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Abstract: We propose a generative adversarial network (GAN) that introduces an evaluator module
using pretrained networks. The proposed model, called a score-guided GAN (ScoreGAN), is trained
using an evaluation metric for GANs, i.e., the Inception score, as a rough guide for the training
of the generator. Using another pretrained network instead of the Inception network, ScoreGAN
circumvents overfitting of the Inception network such that the generated samples do not correspond
to adversarial examples of the Inception network. In addition, evaluation metrics are employed only
in an auxiliary role to prevent overfitting. When evaluated using the CIFAR-10 dataset, ScoreGAN
achieved an Inception score of 10.36 ± 0.15, which corresponds to state-of-the-art performance. To
generalize the effectiveness of ScoreGAN, the model was evaluated further using another dataset,
CIFAR-100. ScoreGAN outperformed other existing methods, achieving a Fréchet Inception distance
(FID) of 13.98.

Keywords: generative adversarial network; image generation; image synthesis; GAN; generative
model; Inception score; scoreGAN
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1. Introduction

A recent advancement in artificial intelligence is the implementation of deep learning
algorithms to generate synthetic samples [1–3]. These types of neural networks are able
to learn how to map inputs to outputs after being trained on large datasets. In the past
few years, researchers have used deep learning algorithms to create synthetic samples in
various domains such as music, images, and speech [4–6]. One important application of
synthetic sample generation is in the field of data augmentation [3,7]. Data augmentation is
a technique used in machine learning to increase the size of the training datasets. Synthetic
samples can be used to create new data points that are similar to existing data points, but
may have different labels or attributes. This can help improve the performance of machine
learning algorithms by providing them with more data to train on.

Due to their innovative training algorithm and superb performance in image gener-
ation tasks, generative adversarial networks (GANs) have been widely studied in recent
years [8–12]. GANs generally employ two artificial neural network (ANN) modules, called
a generator and a discriminator, which are trained with an adversarial process to detect
and deceive each other. Specifically, the discriminator aims at detecting synthetic samples
that are produced by the generator; meanwhile, the generator is trained by errors that are
obtained from the discriminator. By such a competitive learning process, the generator can
produce fine synthetic samples of which features are incredibly similar to those of actual
samples [13,14].

However, the performance evaluation of GAN models is a challenging task since the qual-
ity and diversity of generated samples should be assessed from the human perspective [15,16];
furthermore, unbiased evaluations are also difficult because each person can have different
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views on the quality and diversity of samples. Therefore, several studies have introduced
quantitative metrics to evaluate GAN models in a measurable manner [16,17].

The Inception score is one of the most representative metrics to evaluate GAN models
for image generation [16]. A conventional pretrained ANN model for image classification,
called the Inception network [18], is employed to assess both the quality and diversity
of the generated samples, by measuring entropies of inter- and intra-samples in terms
of estimated probabilities for each class. The Fréchet Inception distance (FID) is another
metric to measure GAN performance, in which the distance between feature distributions
of real samples and generated samples are calculated [17].

From the adoption of the evaluation metrics, the following questions then arise: Can
the evaluation metrics be used as targets for the training of GAN modelssince the metrics
reasonably represent the quality and diversity of samples? By backpropagating gradients
of the score or distance, is it possible to maximize or minimize them? Such an approach
seems feasible since the metrics are generally differentiable; therefore, the gradients can be
computed and backpropagated.

However, simply backpropagating the gradients and training with the metrics cor-
respond to learning adversarial examples in general [19,20]. Since the complexity of
ANN models is significantly high, we can easily make a sample be incorrectly predicted,
by adding minimal noises into the sample; this noisy sample is called the adversarial
example [20]. Therefore, in short, a fine quality and rich diversity of samples can have a
high Inception score, while the reverse is not always true.

