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a b s t r a c t

Image-to-image translation with generative adversarial networks (GANs) has been extensively studied
in recent years. Among the models, StarGAN has achieved image-to-image translation for multiple
domains with a single generator, whereas conventional models require multiple generators. However,
StarGAN has several limitations, including the lack of capacity to learn mappings among large-scale
domains; furthermore, StarGAN can barely express small feature changes. To address the limitations,
we propose an improved StarGAN, namely SuperstarGAN. We adopted the idea, first proposed in
controllable GAN (ControlGAN), of training an independent classifier with the data augmentation
techniques to handle the overfitting problem in the classification of StarGAN structures. Since the
generator with a well-trained classifier can express small features belonging to the target domain,
SuperstarGAN achieves image-to-image translation in large-scale domains. Evaluated with a face
image dataset, SuperstarGAN demonstrated improved performance in terms of Fréchet Inception
distance (FID) and learned perceptual image patch similarity (LPIPS). Specifically, compared to StarGAN,
SuperstarGAN exhibited decreased FID and LPIPS by 18.1% and 42.5%, respectively. Furthermore, we
conducted an additional experiment with interpolated and extrapolated label values, indicating the
ability of SuperstarGAN to control the degree of expression of the target domain features in generated
images. Additionally, SuperstarGAN was successfully adapted to an animal face dataset and a painting
dataset, where it can translate styles of animal faces (i.e., a cat to a tiger) and styles of painters (i.e.,
Hassam to Picasso), respectively, which explains the generality of SuperstarGAN regardless of datasets.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Generative adversarial networks (GANs) (Goodfellow et al.,
014) have shown great promise in the field of computer vision,
ncluding image generation (Brock et al., 2018; Karras et al., 2017;
im, Kim et al., 2022; Park et al., 2022; Radford et al., 2015;
rivastava et al., 2022; Toshpulatov et al., 2021) and style transfer
asks (Isola et al., 2017; Kim et al., 2017; Liu, 2021; Taigman et al.,
016; Yuan & Zhang, 2022). The image-to-image translation is a
pecific sub-problem that has received much attention. This task
nvolves taking a given image and changing it to display target
eatures (Chen et al., 2016; Liu et al., 2021; Ojha et al., 2021; Pang
t al., 2021; Xie et al., 0000; Zhuang et al., 2020). For example,
iven a face image, an image-to-image translation model can be
sed to change facial features, such as expression, hair color, and
ge (Zhang et al., 2017). One of the most critical applications
f image-to-image translation is in the field of medical imaging.
pecifically, GANs have been used to synthesize images that can
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893-6080/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access a
be used to train machine learning models for many medical tasks
that lack training data. For example, a recent study (Armanious
et al., 2020) showed that a GAN-based system was able to gen-
erate realistic computed tomography (CT) images from positron
emission tomography (PET) data. Such a study allows for creating
training datasets that would be otherwise difficult or impossible
to obtain.

In image-to-image translation, it is crucial to modify images
to display the target features because it is the fundamental ob-
jective of the model. In addition, features other than the target
features must be maintained after the translation. These two
objectives must be satisfied when training an image-to-image
translation model. Recently, deep learning-based models have
been employed to address this problem.

Consequently, numerous studies using deep learning models
have been conducted to control the target features of translated
images. Specifically, GANs have been used to achieve this objec-
tive in recent years. In GANs, the model addresses this problem
using competitive learning between two deep learning modules,
called the generator and discriminator. A modification of the
conventional GAN, called cycle-consistent GAN (CycleGAN) (Zhu
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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t al., 2017), uses two generators and two discriminators for
mage-to-image translation. Each generator in CycleGAN trans-
ates an image to display a specific feature. The discriminators in
ycleGAN enforce the constraint that the translated images con-
ain only the desired features. In this manner, CycleGAN can be
mployed for image-to-image translation with only two domains,
here each generator manages a domain.
However, nC2 CycleGAN models must be trained for image-to-

