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Abstract: Motivated by the idea that there should be a close relationship between biological sig-
nificance and low power driving of spike neural networks (SNNs), this paper aims to focus on
spike-frequency adaptation, which deviates significantly from existing biological meaningfulness,
and develop a new spike-frequency adaptation with more biological characteristics. As a result,
this paper proposes the sensory adaptation method that reflects the mechanisms of the human sen-
sory organs, and studies network architectures and neuron models for the proposed method. Next,
this paper introduces a dedicated SNN simulator that can selectively apply the conventional spike-
frequency adaptation and the proposed method, and provides the results of functional verification
and effectiveness evaluation of the proposed method. Through intensive simulation, this paper
reveals that the proposed method can produce a level of training and testing performance similar to
the conventional method while significantly reducing the number of spikes to 32.66% and 45.63%,
respectively. Furthermore, this paper contributes to SNN research by showing an example based
on in-depth analysis that embedding biological meaning in SNNs may be closely related to the
low-power driving characteristics of SNNs.

Keywords: artificial neural networks; spiking neural networks; neuromorphic; frequency adaptation
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1. Introduction

In the human brain, there are about 100 billion neurons and more than 100 trillion
synapses that connect them, which transmit signals and process and store information
at a high speed between neurons. In the process, the neuron communicates with other
neurons using an electrical impetus called spike and transmits the signal if the intensity of
the signal is higher than the threshold and does not transmit if the intensity is lower than
the threshold. Neuromorphic research mimics the human brain and ultimately pursues
artificial intelligence (AI) similar to the brain. The fundamental principles for neuromorphic
computing are (i) fine-grained parallelism, (ii) event-driven computation, and (iii) adaptive
and self-modifying [1], and as the technology satisfying all these principles, the neuromor-
phic research based on the spiking neural network (SNN) is currently spotlighted on both
industry and academia [2–6].

Considering that the human brain is a system that simultaneously performs memo-
rizing, calculating, and learning using only a small amount of power of 20W, the known
principles of neuromorphic computing can be matched in order by high performance,
low power, and on-chip learning, respectively. Among these principles, the low power
is attractive in particular because, unlike conventional devices, circuit, architecture and
system-level low power technologies, SNN biological characteristics alone latent a level of
superiority far above the existing low power technologies [7–10]. Motivated by this, we
have launched a study to answer the question of how the biological meaningfulness makes
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the low power characteristic of SNN, and in this paper, we introduce the important clues
we have discovered.

The Izhikevich [11], Hodgkin–Huxley [12], and Morris-Lecar [13] models are the best
well-known biological neuron models. While these three neuron models all display vastly
excellent biological plausibility, they have different degrees of difficulty in implementation
and biological meaningfulness [14]: the Izhikevich model is not biologically meaningful,
but it is relatively easy to implement. In contrast, the Hodgkin–Huxley and Morris–Lecar
models are biologically meaningful but are very difficult to implement. There are several
causes of this difference in the model, among which we have noted the mechanism by
which the firing rate of neurons decreases with constant intensity stimulation, namely
spike f requency adaptation [15]. For the spike-frequency adaptation, the Izhikevich model
adopts a method that is easy-to-implement while using a method that is independent of
the way real organisms operate, and the Hodgkin–Huxley and Morris–Lecar models are
very similar to those of real organisms, making the implementation very complex.

Inspired by this, we have devised a new spike-frequency adaptation that is biologically
meaningful and easy-to-implement. More in detail, paying attention to the biological
characteristics that when certain stimuli constantly enter the sensory organs (e.g., visual,
olfactory, and dermal organs), the sense of the stimulus gradually becomes desensitized,
we have devised a neuron model with a new variable called sensitivity. Furthermore, based
on this, we have developed a spike-frequency adaptation, called sensory adaptation, in a
way that adjusts the change in the slope at which the potential of the neuron increases
when a stimulus is applied to the neuron.

Subsequently, we have intensively conducted experiments to find an answer to
whether the proposed sensory adaptation using the neuron model that is actually bio-
logically meaningful rather than plausible biological meanings will affect the SNN from a
low power point of view (i.e., whether the SNN with the sensory adaptation will operate at
lower power). To this end, based on the well-known SNN architecture [16], we have de-
signed an SNN architecture that can simulate the existing spike-frequency adaptation and
the proposed sensory adaptation, and developed an SNN simulator implementing them.
As a result of performing training and testing while maintaining the same accuracy of the
existing SNN architecture on the simulator, we can confirm that the SNN with the proposed
sensory adaptation generates a much smaller number of spikes in both the training and
testing phases. More precisely, the total number of spikes is reduced by about 36.66% and
45.63%, respectively, compared to the existing method in the training and testing phases.
Accordingly, we can identify the less power consumption if SNN secures more biological
meaning through the sensory adaptation.