Barratt and Sharma [21] studied this problem and found that directly maximizing the
score does not guarantee that the generator produces fine samples. They trained a GAN
model to maximize the Inception score; then, the trained model produced image samples
with a very high Inception score. While the Inception score of real samples in the CIFAR-10
dataset is around 10.0, the produced images achieved an Inception score of 900.15 [21].
However, the produced images were entirely different from the real images in the CIFAR-10
dataset; instead, they looked like noises.

In this paper, to address such a problem and utilize the evaluation metric as a training
method, we propose a score-guided GAN (ScoreGAN) that employs an evaluator ANN
module using pretrained networks with the evaluation metrics. While the aforementioned
problems exist in ordinary GANs, ScoreGAN solves the problems through two approaches
as follows.

First, ScoreGAN uses the evaluation metric as an auxiliary target, while the target
function of ordinary GANs is mainly used. Using the evaluation metric as the only target
causes overfitting of the network used for the metric, instead of learning meaningful
information from the network, as shown in related studies [21]. Thus, the evaluation metric
is employed as the auxiliary target in ScoreGAN.

Second, in order to backpropagate gradients and train the generator in ScoreGAN, we
employ a different pretrained model called MobileNet [22]. This prevents the generator
from overfitting on the Inception network. To the best of our knowledge, employing a
pretrained MobileNet with an additional score function for the training of the generator
has not been explored thus far. Additionally, this approach allows us to validate that the
generator has actually learned features, rather than simply memorizing details from the
Inception network. In this process, we can assess whether ScoreGAN is able to achieve a
high Inception score without using the Inception network, which can prove the effectiveness
of ScoreGAN.

The main contributions of this paper are as follows:

• The score-guided GAN (ScoreGAN) that uses the evaluation metric as an additional
target is proposed.

• The proposed ScoreGAN circumvents the overfitting problem by using MobileNet as
an evaluator.

• Evaluated by the Inception score and cross-validated through the FID, ScoreGAN
demonstrates state-of-the-art performance on the CIFAR-10 dataset and CIFAR-100
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dataset, where its Inception score in the CIFAR-10 is 10.36 ± 0.15, and the FID in the
CIFAR-100 is 13.98.

2. Background

Generative models aim to learn sample distributions and produce realistic samples.
For instance, generative models can be trained with an image dataset; then, a successfully
trained generative model produces realistic, but synthetic images for which the features
are extremely similar to the original images in the training set. The GAN is one the
representative generative models, which uses deep learning architectures and an algorithm
with game theory. In recent years, diffusion models have been employed as generative
models and demonstrated superior performances [2,23,24]. In Section 2.1, we discuss a
variant of the GAN called the controllable GAN, which is the baseline of the proposed
model. Additionally, two metrics to assess the produced images by the generative models
are presented in Sections 2.2 and 2.3.

2.1. Controllable Generative Adversarial Networks

The conventional GAN model consists of two ANN modules, i.e., the generator and
the discriminator. The two modules are trained by playing a game to deceive or detect each
other [15,25]. The game to train a GAN can be represented as follows:

θ̂D = arg min
θD

{
LD(1, D(X; θD)) + LD

(
0, D

(
G
(
Z; θ̂G

)
; θD

))}
, (1)

θ̂G = arg min
θG

{LD(1, D(G(Z; θG); θD))}, (2)

where G and D denote the generator and the discriminator, respectively, X is a training
sample, Z represents a noise vector, θ is a set of weights of an ANN model, and LD indicates
a loss function for the discriminator.

However, the ordinary GAN can hardly produce the desired samples since each feature
in a dataset is randomly mapped into each variable of the input noise vector. Therefore, it
is hard to discover which noise variable corresponds to which feature. To overcome this
problem, conditional variants of GAN that introduce conditional input variables have been
studied [26–28].

