
i WT, (11)
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where H(L)
i is the i-th row of H(L), and W ∈ Rd×|V| is the weight matrix for projecting the

output representations to the vocabulary size.

Proposition 2. The gradient of the loss function L(Θ) with respect to the model parameters Θ can
be calculated using the backpropagation algorithm, given that the function L(Θ) is differentiable
with respect to the parameters Θ. This calculation is facilitated by applying the chain rule in reverse,
starting from the output layer and moving towards the input layer.

Proof. We provide an informal proof for this proposition. Given that the loss function L(Θ)
in (1) is differentiable concerning the model parameters Θ, the gradients can be determined
using the chain rule. The backpropagation algorithm enables efficient gradient computation
by applying the chain rule in reverse order, beginning with the output layer and proceeding
towards the input layer.

Theorem 2. Optimization of the GPT model parameters Θ can be accomplished using gradient-
based optimization algorithms.

Proof. As demonstrated in Proposition 2, the gradients of the loss function L(Θ) can be
calculated using the backpropagation algorithm. Gradient-based optimization algorithms,
such as Adam [30], RMSProp [31], and other optimization methods for deep learning
models [32], depend on gradients to iteratively update the model parameters. Specifically,
during the t-th iteration of the optimization algorithm, the model parameters Θ are updated
according to the following rule:

Θt+1 = Θt − ηt∇L(Θt), (12)

where ηt > 0 represents the learning rate at iteration t, and∇L(Θt) denotes the gradient of
the loss function L(Θ) concerning the model parameters Θ evaluated at Θt.

Assumption 5. We assume that minimizing the loss function L(Θ) is a nonconvex optimization
problem that potentially contains multiple local minima.

Remark 3. Convergence properties of gradient-based optimization algorithms within the context of
deep learning and GPT models are generally not ensured due to the nonconvexity of the optimization
problem, as indicated in Assumption 5.

Assumption 5 plays a crucial role in our analysis of the hallucination phenomenon, as
it establishes the basis for a well-trained GPT model. By assuming a model that minimizes
the negative log-likelihood of the observed sequences, we can explore the behavior of the
model in generating contextually plausible and implausible tokens. This assumption is
implicitly referred to throughout our discussion and analysis in the subsequent sections.

Proposition 3. Provided a sufficiently small learning rate ηt > 0, the update rule in (12) ensures
a decrease in the loss function L(Θ).

Proof. Consider the Taylor series expansion of L(Θt+1) centered around Θt:

L(Θt+1) = L(Θt) + 〈∇L(Θt), Θt+1 −Θt〉+O
(
|Θt+1 −Θt|2

)
, (13)

where 〈·, ·〉 denotes the inner product and O(·) represents the higher-order terms.
Substituting the update rule from (12) into the Taylor expansion (13), we obtain

L(Θt+1) = L(Θt)− ηt〈∇L(Θt),∇L(Θt)〉+O
(

η2
t |∇L(Θt)|2

)
. (14)
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Since the learning rate ηt is sufficiently small, the higher-order term O
(
η2

t |∇L(Θt)|2
)

becomes negligible. Thus, we have

L(Θt+1) ≈ L(Θt)− ηt〈∇L(Θt),∇L(Θt)〉. (15)

The significance of (15) is that, under the premise of a sufficiently diminutive learning
rate of ηt, the weight parameters of the model experience minimal alterations. Furthermore,
we can infer the direction of the weight parameter adjustments with respect to the loss.
As 〈∇L(Θt),∇L(Θt)〉 = |∇L(Θt)|2 ≥ 0, provided a sufficiently small learning rate ηt > 0,
we can deduce that L(Θt+1) . L(Θt), indicating that the loss function does not increase at
each iteration.

Proposition 3 establishes the connection between the optimization process of the GPT
model and the hallucination phenomenon. A well-trained GPT model, obtained through
the optimization process, is more likely to generate contextually plausible tokens. However,
in the next section, we will show that there is a possibility that hallucinations may occur
even if a well-trained GPT is given.

Assumption 5 and Proposition 3 collectively establish the basis for understanding the
optimization process in training GPT models. These provisions are interrelated, as they
describe the nonconvex nature of the optimization problem, the convergence properties of
gradient-based optimization algorithms, and the decrease in the loss function L(Θ) given a
sufficiently small learning rate. These assumption and proposition presume a well-trained
GPT, which allows us to delve deeper into the behavior of GPT models when generating
contextually plausible and implausible tokens.