mage translation with multiple domains. For instance, when the
elebFaces Attributes (CelebA) face dataset (Liu et al., 2015) is
sed for training, 780 CycleGAN models must be trained because
he dataset has 40 domains (i.e., attributes). Although image-
o-image translation with CycleGAN has demonstrated excellent
erformance in many studies, this limitation remains a crucial
roblem for datasets with multiple domains.
StarGAN (Choi et al., 2018) has been proposed for image-to-

mage translation with multiple domains to address this limi-
ation. In StarGAN, features are encoded with a feature vector,
hich is used as an additional input of the generator. After
raining, synthetic images with desired features can be generated
y corresponding feature vectors; in this manner, it becomes pos-
ible to use only a single generator for multiple image-to-image
ranslations. This advantage of StarGAN significantly reduces the
raining time because multiple models are not necessary for
ultiple domains.
However, StarGAN has a few limitations. First, StarGAN gen-

rally fails to learn minor features. For example, when StarGAN
s trained with a face image dataset, the model can barely learn
inor facial features, such as a big nose or mustache, whereas

t successfully learns significant features, such as hair color and
kin color. Furthermore, if large-scale domains are trained with a
ingle model, the performance of StarGAN significantly decreases.
pecifically, the quality of the translated images is reduced, while
ranslated images barely display the target features.

For image-to-image translation between large-scale domains,
e propose a modification of StarGAN, called SuperstarGAN,
hich uses the framework in a controllable GAN (ControlGAN)
Lee & Seok, 2019). In ControlGAN, adopting an independent
lassifier with data augmentation (DA) techniques outperforms
he other form of feature learning in which the discriminator
anages feature learning (Perez & Wang, 2017). The independent
lassifier can adequately learn the features because it is indepen-
ent of the GAN training, and DA is employed to enhance the
erformance. Thus, the discriminator focuses on its own target,
nhancing the quality of the translated images. Moreover, target
eatures can be well-trained using the independent classifier
ompared to conventional methods.
SuperstarGAN introduces an independent classifier to enhance

eature learning, addressing the limitations of StarGAN. The gen-
rator can train with a fine classifier; thus, minor features can be
ranslated between large-scale domains. In addition, the genera-
or can produce realistic translated images, as the discriminator
an focus on enhancing the image quality.

. Background

.1. A brief review of the generative adversarial network

The concept of the GAN (Goodfellow et al., 2014) is to generate
realistic fake sample through adversarial training. There are

wo components in the adversarial training: a generator and a
iscriminator. The generator produces counterfeit images, and
he discriminator establishes if they are genuine or fake. The
bjective of the training is to make the fake images created by the
enerator appear as realistic as possible so that it can deceive the
iscriminator. During each training iteration, a mini-batch of real
331
mages (X) and noises (Z) are chosen at random. The generator
network (G) then creates fake images (G(Z)). The discriminator
network, D, outputs a probability, P(D = 1|X), indicating whether
X is real or not. The input for the discriminator is either X or G(Z)
and then it produces the probability.

Both of these neural networks are trained simultaneously. As
this adversarial training process repeats, the generator becomes
better at making realistic samples that cannot be distinguished
from real images. The GAN can be optimized using the following
objective function:

Ĝ = argmin
G

{Ladv (r,D (G (Z)))} ,

D = argmin
D

{Ladv (r,D (X)) + Ladv (f ,D (G (Z)))} ,

where r and f are set at one and zero, respectively.

2.2. ControlGAN

After the introduction of the GAN, many studies have been
conducted to extend the GAN to a conditional model. For exam-
ple, the conditional GAN (cGAN) (Mirza & Osindero, 2014) uses
extra information containing the desired domain specifications as
input to the generator and discriminator. The cGAN is similar to
the vanilla GAN, except that both the generator and discriminator
are conditioned on additional information. The vanilla GAN can be
extended to the cGAN by simply adding the labels of correspond-
ing images (Y ) as an extra input to both G and D. In addition, the
auxiliary classifier GAN (ACGAN) (Odena et al., 2017) adopts an
auxiliary classifier to determine whether the generated samples
belong to the target domain. The ACGAN can be considered an
extension of the cGAN where the discriminator outputs not only
the probability that the input image is real or fake, but also the
probability for each class. This allows the ACGAN to generate
targeted images in a more precise manner.