Controllable GAN (ControlGAN) [29] is one of the conditional variants of GANs
that uses an independent classifier and the data augmentation techniques to train the
classifier. While a conventional model, called auxiliary classifier GAN (ACGAN) [28], has
an overfitting issue on the classification loss and a trade-off for using the data augmentation
technique [29], ControlGAN breaks the trade-off through introducing the independent
classifier, as well as the data augmentation technique. The training of ControlGAN is
performed as follows:

θ̂D = arg min
θD

{
LD(1, D(X; θD)) + LD

(
0, D

(
G
(
Z,L; θ̂G

)
; θD

))}
, (3)

θ̂G = arg min
θG

{
LD(1, D(G(Z; θG); θD)) + γt · LC

(
L, C

(
G(Z,L; θG); θ̂C

))}
, (4)

θ̂C = arg min
θC

{LC(L, C(X; θC))}, (5)

where C represents the independent classifier, L denotes the input labels, and γt is a learn-
ing parameter that modulates the training of the generator in terms of the classification loss.

2.2. The Inception Score

To assess the quality and diversity of the generated samples by GANs, the Inception
score [16] is one of the most conventional evaluation metrics, which has been extensively
employed in many studies [8,14,16,21,26,27,29]. For the quantitative evaluation of GANs,
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the Inception score introduces the Inception network, which was initially used for image
classification [18]. The Inception network is pretrained to solve the image classification
task over the ImageNet dataset [30], which contains more than one million images of 1000
different classes; then, the network learns the general features of various objects.

Through the pretrained Inception network, the quality and diversity of the generated
samples can be obtained from two aspects [16,21]: First, the high quality of an image can be
guaranteed if the image is firmly classified into a specific class. Second, a high entropy in
the marginal probability of the generated samples indicates a rich diversity of the samples
since such a condition signifies that the generated samples are different from each other.

Therefore, the entropies of the intra- and inter-samples are calculated over the gener-
ated samples; then, these two entropies compose the Inception score as follows:

IS
(
G
(
·; θ̂G

))
= exp

(
1
N ∑ KL

(
Pr
(
Y|X̂

)
||Pr(Y)

))
, (6)

where X̂ denotes a generated sample, KL indicates the Kullback–Leibler (KL) divergence,
namely the relative entropy, and N is the number of samples in a batch. Since a high KL
divergence signifies a significant difference between the two probabilities, thus a higher
Inception score indicates greater qualities and a wider variety of samples. Generally, ten
sets, each of which contains 5000 generated samples, are used to calculate the Inception
score [16,21].

2.3. The Fréchet Inception Distance

The FID is another metric to evaluate the generated samples in which the Inception
network is employed as well [17]. Instead of the predicted probabilities, the FID introduces
the feature distribution of the generated samples that can be represented as the outputs of
the penultimate layer of the Inception network.

With the assumption that the feature distribution follows a multivariate normal distri-
bution, the distance between the feature distributions of the real samples and generated
samples is calculated as follows:

FID
(
X, X̂

)
=
∥∥µX − µX̂

∥∥2
2 + Tr

(
ΣX + ΣX̂ − 2 ·

√
ΣX ΣX̂

)
, (7)

where X and X̂ are the data matrices of the real samples and generated samples, respectively,
and Σ denotes the covariance matrix of a data matrix. In contrast to the Inception score,
a lower FID indicates the similarity between the feature distributions since the FID measures
a distance.

3. Methods

In this paper, we propose ScoreGAN, which uses an additional target, derived from
the evaluation metrics in Section 2.2. The proposed ScoreGAN uses the Inception score
as a target of the generator. However, directly targeting the Inception score leads to an
overfitting issue; thus, in ScoreGAN, a pretrained MobileNet is used for the training.
Then, the trained model is evaluated with the conventional Inception score and FID using
the Inception network. This method is elaborated in Section 3.1. The training details of
ScoreGAN are described in Section 3.2.

3.1. Score-Guided Generative Adversarial Network

The main idea of ScoreGAN is straightforward: For its training, the generator in
ScoreGAN utilizes an additional loss that can be obtained from the evaluation metric for
GANs. Since it has been verified that the evaluation metric strongly reflects the quality
and diversity of the generated samples [8,16], it is expected that the performance of GAN
models can be enhanced by optimizing the metrics.
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Therefore, the architecture of ScoreGAN corresponds to ControlGAN with an addi-
tional evaluator; the evaluator is used to calculate the score, then gradients are backprop-
agated to train the generator. The other neural network structures are the same as those
of ControlGAN.