3. The Equilibrium between Hallucination and Creativity of GPT
3.1. The Hallucination Phenomenon in GPT

The hallucination phenomenon in GPT models arises from their self-supervised learn-
ing approach. The models are trained to optimize the probability of generating tokens based
on their context, even in the absence of a well-defined correct answer. Consequently, GPT
models may produce low-likelihood outputs that do not accurately reflect the underlying
data distribution.

Owing to the inherent constraints of GPT models, they are compelled to generate
outputs even when the probability of the predicted token is low. This is due to the self-
supervised loss function, which motivates the model to generate tokens that optimize the
likelihood of the predicted sequence, regardless of the output’s accuracy.

In this study, we focus on the hallucinations in GPT models that can occur even
when a well-trained GPT is provided. The hallucination phenomenon can intensify as the
model generates a series of low-likelihood tokens. When these tokens are used as input for
subsequent predictions, the probability of generating additional low-likelihood tokens may
escalate, resulting in increasingly unreliable outputs.

Definition 1. Hallucination in GPT models pertains to the generation of contextually implausible,
inconsistent with the real world, low-probability tokens that diverge from the anticipated output
based on the input context and the true underlying distribution.

To formally illustrate the forced selection of the highest probability token in ambiguous
contexts, we begin by introducing the following assumption regarding the distribution of
estimated probabilities.

Assumption 6. When the input context does not provide sufficient information for a clear and
optimal token choice, the estimated probabilities p(xi+1) obtained from (2) are distributed such that
the difference between the highest and subsequent probabilities is relatively small.
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It is essential to emphasize that our focus is on the hallucination phenomenon that
can arise even in well-trained GPT models, supposed by Theorem 2, Assumption 5, and
Proposition 3. Under Assumption 6, we can now analyze the selection process of GPT
models in ambiguous contexts. Let δ > 0 be a small constant, and p∗(xi+1) denote
the highest probability among the possible tokens, i.e., p∗(xi+1) = maxx′∈V p(xi+1 =
x′|x1, x2, . . . , xi; Θ). Then, for all x′ ∈ V , we have

0 ≤ p∗(xi+1)− p(xi+1 = x′|x1, x2, . . . , xi; Θ) ≤ δ. (16)

Proposition 4. In ambiguous contexts, GPT models are forced to select the token with the highest
estimated probability, even when the difference in probabilities between the highest and subsequent
tokens is relatively small, as described in (16).

Proof. Given the softmax function in (2), the GPT model generates tokens by sampling
from the probability distribution of the subsequent token conditioned on the context. In
ambiguous contexts, the model is forced to select the token with the highest estimated
probability, despite the small difference in probabilities between the highest and subse-
quent tokens.

From (16), we can observe that the difference between the highest and subsequent
probabilities does not exceed δ. This implies that the model may select suboptimal tokens
with only marginally lower probabilities than the optimal choice. The forced selection of
the highest probability token in such situations may result in the generation of contextually
implausible tokens, leading to hallucination.

In the GPT model, the generated text is a sequence of tokens (words or subwords),
and the model chooses each token based on the probability distribution it learned during
training. When the input context is ambiguous, meaning it could lead to multiple plausible
outputs, the model has to choose between tokens with similar probabilities. In this situation,
even if the GPT model is well trained, it might still generate a token that is not contextually
correct, which may lead to hallucinations. An example of this scenario is displayed in
Figure 2.

Figure 2. Illustration of the token selection process based on input texts.

Remark 4. The risk of hallucination increases with the degree of ambiguity in the input context. As
the context becomes less informative, the difference between the highest and subsequent probabilities
narrows, increasing the likelihood of generating low-probability tokens that deviate from the expected
output. This observation is important because it highlights that even well-trained GPT models can
produce hallucinations when faced with ambiguous input contexts.

To scrutinize this phenomenon, we initially introduce a measure of uncertainty in the
GPT model’s predictions.
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Definition 2. Let p(xi+1|x1, x2, . . . , xi; Θ) denote the probability distribution of the next token
in the sequence, as given by (2). The uncertainty associated with the GPT model’s prediction at
position i + 1 is defined as the entropy of this distribution:

H(xi+1|x1, x2, . . . , xi; Θ) = − ∑
x′∈V

p(xi+1|x1, x2, . . . , xi; Θ) log p(xi+1|x1, x2, . . . , xi; Θ). (17)

We now present a critical assumption related to the hallucination phenomenon.