The ControlGAN (Lee & Seok, 2019) is a modification of AC-
GAN, where the model uses DA to overcome the classifier over-
fitting problem in the ACGAN, which significantly hinders con-
ditional learning. While DA can hardly be used with the ACGAN
structure since the ACGAN discriminator is disturbed by DA, the
ControlGAN handles this problem by separating the classifier
from the discriminator. Thus, a fine classifier that is trained with
DA can offer sound guidance for the generator that trains with
classification loss from the independent classifier. The objective
functions of ControlGAN are as follows:

Ĝ = argmin
G

{Ladv (r,D (G (Z))) + λcls · Lcls (T , C (G (Z, T )))} ,

D = argmin
D

{Ladv (r,D (X)) + Ladv (f ,D (G (Z)))} ,

Ĉ = argmin
C

{
Lcls

(
T , C

(
Xaug

))}
,

where λcls is a hyperparameter for conditional learning, T denotes
the target domain label, and Xaug denotes the real image modified
by DA.

2.3. Image-to-image translation and CycleGAN

The image-to-image translation is a task to change specific
aspects of a given image to another. Contrary to general GAN
structures, which learn the mapping from the latent space, the
image-to-image translation model learns the mapping between
the input and output domains of images. The image-to-image
translation task is useful for various applications, such as trans-
ferring the style of a given image to another or generating an
image from a semantic layout. Most recently, Kim, Kim et al.
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Table 1
Comparison with recent methods for image-to-image translation. G: generator, D: discriminator, C: classifier, E: encoder, DE: decoder.
Domain Method Year Conditioning Components description

Bidirectional UNIT 2017 Cyclic process Two E, two G, and two D
CycleGAN 2017 Cyclic process Two G, two D
SaGAN 2018 Class label One G with two networks, one D with auxiliary C
ERGAN 2020 Cyclic process Four E, two G, and one D

Multiple StarGAN 2018 Class label Unified single model with one G, one D with auxiliary C
AttGAN 2019 Class label Unified single model with one encoder G, one decoder G, and one D with auxiliary C
Kim, Park et al. (2022) 2022 Style encoder Unified single model with one encoder G, one decoder G, and one D as style E
GP-UNIT 2022 Style encoder Unified single model with two E, one DE, one G, one D, and one C; pre-trained BigGAN
SuperstarGAN 2023 Class label Unified single model with one G, one D, and one independent C
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(2022) adopted a style-aware discriminator used for style encod-
ing as well as adversarial loss for controllable image translation.
The model obtains continuous style space as pseudo-labels to
substitute for class labels. They extended image translation func-
tionality to various applications (i.e., style interpolation, content
transplantation, and local image translation). Similarly, GP-UNIT
(Yang et al., 2022) proposed a versatile framework that is trained
with generative priors from a pre-trained class-conditional GAN
(e.g., BigGAN). They achieved image translation between two
domains with drastic differences (e.g., Bird to Car). Table 1 shows
he comparison of several methods (He et al., 2019; Hu et al.,
020; Kim, Park et al., 2022; Liu et al., 2017; Yang et al., 2022;
hang, Kan et al., 2018) for the image-to-image translation in-
luding the most recent works. All models in Table 1 are trained
ith unpaired datasets. Compared to other methods, Superstar-
AN is specialized in representing large-scale domains with a
nified single model.
The CycleGAN (Zhu et al., 2017) achieves remarkable results in

mage-to-image translation in an unsupervised manner, making
t possible to learn a model without paired training datasets
ecause CycleGAN trains the property of cycle consistency (Zhou
t al., 2016). The CycleGAN consists of two generators (GAB and
BA) and two discriminators (DA and DB), where each genera-
or and discriminator pair manages a domain (A or B). Given
n image (XA) with a specific domain A, the GAB modifies the
mage to display the other domain B (GAB (XA) = X̂B). Thus, if
given image is modified by the two generators in CycleGAN,