However, due to the high complexity of GANs, it is not guaranteed that such an
approach can work properly, as described in the previous section. Directly optimizing the
Inception score can cause overfitting over the network that is used to compute the metric;
then, the overfitted GANs produce noises instead of realistic samples even if the score of
the generated noise is high [21].

In this paper, we circumvent this problem through two different approaches, i.e., em-
ploying the metric as an auxiliary cost instead of the main target of the generator and adopt-
ing another pretrained network as an evaluator module as a replacement of the Incep-
tion network.

3.1.1. The Auxiliary Costs Using the Evaluation Metrics

ScoreGAN mainly uses the ordinary GAN cost in which the adversarial training pro-
cess is performed while the evaluation metric is utilized as an auxiliary cost. Therefore,
the training of the generator in ScoreGAN is conducted by adding the cost of the evaluation
metric to (4). Such a method using an auxiliary cost has been introduced in ACGAN [28];
then, the method has been widely studied in many recent works [27], including Control-
GAN [29]. As a result of the recent works, it has been demonstrated that the auxiliary
costs serve as a “rough guide” for a generator to be trained with additional information.
The proposed technique using the evaluation metrics in this paper corresponds to a variant
of such a method, where the metrics are used as rough guides to generate high-quality and
a rich variety of samples. In short, the generator in ScoreGAN aims at maximizing a score
in addition to the original cost, which can be represented as follows:

θ̂G = arg min
θG

{
LG − δ · IS

(
X̂
)}

, (8)

where LG denotes the regular cost for a generator, such as the optimization target in (4),
δ is a parameter for the score, and IS is the score that can be obtained from the evaluator.
Since (6) is differentiable with respect to G, θG can be optimized by the gradients in such
a manner.

3.1.2. The Evaluator Module with MobileNet

To obtain the IS in (8), originally, the Inception network [18] is required as the evaluator
in ScoreGAN since the metrics are calculated through the network. However, as described
in the previous sections, directly optimizing the score leads to overfitting the network,
thereby making the generator produce noises instead of fine samples. Furthermore, if the
Inception network is used for the training, it is challenging to validate whether the generator
actually learns features rather than memorizes the network, since the generator trained
by the Inception network certainly achieves a high Inception score, regardless of the
actual learning.

Therefore, ScoreGAN introduces another network, called MobileNet [22], as the evalu-
ator module, in order to maximize the score. MobileNet [22,31,32] is a comparatively small
classifier for mobile devices, which is trained with the ImageNet dataset as well. Due to
its compact network size, enabling GANs to be trained, MobileNet is used in this study.
The score is calculated over the feature distribution of MobileNet; then, the generator aims
to maximize the score, as described in (8). For MobileNet, the pretrained model in the
Keras library is used in this study.

Furthermore, to prevent overfitting on MobileNet, ScoreGAN uses a regularized score,
which can be represented as follows:

RISmobile
(
X̂
)

:= min
{

ISmobile(X), ISmobile
(
X̂
)}

, (9)
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where RIS represents the regularized score and ISmobile denotes the score calculated by the
same manner as (6) through MobileNet instead of the Inception network. Since a perfect
GAN model can achieve a high score that is similar to the score of real data, thus, it is
expected that the maximum value of the score that a GAN model can attain is the score
of real data. Therefore, such an approach in (9) assists the GAN training by reducing the
overfitting of the target network.

The evaluation, however, is performed with the Inception network, as well as the
Inception score, instead of MobileNet and ISmobile, which can generalize the performance
of ScoreGAN. If ScoreGAN is trained to optimize MobileNet, the training ensures maxi-
mizing the score obtained with MobileNet, irrespective of the learning of actual features.
Therefore, to validate the performance, the model must be evaluated with the original
metric, the Inception score.