Assumption 7. Hallucination takes place when the GPT model generates a low-probability token
xi+1, given the previous tokens x1, x2, . . . , xi, and subsequently employs this token as input for
predicting the next token xi+2.

Remark 5. Assumption 7 suggests that the hallucination phenomenon may intensify as the model
produces low-probability tokens, resulting in increasingly unreliable predictions.

Lemma 1. Under Assumption 7, the generation of low-probability tokens in GPT models correlates
with heightened uncertainty, as measured by the entropy in (17).

Proof. Let x∗i+1 represent the actual token at position i + 1. If the GPT model generates a
low-probability token xi+1, we observe p(xi+1|x1, x2, . . . , xi; Θ)� p(x∗i+1|x1, x2, . . . , xi; Θ).
Consequently, the entropy H(xi+1|x1, x2, . . . , xi; Θ), as provided by (17), will be elevated,
signifying increased uncertainty in the model’s prediction.

Proposition 5. Given a well-trained GPT model as indicated by Theorem 2, Assumption 5, and
Proposition 3, there still exists a nonzero probability of generating hallucinatory tokens.

Proof. Consider a well-trained GPT model that has a minimized loss function L(Θ), as
ensured by Proposition 3. However, as previously discussed in Assumption 6, the model
may still encounter ambiguous contexts where the difference in probabilities between the
highest and subsequent tokens is relatively small.

In such cases, as demonstrated in Proposition 4, the GPT model is forced to select
the token with the highest estimated probability, even when the difference in probabilities
is small. This may lead to the generation of contextually implausible tokens, which can
cause hallucination.

Therefore, even with a well-trained GPT model, there exists a nonzero probability of
generating hallucinatory tokens in ambiguous contexts, indicating that the optimization
process alone cannot completely eliminate the occurrence of hallucinations.

Remark 6. The results of Proposition 5 imply that there is an inherent trade-off between optimizing
the GPT model and the occurrence of hallucinations. This trade-off stems from the model’s inherent
uncertainty in predicting the next token in ambiguous contexts, as described in Definition 2.

Assumption 8. In a well-trained GPT model, as indicated by Theorem 2, Assumption 5, and
Proposition 3, the generation of hallucinatory tokens is primarily driven by the model’s inherent
uncertainty in predicting the next token, as captured by the entropy in Definition 2.

Lemma 2. Under Assumption 8, the occurrence of hallucinations in a well-trained GPT model is
strongly correlated with the model’s uncertainty, as measured by the entropy in (17).

Proof. According to Assumption 8, the generation of hallucinatory tokens in a well-trained
GPT model is mainly driven by the model’s uncertainty in predicting the next token. As
defined in Definition 2, the entropy of the probability distribution of the next token serves
as a measure of the model’s uncertainty.
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Therefore, under Assumption 8, the occurrence of hallucinations in a well-trained
GPT model is strongly correlated with the model’s uncertainty, as captured by the entropy
in (17).

Here, we demonstrate how the hallucination in GPT models can be reinforced by
using the selected token as input for estimating the subsequent tokens, and how this
reinforcement can lead to a series of hallucinations in the generated text. We approach this
problem by analyzing the conditional probabilities of generating subsequent tokens given
the context and the previously generated tokens.

Assumption 9. The probability of generating a hallucinatory token xi+1 at position i + 1 is
conditionally independent of generating a hallucinatory token xi+2 at position i + 2, given the
context up to position i.

Under Assumption 9, we can now analyze the reinforcement of hallucination in GPT
models. Let H(xi+1) denote the event that the generated token xi+1 is hallucinatory, and let
p(H(xi+1)|x1, x2, . . . , xi; Θ) denote the conditional probability of generating a hallucinatory
token xi+1 given the context up to position i.