Finally, the contributions of this paper can be summarized as follows:

• We propose the sensory adaptation, which is closer to a biological mechanism than
the existing frequency adaptation methods, and apply it to SNNs to develop SNNs
with more biological meaningfulness.

• We show that improved SNNs have more biological meaningfulness and generate only
a smaller number of firing spikes while maintaining accuracy, thereby demonstrating
that the corresponding SNNs operate in lower power.

• We mathematically demonstrate the significance of the proposed method and develop
a dedicated SNN simulator that can verify its superiority.

This paper conveys the background knowledge related to this study through Section 2
and presents the proposed SNN with the sensory adaptation through Section 3 in detail.
Section 4 is dedicated to a description of the simulator development, while Section 5 is
in charge of detailed introduction and analysis of simulation results. Lastly, Section 6
concludes this paper.
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Figure 1. Unsupervised SNN: the input data gone into the network are processed by output neurons
and printed out through the synapses connected with the output neurons. The 10 labels in the input
data map each of the 10 neurons to a different number. When mapped, the output labels are random
rather than sequential in numerical order.

2. Spiking Neural Networks: A Preliminary
2.1. Unsupervised SNN

SNN can be divided into two types: supervised [17] and unsupervised [16,18] accord-
ing to the learning method. While the supervised SNN learns with a designated label on
each neuron, the unsupervised SNN, as shown in Figure 1, studies the input data by itself
without a selected tag on each neuron. The unsupervised SNNs are receiving great attention
from both academia and industry due to the characteristic of their learning mechanism
being closer to synaptic learning in our brains [19–21]. Therefore, this paper also focuses on
research on the unsupervised SNN.

Then, recent research on unsupervised SNN can be largely divided into two direc-
tions: accuracy improvement and biological model development. Regarding the accuracy
improvement study, the training result of the network with two layers using rate coding
has shown about 82.9% and 95.0% on average based on 100 and 1600 neurons, respectively,
and with subset data using temporal coding have been reported 81.9% cite [18]. Recently,
as a learning result by exploiting SVM (Support Vector Machine) and STDP (spike tim-
ing dependent plasticity), the accuracy has achieved 98.4% in the network with multiple
convolution layers, pooling layer [22].

Many studies have been conducted on the development of neuron models themselves
to enhance the the biological meaningfulness of SNN, such as Izhikevich [11], Hodgkin–
Huxley [12] and Morris–Lecar [13] models. While the Izhikevich model is made by math-
ematical analysis of the variation between Na+ (sodium) channel and K+ (potassium)
channel, the Hodgkin–Huxley model and Morris–Lecar model is respectively created by
modeling the direct variation between Na+ channel and K+ channel and between Ca2+

(calcium) channel and K+ channel, both of which are similar to organisms’ adaptation.
These three models altogether include the method modulating the frequency of neurons’
reaction, called spike-frequency adaptation, to be evenly fired for stimuli from outside, so
the neuron’s activating mechanism is alike modeled on natural organisms’ mechanisms.

Depending on the spike-frequency adaptation method, the Izhikevich, Hodgkin–
Huxley, and Morris–Lecar models can be distinguished whether they have biological
meaning or just plausibility. First, the Morris–Lecar and Hodgkin–Huxley models create the
spike-frequency adaptation by changing the neuron’s potential inclination due to the change
of the value of each channel when transmitting data through each channel. It was found in
experiments using mice that this modeling is similar to the human neuron communication
method [23]. More in detail, the condition in [23] is that a thalamocortical neuron is injected
with a Ca2+ buffer solution, and the other neuron is without the buffer solution. Then, both
are stimulated by constant electrical intensity stimuli, and each neuron’s potential change
is measured to find out how to affect the Ca2+ channel organism’s adaptation. The result
showed that the neuron with the Ca2+ buffer solution has adaptation, but the other does
not. Plus, the adaptation has shown the inclination change, but not that of the threshold
voltage. Therefore, the adaptation is induced by changing the neuron’s potential inclination
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since the Morris–Lecar and Hodgkin–Huxley models that use the change of the neuron’s
potential inclination to implement the adaptation. In other words, since adaptation using
the change in potential inclination of the Hodgkin–Huxley, and Morris–Lecar models is the
same as that of real organisms, these models can be said to be biologically meaningful.