he modified image must be the same as the original image,
.e., GBA (GAB (XA)) = XA. The CycleGAN uses this property as a
raining loss, called cycle-consistency loss. The two discriminators
ecide whether the translated images are real and display the
orresponding domain feature.
However, CycleGAN has a fundamental limitation in that it

an only be used for image-to-image translation between two
omains. Thus, for image-to-image translation with multiple do-
ains, each pair of two domains must be trained with each
ycleGAN model. For example, image-to-image translation with
ycleGAN would require 4950 separate models for a dataset of
00 domains, which is infeasible considering the amount of time
t takes to train a single CycleGAN model.

.4. StarGAN

To address the limitation of CycleGAN, StarGAN (Choi et al.,
018) employs the ACGAN idea of using conditional inputs for
he generator and an auxiliary classifier in the discriminator. As a
esult, StarGAN effectively performs image-to-image translation
n multiple domains using only a single generator and discrim-
nator pair. Furthermore, as training a single model can learn
lobal features for multiple domains, the training process is more
fficient than using many individual models.
Specifically, to achieve image-to-image translation for mul-

iple domains with a single generator, StarGAN modifies com-
onents of the general CycleGAN structure; the model uses a
332
arget domain vector as an additional input to the generator.
he target domain is randomly determined in the training phase,
hich enables the generator flexibly translate to various domains.
he discriminator in StarGAN uses the discriminator of ACGAN,
hich has an auxiliary classifier that determines whether the
ranslated image by the generator is modified adequately into
he target domain, which is used for the target domain vector of
he generator. Using this modification of StarGAN, the image-to-
mage translation in multiple domains becomes possible with a
ingle generator.
The training of StarGAN is similar to the cycle-consistency

raining in CycleGAN. Given an input image X with a correspond-
ng domain T , the generator translates the image with a target
omain of T ′, i.e., G

(
X, T ′

)
. The translated image is reconstructed

nto the original domain T by the same generator with a dif-
erent input label, i.e., G

(
G

(
X, T ′

)
, T

)
. This image with twice

translations must be the same as the original image. Therefore,
a loss with L1 norm is adopted to compare G

(
G

(
X, T ′

)
, T

)
and

X . Through this reconstruction process, the translated image is
guaranteed to be modified only with the domain-related features
while maintaining the overall features of the original images. The
training process of StarGAN can be represented as follows:

Ĝ = argmin
G

{Ladv (r,D (G (X, T ))) + λcls · Lcls (T , CD (G (X, T )))

+ λrec · Lrec
(
X,G

(
G (X, T ) , T ′

))}
,

D = argmin
D

{Ladv (f ,D (G (X, T ))) + Ladv (r,D (X)) + λcls

· Lcls (T , CD (X))} ,

where λcls and λrec denote the hyperparameter sets controlling
the ratio of adversarial loss, classification loss, and reconstruction
loss; CD is the auxiliary classifier of the discriminator.

3. Methods

This paper proposes SuperstarGAN, an improved StarGAN for
large-scale domains. As the conventional StarGAN employs the
ACGAN discriminator, it also has the limitation of ACGAN in that
the auxiliary classifier overfits the training set. The overfitted
classifier can hardly transfer helpful information for the train-
ing of the generator, resulting in a limitation in the training
of domain information. This limitation is mainly caused by the
structural problem of the ACGAN discriminator, in which the clas-
sifier and discriminator are integrated. Additionally, due to this
limitation, StarGAN generally fails to be trained with large-scale
domains. Furthermore, the quality of generated images deterio-
rates because the auxiliary classifier is not sophisticated enough
to accurately train domain information.