Proposition 6. The probability of generating a hallucinatory token xi+2 at position i + 2, condi-
tioned on generating a hallucinatory token xi+1 at position i + 1, is given by

p(H(xi+2)|H(xi+1), x1, x2, . . . , xi; Θ) =
p(H(xi+2),H(xi+1)|x1, x2, . . . , xi; Θ)

p(H(xi+1)|x1, x2, . . . , xi; Θ)
. (18)

Let R = p(H(xi+2)|H(xi+1), x1, x2, . . . , xi; Θ). If R > p(H(xi+2)|x1, x2, . . . , xi; Θ), then
generating a hallucinatory token xi+1 increases the likelihood of generating a hallucinatory
token xi+2.

Theorem 3. If the conditional probability R satisfies R > p(H(xi+2)|x1, x2, . . . , xi; Θ), then
generating a hallucinatory token xi+1 increases the likelihood of generating a hallucinatory token
xi+2, leading to the reinforcement of hallucination in GPT models.

Proof. Under Assumption 9, we have

p(H(xi+2),H(xi+1)|x1, x2, . . . , xi; Θ) =p(H(xi+2)|H(xi+1), x1, x2, . . . , xi; Θ)

· p(H(xi+1)|x1, x2, . . . , xi; Θ)

=R · p(H(xi+1)|x1, x2, . . . , xi; Θ).

Now, we can express the joint probability of generating hallucinatory tokens xi+1 and
xi+2 as

p(H(xi+2),H(xi+1)|x1, x2, . . . , xi; Θ) = R · p(H(xi+1)|x1, x2, . . . , xi; Θ).

If R > p(H(xi+2)|x1, x2, . . . , xi; Θ), then

p(H(xi+2),H(xi+1)|x1, x2, . . . , xi; Θ) > p(H(xi+2)|x1, x2, . . . , xi; Θ) · p(H(xi+1)|x1, x2, . . . , xi; Θ),

which implies that generating a hallucinatory token xi+1 increases the likelihood of generat-
ing a hallucinatory token xi+2. This reinforcement effect can cascade through the generated
text, leading to a series of hallucinations in GPT models.

Remark 7. The risk of reinforcement of hallucination depends on the conditional probability R. If the
GPT model generates a hallucinatory token xi+1, the likelihood of generating a hallucinatory token
xi+2 increases when R > p(H(xi+2)|x1, x2, . . . , xi; Θ). This reinforcement effect can propagate
through the generated text, exacerbating the hallucination phenomenon.
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Proposition 7. The likelihood of generating a hallucinatory token xi+n at position i + n depends
on the previously generated hallucinatory tokens xi+1, . . . , xi+n−1, the input context up to position
i, and the values of the conditional probabilities Rk for k = 1, . . . , n− 1.

Proof. Using the conditional probability Rk defined for k = 1, . . . , n− 1 as the probability
of generating a hallucinatory token xi+k+1 given a hallucinatory token xi+k, we can derive
the joint probability of generating a sequence of n hallucinatory tokens as follows:

p(H(xi+1), . . . ,H(xi+n)|x1, . . . , xi; Θ) =
n−1

∏
k=1

p(H(xi+k+1)|H(xi+k), x1, . . . , xi; Θ)

· p(H(xi+1)|x1, . . . , xi; Θ)

=
n−1

∏
k=1

Rk · p(H(xi+1)|x1, . . . , xi; Θ).

The likelihood of generating a hallucinatory token xi+n at position i + n is determined
by the joint probability of generating the sequence of n hallucinatory tokens and the values
of the conditional probabilities Rk. This likelihood increases as the values of Rk increase,
which in turn depends on the previously generated hallucinatory tokens and the input
context up to position i.

Remark 8. The dependency of the likelihood of generating a hallucinatory token xi+n on previously
generated hallucinatory tokens and the input context highlights the importance of mitigating hallu-
cination in GPT models, as the generation of one hallucinatory token can influence the generation of
subsequent hallucinatory tokens and lead to a cascade of hallucinations in the generated text.

Definition 3. Hallucination mitigation refers to the process of modifying the GPT model’s behavior
to reduce the likelihood of generating hallucinatory tokens, thereby improving the model’s output
quality and reliability.

3.2. The Creativity of GPT

To understand the relationship between hallucination and creativity in GPT models,
we first define a measure of creativity in the model’s predictions.