On the other hand, the Izhikevich model implements the spike-frequency adaptation
by changing the threshold voltage (Vth) of neurons or directly applying electrical current.
More specifically, the Izhikevich model adapts by applying different methods to two types
of neurons: excitatory and inhibitory cortical cells. In the excitatory cortical cells, regular
spiking that remains the neurons’ fire constantly through the inject dc-current, and in the
inhibitory cortical cells, using the adaptation, called low-threshold spiking, that increases
the parameter of the derived function of membrane recovery variable so that reducing Vth.
Thus, considering the real organism’s adaptation, the Izhikevich model can be regarded as
plausible, but not meaningful.

2.2. Neuron Model and Learning Method

Conduct based leaky-integrated and fire model is the most widely-used neuron model
equation in SNN [16], which expresses the potential V of neurons over time t by the
following formula using the parameters summarized in Table 1:

τ
dV
dt

= (Erest − V) + ge(Eexc − V) + gi(Einh − V), (1)

where τ is time constant of inherent neuron both excitatory and inhibitory; Erest, Eexc, and
Einh are potentials of resting membrane, excitatory postsynaptic, and inhibitory postsynap-
tic, respectively. In this equation, the spike from outside affects the neuron’s conductance
ge, resulting in the neuron’s potential change. After accumulating potential, if the potential
is more than Vth, the neuron fires and creates a spike. In the output neuron, the inference of
input data is produced through the created spikes.

Table 1. Parameter descriptions in the neuron model.

Parameter Description

Erest resting membrane potential

Eexc excitatory postsynaptic potential

Einh inhibitory postsynaptic potential

τge excitatory conductance time constant

τgi inhibitory conductance time constant

ge
the conductance associated with the
excitatory neuron

gi
the conductance associated with the
inhibitory neuron

The expression of synapse changed by the spike is as follows:

τge

dge

dt
= −ge, (2)

τgi

dgi
dt

= −gi, (3)

where, τge , τgi , ge, and gi are described in Table 1. More precisely, (2), (3) are the equations of
the excitatory synapse and inhibitory synapse, respectively, and the spikes in the neurons
through both synapses change each conductance. As a result, the value of ge and gi of (1) is
changed, so the potential of the neuron is altered.
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For learning for SNN, STDP is the most broadly used method [24–28]. In STDP,
W(t) is the value of intensifying or abating synapse weight, which can be formulated
as follows [27,28]:

W(t) =

{
A+(e

− t
τ+ ) : if t ≥ 0

−A−(e
t

τ− ) : otherwise, (4)

where A is a parameter connecting intensity between pre-neuron and post-neuron, and
τ is the time difference between pre-spike and post-spike. In this equation, the sign of τ
is determined by the sequence of pre-spike and post-spike, and if the sign is minus as
post-spike arrives before pre-spike, there is no correlation of firing spike in the relationship.
Hence, the intensity of the connection of each neuron is undermined. Conversely, if the
sign is plus, there is a correlation, so the intensity of each neuron’s connection becomes
stronger. This is because pre-spike is fired after arriving pre-spike. In addition, if the firing
time between pre-spike and post-spike is the same, the weight keeps the value because
there is no correlation and the priority of the times is challenging to observe. Finally, there
may be a case where only the post-spike is observed and the pre-spike is not observed. In
this case, the spike has to be never spiked in any case and non-correlation, so the original
weight value is updated by subtracting the designated value.

Next, when defining ∆w as the weight variation between ith pre-neurons connected
to the jth post-neuron, we can express ∆w as follows:

∆w = W(tj − ti). (5)

The sign of ∆w is determined by (5), and the outcome affects learning w, which is the
value that limits the weight values from 0 to 1. More precisely, learning w is described by :

learning w =

{
wmax − wt−1 if ∆w ≥ 0
wt−1 − wmin otherwise,

(6)

where wmax and wmin are the maximum and minimum weight, respectively.
Consequently, according to the above formula, the weight value indicating the strength

of the connectivity between jth post-neuron and ith pre-neuron, wj,i
t , is updated with the

following equation:

wj,i
t = wj,i

t−1 + η∆w(learning w)µ, (7)

where η is the learning rate, and µ is the value that represents the dependent value of
the previous weight. When the resulting wj,i

t is positive, the higher the previous value is,
the lower the weight increases; on the other hand, the lower the previous value is, the
higher the weight increases. Conversely, when the resulting wj,i

t is negative, the lower
the previous value is, the higher the weight increases; on the other hand, the higher the
previous value is, the lower the weight increases. In other words, this characteristic plays a
role as if any input data map the neuron, the connection of the synapses connected with
such a neuron can rapidly increase; on the other hand, non-mapped that of other synapses
can be fast reduced.