To address the limitations of StarGAN, the ControlGAN frame-
work is introduced in SuperstarGAN. As illustrated in Fig. 1, Su-
perstarGAN consists of three components: the generator,
discriminator, and classifier. Compared to StarGAN, the main

modification of SuperstarGAN is the independent classifier. As
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Fig. 1. Overall structure of SuperstarGAN: (a) The classifier is trained with real images with data augmentation. (b) The generator produces a fake image with
an input image and a target domain label; then, the generated image is evaluated by the discriminator and classifier in terms of genuinity and class-accordance,
respectively. The generator reconstructs the fake image with the original domain label. Then, the reconstructed image is compared with the original image. The
discriminator tries to distinguish whether the image is real or fake. The classifier classifies domain of generated image.
ˆ

demonstrated in ControlGAN (Lee & Seok, 2019), the ACGAN
discriminator is not trained with DA techniques in general since
the performance decreases. Conversely, the independent classifier
can be trained with DA techniques without affecting the GAN
training. This advantage of the ControlGAN framework enables
the generator to be more effectively trained with the domain
information by the fine classifier with DA. The classifier does
not suffer from overfitting and can capture domain-invariant
and domain-specific features. Consequently, SuperstarGAN has
the capacity to learn mappings among large-scale domains and
express small feature changes.

3.1. Generator

The SuperstarGAN generator produces a target-domain im-
ge with a source image and a target-domain vector. For the
enerator, the objective function is the same as that of StarGAN:

ˆ = argmin
G

{Ladv (r,D (G (X, T ))) + λcls · Lcls (T , CD (G (X, T )))

+ λrec · Lrec
(
X,G

(
G (X, T ) , T ′

))}
.

There are three different types of loss functions that the gen-
rator employs. The first is called adversarial loss, which deceives
he discriminator into determining that a fake image is real.
inimizing this term means that the generator can create more

ealistic fake images. The second loss function is the classification
oss, which is used to ensure that the generated image has the de-
ired characteristics of the target domain. This is done by feeding
he generated image into the classifier and comparing the cor-
ect label to the probability that the classifier returns. The more
ignificant the difference between these two values, the higher
he classification loss. By adopting this term, generated images
ill be classified as belonging to target domains by the classifier.
inally, there is reconstruction loss, which helps to preserve the
dentity features of the input image; the two aforementioned loss
unctions cannot help the generated images maintain features
333
other than the target feature. The reconstruction loss is used to
keep the other features the same as the input image. This can
be done by translating the image twice, once with an arbitrary
domain label and once with the original domain label.

3.2. Discriminator

Distinct from StarGAN, SuperstarGAN employs the vanilla dis-
criminator, which only determines whether the input image is
real or fake. This is because, in SuperstarGAN, the classifier is
detached from the discriminator. Hence, the discriminator is only
optimized with adversarial loss as follows:

D = argmin
D

{Ladv (f ,D (G (X, T ))) + Ladv (r,D (X))} .

3.3. Classifier

The SuperstarGAN classifier is trained with DA in order to
handle the overfitting problem that the StarGAN discriminator
presents. The StarGAN classifier is improved with this modifi-
cation, resulting in more accurate domain representations and
improved learning for the generator. The training of the classifier
can be represented as follows:

Ĉ = argmin
C

{
Lcls

(
T , C

(
Xaug

))}
.

We designed a classification loss function that compares the
target label (L) with the values obtained from the classifier. As for
Lcls, the categorical cross-entropy is used for multiclass datasets,
and the binary cross-entropy is used for multilabel datasets. The
classifier updates its parameters with the classification loss using
modified real images with DA. When the classifier receives the
images, the classifier returns the probabilities of belonging to
each label. Then, the cross-entropy is calculated with the prob-
abilities and target labels. The parameters of the classifier are
updated to minimize the cross-entropy. This process to train the
classifier is essentially the same as that of conventional deep
learning classifiers with DA.
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Table 2
Datasets used in the experiments. The average number of samples per label is rounded.
Name Num. of samples Num. of labels Average Num. of samples per label Label category Training iterations

CelebA 200,599 40 5015 Multi-label 1,000,000
AFHQ 14,630 7 2090 Multi-class 300,000
14Painters 9000 14 643 Multi-class 350,000
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3.4. Training specifications

To compare the performance of image-to-image translation
odels, we adopted the same training process as StarGAN (He
t al., 2016; Li & Wand, 2016; Ulyanov et al., 2016), but several
odifications are specified in detail. In the training of Superstar-
AN, we used the Adam optimizer (Kingma & Ba, 2014) with
1 = 0.0 and β2 = 0.9 for the generator and discriminator,
nd β1 = 0.9 and β2 = 0.9 for the classifier. The number
f iterations was set at 1.0 × 106. The learning rates for the
enerator, discriminator, and classifier were set at 0.0001, 0.0001,
nd 0.00012, respectively. The learning rates of each component
inearly decayed toward zero after 1.0 × 105 iterations were left.