Furthermore, the model is further evaluated and cross-validated through the FID. Since
the score and the FID measure different aspects of the generated samples, the maximization
of the score does not guarantee obtaining a low FID. Instead, only if ScoreGAN produces
realistic samples that are highly similar to real data in terms of feature distributions,
the model can achieve a lower FID than the baseline. Therefore, by using the FID, we can
properly cross-validate the model even if the score is used for the target.

3.2. Network Structures and Regularization

Since ScoreGAN employs the ControlGAN structure as the baseline and integrates an
evaluator measuring the score with the baseline, ScoreGAN consists of four ANN modules,
namely the generator, discriminator, classifier, and evaluator. In short, ScoreGAN addition-
ally uses the evaluator, attached to the original ControlGAN framework. The structure of
ScoreGAN is illustrated in Figure 1.

Figure 1. The structure of ScoreGAN.The training of each module is represented with arrows. E:
evaluator; C: classifier; D: discriminator; G: generator.

As described in Figure 1 and (8), the generator is trained by targeting the three
other ANN modules to maximize the score and minimize the losses, simultaneously.
Meanwhile, the discriminator tries to distinguish between the real samples and generated
samples. The classifier is trained only with the real samples in which the data augmentation
is applied; then, the loss for the generator can be obtained with the trained classifier.
The evaluator is a pretrained network and fixed during the training of the generator; thereby,
the generator learns general features of various objects from the pretrained evaluator by
maximizing the score of the evaluator.
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Due to the vulnerable nature of the training of GANs, regularization methods for the
ANN modules in GANs are essential [33,34]. Accordingly, ScoreGAN also uses the regular-
ization methods that are widely employed in various GAN models for its training. Spectral
normalization [35] and the hinge loss [36] that are commonly used in state-of-the-art GAN
models are employed in ScoreGAN as well. The gradient penalty with a weight parameter
of 10 is used [33]. Furthermore, according to recent studies that show the regularized
discriminator requires intense training [8,35], multiple training iterations for the discrim-
inator are applied; the discriminator is trained over five times per one training iteration
of the generator. For the generator and the classifier, the conditional batch normalization
(cBN) [37] and layer normalization (LN) [38] techniques are used, respectively.

For the neural network structures in ScoreGAN, we followed a typical architecture
that is generally introduced in many other studies [27,39]. The detailed structures are
shown in Table 1. Two time-scale update rule (TTUR) [17] is employed with learning rates
of 4× 10−4 and 2× 10−4 for the discriminator and the generator, respectively. The learning
rates halve after 50,000 iterations; then, the models are further trained with the halved
learning rates for another 50,000 iterations. The Adam optimization method is used with
the parameters of β1 = 0 and β2 = 0.9, which is the same setting as the other recent
studies [29,35]. The maximum threshold for the training from the classifier was set to 0.1.
The parameter δ in (8) that modulates the training from the evaluator was set to 0.5.

Table 1. Architecture of neural network modules. The values in the brackets indicate the number of
convolutional filters or nodes of the layers. Each ResBlock is composed of two convolutional layers
with pre-activation functions.

Generator Discriminator Classifier

Z ∈ R128 Z ∈ R32×32×3 Z ∈ R32×32×3

Dense (4× 4× 256) ResBlock Downsample (256)
ResBlock (32) × 3

ResBlock Downsample (32)

ResBlock Upsample (256) ResBlock Downsample (256)
ResBlock (64) × 3

ResBlock Downsample (64)

ResBlock Upsample (256) ResBlock (256)
ResBlock (128) × 3

ResBlock Downsample (128)

ResBlock Upsample (256) ResBlock (256) ResBlock (128) × 3

cBN; ReLU; Conv (3); Tanh ReLU; Global Pool; Dense (1) LN; ReLU; Global Pool; Dense (10)

4. Results

In this section, we discuss the performance of ScoreGAN with respect to the Inception
score, the FID, and the quality of the generated images. In the experiments, three images
datasets called CIFAR-10, CIFAR-100, and LSUN were used. Three subsections in this
section explain the performance results on each dataset. The characteristics of the datasets
are described in Table 2.