Definition 4. Let p(xi+1|x1, x2, . . . , xi; Θ) denote the probability distribution of the next token in
the sequence, as given by (2). The creativity associated with the GPT model’s prediction at position
i + 1 is defined as the entropy of this distribution normalized by the maximum entropy:

C(xi+1|x1, x2, . . . , xi; Θ) =
H(xi+1|x1, x2, . . . , xi; Θ)

Hmax(xi+1)
, (19)

where Hmax(xi+1) is the maximum entropy achievable for the given vocabulary V , which occurs
when all tokens have uniform probability.

We now introduce a key assumption regarding the relationship between hallucination
and creativity.

Assumption 10. Creativity in GPT models can be enhanced by the hallucination phenomenon,
as it allows the model to explore a broader space of token sequences beyond the most probable ones
conditioned on the given input.

Remark 9. Assumption 10 implies a potential trade-off between the hallucination and creativity
of GPT models. This trade-off suggests that minimizing hallucination-related errors may lead to a
reduction in the model’s creativity, as it becomes more conservative in generating token sequences.
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Proposition 8. Under Assumption 10, the creativity of GPT models, as measured by the normalized
entropy in (19), will be higher in the presence of the hallucination phenomenon.

Proof. According to Lemma 1, the generation of low-probability tokens in GPT models is
associated with high uncertainty, as measured by the entropy in (17). Under Assumption 10,
this increased entropy also implies a higher level of creativity, as given by (19). There-
fore, the creativity of GPT models will be higher in the presence of the hallucination
phenomenon.

Conjecture 1. There exists an optimal trade-off between hallucination and creativity in GPT
models, such that the model’s performance is maximized when operating at this trade-off point.

Considering Conjecture 1, we seek to characterize the optimal trade-off between
hallucination and creativity in GPT models. Specifically, we consider a parametric family of
models, where each model is tuned to balance hallucination and creativity differently. Let
M(α) denote a GPT model parametrized by α ∈ [0, 1]. The parameter α controls the trade-
off between hallucination and creativity, with α = 0 corresponding to a purely hallucination-
minimizing model and α = 1 corresponding to a purely creativity-maximizing model.

Definition 5. LetM(α) be a GPT model parametrized by α ∈ [0, 1]. We define the hallucination–
creativity trade-off parameter α as the weighting factor that balances the contribution of the
hallucination-related prediction error and the creativity of the model in the model’s objective function:

J(Θ, α) =(1− α) ·E(x1,...,xn)∼Ptrue [DKL(Ptrue(xi+1|x1, x2, . . . , xi)||Pmodel(xi+1|x1, x2, . . . , xi; Θ))]

− α ·E(x1,...,xn)∼Ptrue [C(xi+1|x1, x2, . . . , xi; Θ)], (20)

where DKL denotes the KL divergence and C denotes the creativity measure as defined in (19).

Our goal is to find the optimal value of the trade-off parameter α∗ that maximizes
the model’s performance, as measured by a suitable performance metric. To this end, we
introduce the following performance metric:

Definition 6. Let Ptask(xi+1|x1, x2, . . . , xi) denote the probability distribution of the next token in
the sequence, as conditioned on the specific task requirements. The performance metric of a GPT
model is defined as the expected KL divergence between the task-specific distribution and the model’s
predicted distribution:

P(Θ) = E(x1,...,xn)∼Ptask
[DKL(Ptask(xi+1|x1, x2, . . . , xi)||Pmodel(xi+1|x1, x2, . . . , xi; Θ))]. (21)

Conjecture 2. There exists an optimal trade-off parameter α∗ ∈ [0, 1] that maximizes the perfor-
mance metric P(Θ) for GPT models, as defined in (21).

Consider the optimization problem of finding the optimal trade-off parameter α∗ that
maximizes the performance metric P(Θ):

α∗ = arg max
α∈[0,1]

P(Θ). (22)

To solve (22), we first examine the relationship between the objective function J(Θ, α)
in (20) and the performance metric P(Θ) in (21).

For a fixed Θ, the objective function can be written as follows:

J(Θ, α) = (1− α) · Jhallucination(Θ)− α · Jcreativity(Θ), (23)

where Jhallucination(Θ) and Jcreativity(Θ) represent the hallucination-related prediction error
and the creativity of the model, respectively.
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Example 2. To illustrate the role of the compromise parameter α, let us consider an example in
which a GPT model is generating text for a storytelling task. In this scenario, a high α value would
prioritize minimizing the hallucination-related prediction error, potentially resulting in a more
conservative and contextually plausible output. However, this output might lack originality and
variety, which are essential for a compelling story. On the other hand, a low α value would emphasize
creativity, leading to a more diverse and original output. However, this might come at the expense
of increased hallucination and reduced contextual plausibility. The optimal trade-off parameter
α∗ represents a balance between these competing objectives, yielding an output that exhibits both
creativity and contextual plausibility while minimizing hallucinations.