This STDP method effectively demonstrates the display of the intensity of connections
between neurons by having the strength of connections, making it the most useful method
for learning SNN. However, the STDP method still has its drawbacks in that, as the weight
value increases and approaches 1, the increasing size of the weight value decreases, and on
the contrary, as the weight approaches 0, the decreasing size of the weight value decreases
and does not approach 0. As a result, when the connection strength needs to be increased,
the connection strength may not be increased quickly, or when the connection strength
needs to be decreased, the connection strength may not be significantly increased at a
certain point. That is, the weight, which is a value of the connection strength, may be weak
0 or 1, respectively.
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2.3. Spike Frequency Adaptation

Unlike supervised SNN, unsupervised SNN randomly selects neurons that will learn
input data, and the weights of the selected neurons are updated according to the STDP rule.
Of course, the updated weight is larger than the unupdated weights, so only the updated
neurons react to the numerous input data that will follow, resulting in only these neurons
being learned. Thus, the learned neurons may be malfunctioning, and the unupdated
neurons remain in their initial state.

The spike frequency adaptation is a solution to tackle the aforementioned problem.
The existing SNN have the spike-frequency adaptation by adjusting Vth depending on the
spikes fired by output neurons [16,18,29]. For example, in the representative frequency
adaption method [16], when an input spike ignites an excitatory neuron in the network,
the fired neuron increases Vth by θ, which is 0.05 mV. At the same time, other neurons that
do not fire exponentially reduce Vth. Accordingly, since Vth increases, the fired neurons
become less likely to fire. In contrast, unfired neurons have a lower Vth, making them more
likely to be fired by input data than before. As such, the frequency adaptation plays a role
in inducing all neurons to learn evenly.

Although the frequency adaptation of this Vth variation-based method works func-
tionally well in SNN, this method is different from the biological adaptation mechanism. In
fact, the biological adaptation has the characteristic that the sense of stimulation gradually
becomes dull (e.g., if the same pressure is continuously applied to a specific area of the skin,
the degree of pain gradually decreases), which cannot be reflected at all in the Vth variation-
based method. In this respect, the existing method clearly lacks biological meaning.

3. SNN with Sensory Adaptation: The Proposed Method

SNN is inherently advantageous to low power consumption rather than deep neu-
ral network through event-driven computation [30,31]. By developing direct biological
meaningfulness in low power, the SNN leads neuromorphic computing to process, adapt,
behave, and learn new information in real-time biologically [6]. Considering that the close
relationship between biological meaningfulness and low-power operation is the poten-
tial that SNNs ultimately have, we pay attention to refining the existing spike-frequency
adaptation that shows high feasibility and accuracy but is far deviant from biological
meaningfulness [18,32]. More precisely, biological adaptation has the characteristic of
gradually responding to stimuli, but existing methods do not reflect this. Therefore, we aim
to develop a more biologically meaningful spike frequency adaptation, thereby ultimately
realizing low-power SNNs.

We first note the sensory adaptation that occurs in the human nervous system. Sen-
sory adaptation reduces the sensitivity of the neuron’s receptor to the stimulus itself. For
example, if we suddenly enter a bright place after being in the dark, we will soon adjust to
the brightness, or when we enter the bathroom, we will frown at the bad smell, but soon be-
come insensitive. Focusing on the human sensory adaptation mechanism, we define a new
variable called neuron sensitivity in the neuron model and develop a new spike-frequency
adaptation method, the sensory adaptation, in a way that regulates the change in slope
of the neuron’s potential when stimulated by this numerical change. To provide a clearer
explanation, the features of the proposed sensory adaptation are as follows:

• Sensitivity in the sensory adaptation is a completely different concept from Vth dis-
cussed in Section 2, where Vth represents the potential threshold of the neuron, and the
sensitivity refers to the sensitivity of the receptor that the neuron receives the stimulus.

• Vth in the proposed SNN with sensory adaptation does not change in any case.

We will then continue to provide a detailed description of the network architecture,
neuron model, and methodology that we propose and develop for sensory adaptation
through subsections.
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Figure 2. The SNN architecture of this paper consists of an input layer, an excitatory layer, and an
inhibitory layer, and contains 784, 100, and 100 neurons, respectively.

3.1. Neuron Model and Network Architecture

In order to develop and validate the sensory adaptation, the neuron model and net-
work architecture of the SNN must be firmly defined. To do that, we have first developed
an SNN architecture to be compact and highly efficient. As described in Figure 2, we have
adopted a representative SNN architecture in [16] for our baseline architecture. This architec-
ture consists of the input layer and output layer: the input layer comprises 28 × 28 neurons,
which is the MNIST pixel size, and the output layer is made up of the excitatory layer and
inhibitory layer. In this network architecture, the excitatory and inhibitory layers have the
same number of neurons, excitatory and inhibitory neurons, respectively. The connection
from the excitatory layer to the inhibitory layer is one-to-one, so individual neurons are
connected to each neuron in the same location, such as the connection of the first excitatory
neuron and first inhibitory neuron, and the second excitatory neuron and second inhibitory
neuron in order. However, the connection from the inhibitory layer to the excitatory layer
is all-to-all except for the neuron in the same location, like the first excitatory neuron makes
a connection from the 2nd to 99th inhibitory if the total neurons are 100 in each layer.