Table 2. Datasets used in the experiments.

Name Image Res. No. of Samples Descriptions

CIFAR-10 32 × 32 50,000
10 classes of small objects
5000 images per class

CIFAR-100 32 × 32 50,000
100 classes of small objects
500 images per class

LSUN
down-sampled
to 128 × 128 around 10 million

10 classes of indoor and outdoor scenes
around 120,000 to 3,000,000 per class
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4.1. Image Generation with CIFAR-10 Dataset

The proposed ScoreGAN was evaluated over the CIFAR-10 dataset, which is conven-
tionally employed as a standard dataset to assess the image generation performance of
GAN models in many studies [26,27,29,35,39–42]. The training set of the CIFAR-10 dataset
is composed of 50,000 images that are from 10 different classes. To train the models, we
used a minibatch size of 64, and the generator was trained over 100,000 iterations. The other
settings and the structure of ScoreGAN that was used to train the CIFAR-10 dataset are
described in the previous section. Since the proposed ScoreGAN introduces an additional
evaluator compared to ControlGAN, we used ControlGAN as the baseline; thereby, we can
properly assess the effect of the additional evaluator.

To evaluate the image generation performance of the models, the Inception score and
FID were employed. As described in the previous sections, since the Inception score is
the average of the relative entropy between each prediction and the marginal predictions,
a higher Inception score signifies better-quality and a rich diversity of the generated
samples; conversely, a lower FID indicates that the feature distributions of the generated
samples are similar to those of the real samples. Notice that, for ScoreGAN, the Inception
score and FID are measured after the training iterations (100,000). It is expected that we
can enhance the performance results if the models are repeatably measured during the
training, and then, we selected the best model among the iterations, as conducted in several
studies [8,39].

Table 3 shows the performance of GAN models in terms of the Inception score and
FID. While the neural network architectures of the GAN are the same as ControlGAN,
the proposed ScoreGAN demonstrates superior performance compared to ControlGAN,
which verifies the effectiveness of the additional evaluator in ScoreGAN. The Inception
score increased by 20.5%, from 8.60 to 10.36, which corresponds to state-of-the-art perfor-
mance among the existing models thus far. The FID also decreased by 21.1% in ScoreGAN
compared to ControlGAN in which the FID values of ScoreGAN and ControlGAN are 8.66
and 10.97, respectively. Random examples that are generated by ScoreGAN are shown
in Figure 2.

Figure 2. Random examples of the generated images by ScoreGAN with the CIFAR-10 dataset. Each
column represents each class in the CIFAR-10 dataset. All images have a 32 × 32 resolution.
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Table 3. Performance of GAN models over the CIFAR-10 dataset. IS indicates the Inception score;
FID indicates the Fréchet Inception distance. The best performances are highlighted in bold.

Methods IS FID

Real data 11.23 ± 0.20 -

ControlGAN [29] 8.61 ± 0.10 -
ControlGAN
(w/Table 1; baseline)

8.60 ± 0.09 10.97

Conditional
DCGAN [40]

6.58 -

AC-WGAN-GP [33] 8.42 ± 0.10 -
CAGAN [27] 8.61 ± 0.12 -
Splitting GAN [41] 8.87 ± 0.09 -
BigGAN [8] 9.22 14.73
MHingeGAN [39] 9.58 ± 0.09 7.50
ScoreGAN 10.36 ± 0.15 8.66

The results of this study appear to validate the effectiveness of both the additional
evaluator and auxiliary score present in ScoreGAN. It can be said that the generator in
ScoreGAN appears to properly learn general features through the pretrained evaluator
and is then enforced to produce a variety of samples by maximizing the score. This is
reflected not only in an increase in the Inception scores, but also in a decrease in the FID
scores. Since the FID measures the similarity between feature distributions, it is less related
to the objective of ScoreGAN. Therefore, this enhancement of the decreased FIDs could
be evidence that ScoreGAN does not overfit on the Inception scores, and the proposed
evaluator enhances the performance. Furthermore, since ScoreGAN does not use the
Inception network as the evaluator and the score, it is difficult to regard the generated
samples by ScoreGAN as adversarial examples of the Inception network, as shown in the
examples in Figure 2, where the images are far from noises.