For training the generator, λcls and λrec were set to 0.25 and
.3, respectively. The hinge loss (Lim & Ye, 2017) adapted to
GAN-GP (Arjovsky et al., 2017; Gulrajani et al., 2017) objective

unction was applied as the adversarial loss of the discriminator
raining. The λgp for the gradient penalty was set to 10. The
pectral normalization (Miyato et al., 2018) was employed as the
eight normalization. For the DA used in the classifier, we use
wo transformations: the random horizontal flip with a prob-
bility of 0.5 and the random rotation at an angle of −20 to
0.
The resolution of the real images was reduced to 128 × 128.

hus, the synthetic images by generators have the same resolu-
ion. For a fair comparison, we adopted the same architecture as
hat of StarGAN: The generator is composed of 18 convolutional
ayers with 64 kernels, where the first and the last three layers
re regular convolutional layers, and the other intermediate lay-
rs are six residual blocks with two convolutional layers each.
here are two downsampling and upsampling layers; thereby,
he residual blocks are applied to 32 × 32 feature maps. The
iscriminator consists of eight convolutional layers. In the first
even convolutional layers, the stride was set at two, resulting in
ownsamplings. The last layer corresponds to the output layer of
he discriminator, which determines whether the input images
re real or fake.

. Experiments and results

.1. Datasets

The CelebA (Liu et al., 2015) is a large-scale face dataset of
elebrity images comprising approximately 200,000 facial im-
ges, each of which has 40 binary attributes, such as hair color
nd facial expression. For additional experiments, we used two
dditional datasets. One is the high-quality animal face dataset
alled Animal Faces HQ (AFHQ), which has been used in the
xperiments of StarGANv2 (Choi et al., 2020). The dataset consists
f three domains: dogs, cats, and wildlife. For this study, we self-
abeled the wildlife domain into five additional domains: dots,
ox, lion, tiger, and wolf. The dots class includes animals with dot
atterns, such as the leopard. The total number of images in the
ataset is 15,000, separated into training and testing sets for each
omain. Another dataset is the 14Painters, which is a collection
f paintings from Wikiart.org. We adopted the sorted version
sed in ComboGAN (Anoosheh et al., 2018), where 9283 paintings
elong to 14 different artists. The artists contained in the dataset

re as follows: Zdzislaw Beksinski, Eugene Boudin, David Burliuk,

334
aul Cezanne, Marc Chagall, Jean-Baptiste-Camille Corot, Eyvind
arle, Paul Gauguin, Childe Hassam, Isaac Levitan, Claude Monet,
ablo Picasso, Ukiyo-e (style, not person), and Vincent Van Gogh.
he specifications of the datasets used in the experiments are
hown in Table 2.

.2. Baseline models

The StarGAN was selected as a baseline of the experiments
ince the proposed model is a modification of StarGAN. Addition-
lly, three baselines were considered in order to demonstrate that
he improvement of SuperstarGAN has not resulted from other
odifications than the proposed framework: First, SuperstarGAN
ithout DA shows that DA is crucial for avoiding the overfitting
roblem while performance is improved by simply separating the
lassifier from the discriminator. Second, StarGAN+SN+Hinge
aseline introduced spectral normalization (Miyato et al., 2018)
nd hinge loss for the structures of StarGAN and a loss func-
ion for the StarGAN discriminator. This baseline shows that
he improved performance of SuperstarGAN is not due to spec-
ral normalization or hinge loss. Third, StarGAN+DA used DA to
rain the vanilla StarGAN. We adopted this baseline model to
emonstrate that using DA on the vanilla StarGAN hinders the
raining.