In the connection from the excitatory layer to the inhibitory layer, the spike of the
excitatory neuron stimulates the inhibitory neuron to impede other excitatory neurons’
firing in the excitatory layer. The incited inhibitory neuron stimulates excitatory neurons
except for the neuron giving the spike, which causes other excitatory neurons’ inhibitory
synapse to hamper their firing, which is called lateral inhibition.

The membrane potential of each excitatory and inhibitory neuron can be expressed in
order by the following expressions:

τe
dV
dt

= (−(V − Vrest
E )− ge

gl
(V − VE)−

gi
gl
(V − VI)), (8)

τi
dV
dt

= (−(V − Vrest
I )− ge

gl
(V − VE)), (9)

where, (8) is for the excitatory neuron, and (9) is for the inhibitory neuron equation; Vrest
E and

Vrest
I are the resting membrane potential of the excitatory neuron and inhibitory neuron,

respectively; VE and VI are the membrane potential of the individually excitatory and
inhibitory synapses, respectively; and gl is the own conductance of the neuron.

In addition, τe and τi in (8) and (9) are the time constant of the excitatory neuron and
inhibitory neuron, respectively, whereby the inhibitory neuron biologically has a more
extended time constant than the excitatory neuron, so τe < τi. However, both types of
neurons have the same value of Vth and have the same properties: fire if the membrane
potential is greater than Vth. After firing, they have a different membrane potential Vreset

E and
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Vreset
I , respectively. Then, if they have reset membrane potential, they cannot change their

potential in the period because they cannot accept any spike from outside, which is called
re f ractory period. After this period, their potential returns to Vrest

E and Vrest
I , respectively.

Finally, detailed values of each parameter we set in the SNN are provided in Table 2.

Table 2. Parameters in the proposed methodology.

Param. Value Param. Value

Vrest
E 0.065V VI 0.25 V

Vrest
I 0.06 V τe 100 ms

Vreset
E 0.08 V τi 10 ms

Vreset
I 0.075 V τge 1 ms

Vth 0.055V τgi 2 ms

VE 0V gl 1 nS

VI suppresses the fire of neurons with relatively low reactivity to input data, allowing
only those with relatively high reactivity to that data to fire. In other words, VI is the
parameter that has the greatest influence on the number of neurons learning input data,
and by adjusting it, we can reduce unnecessary power consumption by reducing the total
number of spikes from the network during test or training. Therefore, we have conducted
an experiment to find the optimal VI , which can minimize the number of neurons learning
that data when one data is entered in the target network.

To this end, we first fixed at VI = 0.1 V, such as previous work [16], and then conducted
an experiment, observing that the learning of the winner-take-all (WTA) rule was applied to
more than two number of neurons, i.e., input data of the same shape is learned by multiple
neurons. To increase training efficiency and reduce power consumption, we then increased
VI to 0.2 V and 0.25 V, which shows that in 0.2 V, the most firing neurons are still more
than two, but in 0.25 V, the number is one. In other words, in 0.25 V, only one neuron can
fire, so the number of spikes is reduced, and each neuron can have its own data. Therefore,
neurons can react more effectively, as they respond to matched data with neuron’s own
data if they are stimulated by input spikes. As a consequence, we have set VI to 0.25 V, as
reported in Table 2.

In addition, the membrane potential of the excitatory synapses, biologically, should
be set so as not to suppress neuronal excitability. Therefore, we have set the value of VE to
0 V. In this way, it is prevented from suppressing the neuron’s excitation and from firing
excitedly even in the absence of a spike that stimulates the neuron. Meanwhile, we propose
a design by removing the inhibitory synapse from inhibitory neurons, unlike excitatory
neurons. This is because an additional inhibitory layer is not required to suppress the
inhibitory neurons in the network architecture. As a result of removing the computational
part of the inhibitory potential of the inhibitory neuron (cf. no VI term in (9)) and performing
the simulation, we have confirmed that the computational speed of SNN becomes faster
while the accuracy remains unchanged compared to the previous work in [16].