The detailed Inception score and FID over iterations are shown in Figure 3. As shown
in the figures, the training of ControlGAN becomes slow after 30,000 iterations, while the
proposed ScoreGAN continues its training. For example, the Inception score of ControlGAN
at 35,000 iterations is 8.48, which is 98.6% of the final Inception score, while, at the same
time, the Inception score of ScoreGAN is 9.34, which corresponds to 90.2% of its final
score. The FID demonstrates similar results to those of the Inception score. In ControlGAN,
the FID decreases by 10.7% from 50,000 to 100,000 iterations; in contrast, it declines by
26.9% in ScoreGAN. Such a result implies that the generator in ScoreGAN can be further
trained by the proposed evaluator, although the training of the discriminator is saturated.

Figure 3. The performance of ScoreGAN in terms of the Inception score and Fréchet Inception distance
over iterations. (A) The Inception scores; (B) the Fréchet Inception distance (FID). The baseline is
ControlGAN with the same neural network architecture, identical to that of ScoreGAN.
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4.2. Image Generation with CIFAR-100 Dataset

To generalize the effectiveness of ScoreGAN, the CIFAR-100 dataset was employed
for the evaluation of the GAN models. The CIFAR-100 dataset is similar to the CIFAR-
10 dataset, where each dataset contains 50,000 images of size 32× 32 in the training set.
The difference between the CIFAR-100 dataset and the CIFAR-10 dataset is that the CIFAR-
100 dataset is composed of 100 different classes. Therefore, it is generally regarded that the
training of the CIFAR-100 dataset is more challenging than that of the CIFAR-10 dataset.
The architectures used in this experiment are shown in Appendix A.

Since existing methods in several recent studies have been evaluated over the CIFAR-
100 dataset [43], we compared the performance between ScoreGAN and the existing
methods. The performance in terms of the Inception score and FID is demonstrated in
Table 4. The results show that ScoreGAN outperforms the other existing models. While the
same neural network architectures are used in both methods, the performance of ScoreGAN
is significantly superior to that of the baseline. For instance, the FID significantly declines
from 18.42 to 13.98, which corresponds to a state-of-the-art result. Random examples of the
generated images with ScoreGAN trained with CIFAR-100 are shown in Figure 4.

Figure 4. Random examples of the generated images by ScoreGAN with the CIFAR-100 dataset. Each
column represents each class in the CIFAR-100 dataset. All images have a 32 × 32 resolution.
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Table 4. Performance of the GAN models over the CIFAR-100 dataset. IS indicates the Inception
score; FID indicates the Fréchet Inception distance. The best performances are highlighted in bold.

Methods IS FID

Real data 14.79 ± 0.18 -

ControlGAN
(baseline)

9.32 ± 0.11 18.42

MSGAN [43] - 19.74
SNGAN [42] 9.30 ± 0.08 15.6

MHingeGAN [39] 14.36 ± 0.09 17.30
ScoreGAN 13.11 ± 0.16 13.98

While the Inception score of ScoreGAN is slightly lower than that of MHingeGAN [39],
such a disparity results from a difference in the assessment of the scores, in which,
for MHingeGAN, the Inception score is continuously measured during the training itera-
tions; then, the best score is selected among the training iterations. In contrast, the Inception
score of ScoreGAN is computed only once after 100,000 iterations. Furthermore, in terms of
the FID, ScoreGAN demonstrates superior results, compared to MHingeGAN. Furthermore,
it is reported that the training of MHingeGAN over the CIFAR-100 dataset collapses before
100,000 iterations.