.3. Experimental results

.3.1. Qualitative evaluation
The SuperstarGAN and following baseline models were trained

n the CelebA dataset for comparison. To evaluate the ability of
arge-scale domains, we designed the experiment in which mod-
ls simultaneously learn the mapping of all 40 CelebA attribute
abels, whereas a few labels were selected in the experiments of
he StarGAN study (Choi et al., 2018). In the training phase, each
odel was trained by changing a single attribute of the source

mage.
As Fig. 2 demonstrates, the SuperstarGAN was able to learn the

appings for 40 labels. The generated images from SuperstarGAN
xpress the target domain features precisely. Even though train-
ng only occurred with a single attribute transfer, SuperstarGAN
as still able to perform multiple facial attribute changes effec-
ively. However, this was not the case for the images from the
aseline models, as many features were not properly expressed.
n terms of visual quality, SuperstarGAN is superior to other
aseline models. Furthermore, SuperstarGAN is able to translate
mages while still preserving the identity features of the source
mage. In contrast, facial features and the outline for images
rom the baseline models are often blurred. Additionally, in many
ases, the baseline models cannot provide image translation at
ll as they failed to maintain the overall structure of the source
mage.

We hypothesized that a well-trained independent classifier
an improve performance as generator training becomes precise.
n other words, the independent classifier allows the generator
nd discriminator to concentrate on generating and detecting
ealistic fake samples, which are their fundamental objectives.
herefore, the classification performance of the fine classifier en-
bles the generator to learn to map for large-scale target domains
nd generate realistic samples that precisely follows the target
omains.
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Fig. 2. Image-to-image translation in large-scale domains with the CelebA dataset: Comparison of the SuperstarGAN and four other baselines. SN: spectral
normalization, DA: data augmentation.
Table 3
Frechet Inception distance (FID) and learned perceptual image patch similarity
(LPIPS) of the SuperstarGAN and baselines.
Method FID↓ LPIPS↓

SuperstarGAN without DA 29.1 0.134
StarGAN 27.7 0.181
StarGAN+SN+Hinge 34.0 0.188
StarGAN+DA 38.3 0.201
SuperstarGAN 22.7 0.104

4.3.2. Quantitative evaluation
To evaluate the quantitative performance of the models, we

dopted two evaluation metrics: FID (Heusel et al., 2017) and
PIPS (Zhang, Isola et al., 2018). The FID is a widely used met-
ic for measuring feature distance between real and generated
mages. Specifically, the distance between two distributions was
easured using feature vectors extracted from Inception-v3

Szegedy et al., 2016) pretrained with ImageNet. In this com-
arison, we calculated FID with 10,000 real images from the
335
CelebA dataset and 10,000 generated images by each model. The
generated images were composed of 250 real images, which were
translated into all 40 domains of CelebA. The source images of
the generated samples did not include the real images to be
compared against. A low FID score indicates a high similarity
between generated images and real images.

The LPIPS measures similarity based on human perception
using AlexNet (Krizhevsky et al., 2017) pretrained with ImageNet.
In this study, to score LPIPS, we compared 2000 pairs of the
generated images and the corresponding source images. We cal-
culated the average values after comparing the paired images. A
low LPIPS score signifies that the two images are perceptually
similar.

Table 3 exhibits the FID and LPIPS of SuperstarGAN and the
other baselines. As a result, SuperstarGAN showed an FID of
22.7 and an LPIPS of 0.104, corresponding to decreased FID and
LPIPS by 18.1% and 42.5%, respectively, compared to StarGAN. As
expected, StarGAN+DA showed inferior performance compared
to StarGAN, indicating that DA can decrease the performance
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Fig. 3. Generated images with various target domains using interpolated and extrapolated label values.
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Fig. 4. Animal facial style translations using SuperstarGAN with the AFHQ dataset.
when it is used with StarGAN architecture. Additionally, Super-
starGAN outperformed StarGAN+SN+Hinge, which implies that
he improved performance of SuperstarGAN was not due to spec-
ral normalization and hinge loss. These results indicate that
uperstarGAN outperformed the other baselines.
We numerically demonstrated that SuperstarGAN outper-