3.2. Sensory Adaptation

To begin with, based on (2), the behavioral models of the excitatory and inhibitory
synapses can be expressed as follows in order, respectively:

τge

dgt
e

dt
= −gt−1

e , (10)

τgi

dgt
i

dt
= −gt−1

i , (11)

where, gt
e and gt

i are the values of ge and gi according to time step.
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Next, we have made (10) and (11) into a combined form through Euler’s method, and
then added a sensitivity variable for excitatory synapse gt

Sens. On the other hand, such a
sensitivity variable has not been added to inhibitory synapse, because the inhibitory layer
on the network architecture has a structure that fires a value according to the spike output
from the excitatory layer connected 1:1, and the inhibitory synapse has the characteristic
that it must depend on the excitatory neuron. Finally, the derived models of the excitatory
and inhibitory synapses are expressed as follows:

gt
e = gt−1

e (1 − ∆t
τge

) + ∑ st
l wl gt

Sens, (12)

gt
i = gt−1

i (1 − ∆t
τgi

) + ∑ st
kwk, (13)

where st
l and st

k are the spikes from each ith and kth synapses, and ∆t is the unit time from
which spikes come. We have set ∆t to 1 ms in the simulation.

As the adaptation occurs in the fired neurons, our neural network detects the spikes
from the neurons for every ∆t and generates the adaptation to the fired neurons. gt

Sens of
the fired neurons is modulated by the following equation:

gt
Sens = gt−1

Sens × xadaptation, (14)

where xadaptation is a variable that adjusts gt
Sens. Meanwhile, gt

Sens of the neurons except for
the fired neurons is recovered through the following equation:

τgSens

dgt
Sens

dt
= gt−1

Sens, (15)

where τgSens is a time constant of gt
Sens.

Intensive simulations were performed to analyze the effect of the values of xadaptation
and τgSens on the results. First, if τgSens becomes too large relative to the xadaptation value, the
sensitivity of the neuron recovered by τgSens becomes smaller than the sensitivity of the
neuron reduced by the xadaptation value. Therefore, in this case, the sensitivity of neurons
responding to input data is too low, so training and testing take too long, and in serious
cases, the sensitivity of neurons converges to zero and causes errors. Next, in the opposite
case when τgSens becomes too small relative to the xadaptation value, the sensitivity of the
neuron recovered by τgSens becomes greater than the sensitivity of the neuron reduced
by the xadaptation. In this case, training itself proceeds properly without errors, but the
sensitivity of the neurons is too great to learn the details of data properly, resulting in low
accuracy. In the worst case, neurons that cannot fire at all among the neurons in the neural
network may result in data and the corresponding label not being mapped to the weight of
the neuron. Through these experiments and analyses, we have been able to establish the
most appropriate xadaptation and τgSens values that harmonized the reduction recovery of
sensitivity, resulting in the average of gt

Sens values held by all neurons in the neural network
converging to constant numbers during training.

In the end, to verify the effectiveness of the proposed sensory adaptation, we have,
respectively, applied the proposed sensory adaptation and the conventional spike-frequency
adaptation based on the existing Vth variation into the SNN architecture introduced in
Section 3.1. As a result, we have confirmed that the accuracy of the simulation to which
sensory adaptation is applied is almost the same as that of the simulation to which the
conventional method is applied (even the former is slightly higher than the latter), and the
total number of spikes fired in the neural network is reduced by about 45% compared to the
conventional one. From these results, we have been able to prove that the proposed neuron
with sensory adaptation contributes to significantly improving the energy efficiency of SNN
by having more biological meaningfulness. Detailed reports and analysis of experimental
results are provided in Section 5.
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4. Development of the SNN Simulator

To validate the functionality and evaluate the effectiveness of the proposed SNN
with the sensor adaptation, we have developed a dedicated SNN simulator using MNIST.
The input data of the simulator consists of 60,000 training data and 10,000 test data, both
of which are numbers of 0∼9 consisting of 28 × 28 pixels. The input or output data are
transformed into a Poisson spike-train through the Poisson process if the network begins to
be stimulated, and then transformed spikes stimulate the neurons in the excitatory layer for
350 ms to induce firing. For the transformation, we have divided the input data into eight
and change the outcome into the rate by multiplying interval, which shows how much to
be sensitive about the input spikes. The initial intervalvalue is 2. Then, to transform the
value into spikes, if the rate is lower than the uniform random function value, the rate
cannot be transformed into a spike, but if not, it can. As in the conventional method [16], if
all neurons in the excitatory layer cannot make five spikes for 350 ms, we have designed
the simulator to increase the interval one and then repeat the entire process.