4.3. Image Generation with LSUN Dataset

For an additional experiment, ScoreGAN was applied to another dataset, called
LSUN [44]. LSUN is a large-scale image dataset with 10 million images in 10 different scene
categories, such as bedroom and kitchen. Furthermore, different from the CIFAR-10 and
CIFAR100 datasets, LSUN is composed of high-resolution images; therefore, we evaluated
ScoreGAN with LSUN to verify that the proposed framework can be performed with high-
resolution images. In this experiment, ScoreGAN produces 128× 128 resolution images.

The training process is the same as the previous experiments with the CIFAR datasets,
while different training parameters were used; a learning rate of 5× 10−5 was used for both
the generator and discriminator, and the weights of the discriminator were updated two
times for each update of the generator. Furthermore, the number of layers of the generator
and discriminator was increased due to the resolution of the produced images. Since the
resolution of the images is four times that of the CIFAR datasets, two additional residual
modules were employed, which correspond to four additional convolutional layers for
both the generator and discriminator.

Examples of the generated images by ScoreGAN are shown in Figure 5. The proposed
model produced fine images for each category in the LSUN dataset. These results confirm
that the proposed model can be applied to higher-resolution images than those in the
CIFAR datasets, which demonstrates the generality of the performance of the proposed
model. The result of the additional experiments signifies that the proposed model can be
trained with various image datasets that have many image categories, such as CIFAR-100,
as well as datasets with high-resolution images, such as LSUN.
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Figure 5. Random examples of the generated images by ScoreGAN with the LSUN dataset. The im-
ages are a 128× 128 resolution. Each column represents each class in the LSUN dataset, i.e., bedroom,
bridge, church outdoor, classroom, conference room, dining room, kitchen, living room, restaurant,
and tower.

5. Conclusions

In this paper, the proposed ScoreGAN introduces an evaluator module that can be
integrated with conventional GAN models. While it is known that the regular use of
the Inception score to train a generator corresponds to making noise-like adversarial
examples of the Inception network, we circumvented this problem by using the score as an
auxiliary target and employing MobileNet instead of the Inception network. The proposed
ScoreGAN was evaluated over the CIFAR-10 dataset and CIFAR-100 dataset. As a result,
ScoreGAN demonstrated an Inception score of 10.36, which is the best score among the
existing models. Furthermore, evaluated over the CIFAR-100 dataset in terms of the FID,
ScoreGAN outperformed the other models, where the FID was 13.98.

Although the proposed evaluator is integrated with the ControlGAN architecture and
demonstrated fine performance, it needs to be further investigated whether the evaluator
module properly performs when it is additionally used for other GAN models. Since the
evaluator module can be employed along with various GANs, the performance can be
enhanced by adopting other GAN models. Furthermore, in this paper, only the Inception
score is introduced to train the generator while the other metric to assess GANs, i.e., the FID,
can be used as a score. Such a possibility to use the FID as a score should be further studied
as well for future work.
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Appendix A. Neural Network Architectures of ScoreGAN for the CIFAR-100 Dataset

Table A1. Architecture of the neural network modules for the training of the CIFAR-100 dataset.
The values in the brackets indicate the number of convolutional filters or nodes of the layers. Each
ResBlock is composed of two convolutional layers. The difference between the architecture for the
CIFAR-10 dataset is at the classifier, in which 256 filters are used in the last three ResBlocks.

Generator Discriminator Classifier

Z ∈ R128 Z ∈ R32×32×3 Z ∈ R32×32×3

Dense (4× 4× 256) ResBlock Downsample (256) ResBlock (32) × 3
ResBlock Downsample (32)

ResBlock Upsample (256) ResBlock Downsample (256) ResBlock (64) × 3
ResBlock Downsample (64)

ResBlock Upsample (256) ResBlock (256) ResBlock (128) × 3
ResBlock Downsample (128)

ResBlock Upsample (256) ResBlock (256) ResBlock (256) × 3

cBN; ReLU; Conv (3); Tanh ReLU; Global Pool; Dense (1) LN; ReLU; Global Pool; Dense (100)
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