ormed other baselines in generating realistic samples. Addi-
ionally, as we employed images translated into all 40 labels
or scoring FID, such results indicate that SuperstarGAN has a
igh capacity for various transformations. Also, these results
ignify that generated images from SuperstarGAN were more
erceptually similar to the real images than those of the other
aselines. In addition, LPIPS, which assesses the GAN model based
n human perception, verified that SuperstarGAN can generate
isually plausible images.

.3.3. Interpolation and extrapolation with domain features
We conducted experiments with both interpolated and ex-

rapolated label values. We found that SuperstarGAN, when
rained only with binary label values (zero and one), was able
o adjust the degree of target domain features. Specifically, the
ntermediate features could be expressed using interpolated val-
es between zero and one. Furthermore, the proposed method
as able to emphasize the target domain features using high
xtrapolated values. Additionally, we found that even opposite
eatures could be generated using negative values.

The results in Fig. 3 show that SuperstarGAN can control the
egree to which facial features are expressed by adjusting the size
f the input label value. Target domain features become increas-
ngly apparent as the label value increases. We also observed an
ntermediate feature expression image where a half-bang image
as generated with a ‘‘Bang’’ label value of 0.5. In addition,
337
interesting results were demonstrated when the label value was
negative (i.e., −1). For example, when the ‘‘Big Nose’’ label had
a value of −1 as the conditional input, the corresponding output
had a small nose. While there was no ‘‘Small Nose’’ label in CelebA
dataset, this implies that the proposed method allows learning an
untrained opposite feature implicitly.

4.4. Experimental on AFHQ and 14Painters

To demonstrate that SuperstarGAN generally works regard-
less of datasets, we trained SuperstarGAN using two additional
datasets, AFHQ and 14Painters. We adopted the same model
architecture as that used on the CelebA dataset. The AFHQ and the
14Painters are multiclass datasets; therefore, categorical cross-
entropy loss was used to train the classifier. In this experiment,
we set λcls at 0.3 and λrec at 0.05. To avoid mode collapse, we
decreased the number of iterations from 1,000,000 to 300,000
and 350,000 in the training on the AFHQ and the 14Painters,
respectively. As shown in Table 2, relatively small datasets in
terms of the number of labels require fewer training iterations.
Additionally, we experimentally demonstrated that Superstar-
GAN can learn mappings among multi-domain with a small size
of training samples in each label. While SuperstarGAN uses 5015
CelebA images per label, there are only 2090 and 643 samples per
label in AFHQ and 14Painters, respectively. We believe that this
is because of the proposed independent classifier trained with
data augmentation; even if a small number of samples are given,
fine classifier allows the models to learn domain features. Figs. 4
and 5 illustrate that SuperstarGAN also performs properly on sev-
eral datasets, which explains the generality of the SuperstarGAN
performance.
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Fig. 5. Style transfer results on the 14Painters dataset.
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. Conclusion

In this paper, we proposed SuperstarGAN, an improved Star-
AN for large-scale domains. While the conventional StarGAN
as a limitation of training with large-scale domains due to the
CGAN discriminator, SuperstarGAN introduced the ControlGAN
ramework to address the limitation. In the experiments, we
emonstrated that SuperstarGAN is superior to the baselines in
erms of visual quality and evaluation metrics. It was confirmed
hat SuperstarGAN can generate high-quality images that follow
he given conditions. Evaluated with the CelebA dataset, the FID
nd LPIPS of SuperstarGAN were 22.7 and 0.104, respectively,
orresponding to decreased FID and LPIPS by 18.1% and 42.5%,
espectively, compared to StarGAN. By adjusting SuperstarGAN
o two additional datasets, we demonstrated the generality of
he proposed method. Furthermore, an additional experiment
ith interpolated and extrapolated label values revealed that
uperstarGAN effectively generates diverse samples, including
xaggerated images and opposite images.
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