The neuron model has been implemented in the form of (8) and (9) by linearizing
through Euler’s method, and the synaptic model has also been implemented in the form
of (11). Each layer consists of 100 excitatory and inhibitory neurons, respectively. Meanwhile,
we have developed a simulator to selectively operate the conventional or our proposed
spike-frequency adaptation method. For the existing method, we have developed Vth
variation-based adaptation in the same way as [16] by increasing Vth to a constant number
and decreasing exponentially. For the sensory adaptation, linearization of (12) and (13),
and (15) for recovery has been implemented. In addition, the refractory periods of excitatory
neurons and inhibitory neurons were set to 5 ms and 2 ms, respectively, identical to [16].

The overall progress of the network on the simulator is as follows. First, when a specific
excitatory neuron is fired by input data and learned, the weight of the neuron increases
the correlation between the number to be learned and specific data of the same number
according to the STDP learning rule, and between neurons that output similar data to the
corresponding data. Conversely, if the causal relationship between pre-spike and post-spike
is unclear in the excitatory neuron (e.g., after a post-spike comes out, a pre-spike comes out,
or a post-spike comes out even though there is no pre-spike), the corresponding weight
value gradually decreases, weakening the correlation. Weights updated through STDP are
subjected to weight normalization, and parts observed with too few neuron connections
in the weight (including unobserved parts) are weakened through weight normalization.
Afterwards, the learned neurons in the excitatory layer have the learned number mapped
to their label. In more detail, we cut the total training data by 10,000 each and after learning,
the most learned label was designated as the label of the corresponding neuron. Learning
is performed through a total of 180,000 iterations, and when learning is completed, the
completed label is designated as the final label of the neurons.

Finally, Figure 3 shows an example of the training result of the simulator. Specifically,
Figure 3a,b are the results of 180,000 number of iterations (NOI) applying the Vth variation-
based adaptation and the sensory adaptation, respectively. As seen in the figures, all the
neurons successfully have their own label and data after the training.

We have uploaded the developed simulator online, which is available on https://
github.com/ignim/SNN_Sensory (accessed on 1 November 2022).

https://github.com/ignim/SNN_Sensory
https://github.com/ignim/SNN_Sensory
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(a) (b)

Figure 3. Weight results of neurons according to 180,000 number of iterations (NOI) when (a) the
conventional Vth variation-based adaptation and (b) the sensory adaptation is applied.

5. Results
5.1. Experimental Works

We have performed SNN simulations applying the spike-frequency adaptation based
on the Vth variation and the proposed sensory adaptation using the developed simulator.
What we have focused on in the experiment was to figure out how many spikes are
generated when sensory adaptation is adopted while showing a similar level of accuracy
to the conventional method. For this, we have performed training and testing phases of
180,000 and 10,000 iterations based on [16], respectively.

Figure 4 shows the training results. Figure 4a,b, which are the results of applying
the conventional Vth variation-based adaptation, describe the changes in Vth and the num-
ber of spikes caused by the change in Vth of neurons according to the NOI, respectively.
Figure 4c,d, which are the results from the sensory adaptation, show the change of the num-
ber of spikes due to the change of gt

Sens and the change of gt
Sens of the synapse according to

the NOI, respectively.
More specifically, in Figure 4a, Vth continues to increase until 60,000th iterations

before learning all training data, and then Vth increases/decreases to similar numbers from
70,000th after learning all training data. This is because the Vth variation-based adaptation
adds a user-set threshold potential to Vth of neurons selected for adaptation for an increase
in Vth and reduces Vth of the remaining unselected neurons exponentially. That is, due to
the continuous addition of the user-set value to Vth of neurons, learning does not proceed
properly from the 70,000th, which requires fine tuning, so that the increase and decrease
are repeated as shown in the figure. The aftermath of this appears as a result of the total
number of spikes fired fluctuating from the 70,000th as shown in Figure 4b.

On the other hand, in the case of sensory adaptation, the sensitivity (gt
Sens) of the

neurons selected for the sensory adaptation is multiplied by a certain number to decrease,
and that of the remaining unselected neurons increases exponentially. Therefore, both the
degree of decrease and increase in sensitivity show a tendency to decrease as learning
progresses, and eventually, the sensitivity value converges to a certain value. Figure 4c
clearly shows this tendency, after 60,000 iterations, the decreasing inclination of gt

Sens is
reduced following the iterations, and finally, the inclination is converged to zero. The
aftermath of this phenomenon is also reflected in the change in the total number of spikes
of the neural network shown in Figure 4d. As the sensitivity value converges to a certain
value, it can be seen from the figure that the total number of spikes fired is also converging
to a certain value.
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(a)

*	Results	from	the	conventional	adaptation.	

(b)

(c)

*	Results	from	the	proposed	adaptation.	

(d)

Figure 4. Trainingsimulation results: When using the Vth variation-based adaptation, (a) the change
in Vth and (b) total number of spikes fired according to NOI changes, and when using the pro-
posed sensory adaptation, (c) the change in gt

Sens and (d) total number of spikes fired according to
NOI changes.