We analyze the derivative of J(Θ, α) with respect to α:

dJ(Θ, α)

dα
= −Jhallucination(Θ) + Jcreativity(Θ). (24)

By setting dJ(Θ,α)
dα = 0, we can find the critical points of the objective function:

Jhallucination(Θ) = Jcreativity(Θ). (25)

The critical points correspond to the trade-off points where the hallucination-related
prediction error is balanced with the creativity of the model. To find the optimal trade-off
point α∗, we need to analyze the second derivative of J(Θ, α) with respect to α:

d2 J(Θ, α)

dα2 = 0. (26)

Since the second derivative is always zero, we cannot directly determine the concavity
or convexity of the objective function. Thus, we need to further investigate the relationship
between the objective function and the performance metric.

In (21), the KL divergence is always non-negative, and we can conclude that P(Θ) is
minimized when the model’s predictions align with the task-specific probability distribution:

Ptask(xi+1|x1, x2, . . . , xi) ≈ Pmodel(xi+1|x1, x2, . . . , xi; Θ). (27)

To analyze the optimal trade-off between hallucination and creativity, we investigate
the behavior of the performance metric P(Θ) as a function of the trade-off parameter α.
We first derive the gradient of P(Θ) with respect to Θ:

∇ΘP(Θ) = E(x1,...,xn)∼Ptask
[∇ΘDKL(Ptask(xi+1|x1, x2, . . . , xi)||Pmodel(xi+1|x1, x2, . . . , xi; Θ))]. (28)

By plugging (27) into (28), we can express the gradient of the performance metric as a
function of the trade-off parameter α:

∇ΘP(Θ, α) = E(x1,...,xn)∼Ptask

[
∇ΘDKL(Ptask(xi+1|x1, x2, . . . , xi)||PM(α)(xi+1|x1, x2, . . . , xi; Θ))

]
. (29)

To find the optimal trade-off parameter α∗, we need to solve the following optimiza-
tion problem:

α∗ = arg min
α∈[0,1]

∇ΘP(Θ, α). (30)

Since the optimization problem in (30) is nonconvex and the gradient of the perfor-
mance metric with respect to Θ depends on the trade-off parameter α, we resort to a
gradient-based optimization method to find the optimal trade-off parameter α∗.

3.3. Examining the Interplay between Hallucination and Creativity

Assumption 11. The efficacy of GPT models across various tasks hinges on the delicate equilibrium
between hallucination and creativity. Adjusting this equilibrium may potentially improve the overall
performance of the model.
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Establishing an ideal equilibrium between hallucination and creativity is vital for the
model’s effectiveness in a wide range of applications. The problem below encapsulates
this concept.

Problem 1. LetM(α) represent a collection of GPT models parameterized by a trade-off parameter
α, and let P(Θ) denote the performance metric as defined in (21). The optimization problem involves
identifying the optimal trade-off parameter α∗ that maximizes the performance metric:

α∗ = arg max
α∈[0,1]

P(Θ). (31)

Remark 10. Optimizing the trade-off parameter in Problem 1 proves difficult due to the vast
parameter space of GPT models and the potential nonconvexity of the performance metric P(Θ).

Conjecture 3. The performance metric P(Θ) might present multiple local optima associated with
distinct values of α, each signifying a unique equilibrium between hallucination and creativity.

Considering the intricacy of the optimization landscape, it is crucial to explore efficient
methods to examine the interplay between hallucination and creativity. One feasible ap-
proach is to utilize meta-learning techniques that adaptively update the trade-off parameter
α during training, consequently enabling the model to learn the optimal equilibrium.

Example 3. A meta-learning algorithm can iteratively update the trade-off parameter α based on the
model’s performance on a validation set. The algorithm may employ methods such as gradient-based
optimization or Bayesian optimization to effectively search for the optimal α value.

Another avenue for future research is to investigate the impact of model architecture
and training techniques on the trade-off between hallucination and creativity. For instance,
it may be possible to design novel self-attention mechanisms or regularization techniques
that explicitly encourage the model to maintain a balance between generating plausible yet
creative responses.

Example 4. The development of an attention mechanism that explicitly models the relationship
between the input and output tokens could potentially improve the balance between hallucination
and creativity. Such a mechanism could be designed to assign higher importance to relevant tokens
in the input while penalizing the generation of implausible tokens.

Problem 2. Investigate the characteristics of the optimal trade-off parameter α∗ and its associated
local optima, in relation to the GPT model’s performance across a variety of tasks.

Proposition 9. The optimal trade-off parameter α∗ may be influenced by the particular task
requirements and the structure of the input data.

In order to tackle the task-specific dependencies, adopting an adaptive strategy for
fine-tuning the trade-off parameter α may contribute to enhanced performance.

Assumption 12. Modifying the trade-off parameter α depending on the particular task and input
data can lead to superior GPT model performance.

As a result, devising an adaptive method for dynamically fine-tuning the trade-off
parameter α becomes an essential research focus.

Problem 3. Create an adaptive method to dynamically modify the trade-off parameter α in GPT
models based on task demands and input data.
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Conjecture 4. Incorporating an adaptive method for fine-tuning the trade-off parameter α will
boost GPT model performance, as evidenced by the performance metric P(Θ), across an extensive
range of tasks.

Remark 11. The suggested adaptive method for fine-tuning the trade-off parameter α should
effectively generalize across various tasks and input data distributions, guaranteeing consistent
performance enhancements.

To showcase the effectiveness of the adaptive method, it is crucial to validate its
performance using real-world tasks and datasets.

Problem 4. Confirm the efficiency of the adaptive method for fine-tuning the trade-off param-
eter α by employing real-world tasks and datasets, while quantifying the improvement in GPT
model performance.

A deeper exploration of the interplay between hallucination and creativity in GPT
models will offer valuable insights into the model’s constraints and guide the creation of
more robust and adaptable language models. The challenges and future work outlined here
set the stage for novel research avenues in comprehending and optimizing the interplay
between hallucination and creativity in GPT models.

4. Conclusions

In this paper, we conducted a thorough mathematical analysis of the hallucination
and creativity phenomena observed in GPT models, aiming to understand their influence
on the performance of these models in a variety of natural language processing tasks. We
began by offering precise definitions of hallucination and creativity within the context of
GPT models and proposed suitable metrics to quantify these phenomena. Subsequently,
we investigated the interrelationship between hallucination and creativity, scrutinizing
their balance and ramifications on model performance.

We characterized the hallucination phenomenon as the generation of tokens that can
be considered contextually implausible, where such tokens exhibit low probabilities and
diverge from the expected output based on the input context and the true underlying
distribution. Assumption 6 helps us connect the generation of low-probability tokens to
increased uncertainty in GPT models.

Creativity in GPT models can be described as the generation of tokens that exhibit both
originality and variety while maintaining contextual plausibility. To provide a quantifiable
measure for creativity, we proposed the creativity metric in Definition 4, which is based on
the normalized entropy of the GPT model’s predictions. This metric offers a representation
of originality and variety in the generated tokens while taking into account their relevance
to the given context. We suggested that creativity in GPT models can be augmented by the
hallucination phenomenon, as it enables the model to investigate a more extensive range of
token sequences beyond the most likely ones, given the input.

A crucial insight from our analysis suggests that hallucinations may be an intrinsic
characteristic of GPT models, originating from their inherent limitations in dealing with
ambiguous contexts. In this paper, we presented evidence that even well-trained GPT
models are prone to generating hallucinations. Consequently, it may not be feasible to
completely eradicate hallucinations without compromising other desirable attributes of
GPT model performance, such as creativity and adaptability.

In conclusion, the present study provides valuable insights into the hallucination phe-
nomenon in GPT models, highlighting the trade-offs between hallucination and creativity.
As a potential direction for future work, a deeper investigation of the vanishing gradient
problem in multilayer networks could be pursued to further enhance our understanding of
how this issue might impact hallucinations in GPT models. This additional exploration
could potentially uncover new strategies to mitigate hallucination risks while maintaining
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model performance, leading to more robust and reliable language models for a wide range
of applications.
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