Next, we analyzed the number of spikes fired according to the iteration change. First,
through Figure 4b, we can see that the number of spikes fired increases dramatically from
the 10,000th iteration. This is because the decrease in the number of firing spikes in the
neural network, which can be expected through an increase in Vth, becomes slower as the
adaptation is almost completed at around the 10,000th iteration, whereas, since the training
of the neural network has not yet been completed, the weights grow in value through
learning until the 60,000th iteration required to learn all the training data afterwards, which
can be interpreted as affecting the increase in the number of spikes fired. On the other hand,
looking at Figure 4d), we can observe that the number of the firing spikes in the neural
network steadily increase until about the 50,000th iteration for the sensory adaptation, and
then decrease from about the 60,000th iteration. From this, we can estimate that by the
60,000th iteration, growing weights through learning has a decisive effect on the number of
spikes fired change, and then the number of spikes decreases by replacing the role.

Analyzing the number of spikes according to the NOI, we faced the question of
whether the point at which the learning of the sensory adaptation is completed was slower
than the conventional Vth variation-based adaptation. To answer this question, we first
look at Figure 5a,c, which show the 10,000th learning result to which the conventional and
proposed adaptations are applied, respectively. It can be confirmed that there are neurons
that have not yet been trained, and it can be seen that there are more untrained neurons in
the result of the proposed method. This might make us doubt that the question was true,
but fortunately, if taking a look at the results when all the training data have been trained
(at 60,000th) shown in Figure 5b,d, we can confirm that it is not. That is, as can be seen from
Figure 5d, in the simulation to which the proposed adaptation is applied, when learning is
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completed, all neurons are correctly mapped as shown in Figure 5b. In other words, we
confirm that the sensory adaptation also shows the same result as the learning rate of the
conventional adaptation. In addition, comparing Figure 3a vs. Figure 5b, and Figure 3b vs.
Figure 5d, respectively, shows that the numbers in the results at the 180,000th iteration have
a darker color overall compared to the corresponding numbers in the results at the 60,000th
iteration. This may be because, in the learning after 60,000th, weight tuning is performed for
detailed responses of neurons to input data rather than learning for data/label mapping.

(a) (b)

(c) (d)

Figure 5. Weight results of neurons according to (a) 10,000 NOI and (b) 180,000 NOI when the
conventional Vth variation-based adaptation is applied, and (c) 10,000 NOI and (d) 180,000 NOI when
the sensory adaptation is applied.

Finally, when measuring the number of spikes fired that occurred during a total of
180,000 iterations in the case of the conventional adaptation and sensory adaptation, it can
be confirmed that in the former case, an average of 437,447 spikes occurred, whereas in the
latter case, an average of 294,584 spikes occurred. That is, by applying the sensory adapta-
tion, the number of spikes in the SNN is reduced to 32.66% compared to the conventional
one. Moreover, when the learning is longer than 180,000 iterations, the degree of reduction
becomes larger, which means that the low-power superiority of the proposed method can
be further increased.

In addition, as reported in Table 3, when testing is performed using the training results,
the accuracy of the SNN with the conventional adaptive method is 80.52%, and the total
number of spikes fired under conditions with an average interval of 2.008 is 446,722. In
comparison, the average accuracy of SNN using the sensory adaptation was 83.56%, the
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average interval was 2.0088, and the total number of spikes was 242,904. In other words,
the proposed method proves to have low power excellence also in testing, in that the
number of spikes fired becomes reduced to 45.63% compared to the previous one while
maintaining performance.

5.2. Analysis

We have conducted an analysis to find out more about how the change in frequency
adaptation affects the decrease in number of spikes. To this end, Vth and gt

Sens of the network
have been experimented with changing in the test environment, while all the remaining
control variables, such as weights and neural labels, have been set to fixed values. Vth and
gt

Sens were changed by 0.001 V and 0.05, respectively, which reduces the number of spikes
to the same level in SNN using conventional or sensory adaptations.

The results of the Vth change in Figure 6a show that the decreasing slope of the
number of spikes from −0.055 V to −0.054 V (cf. the gray line in the figure) is steeper than
that caused by other changes, and the rate of variation tends to decrease as Vth increases.
Contrary to this, in the case of the sensory adaptation shown in Figure 6b, it can be seen
that if gt

Sens is reduced, the inclination of the decline of the number of spikes increases.
To analyze the results of this experiment, we have created a simple network of one input
neuron and one excitation neuron. This network does not have inhibitory neurons because
it is intended only to observe the movement of the potential of neuron.

(a) (b)

Figure 6. Graph showing the change in the total number of fired neurons according to the change of
(a) Vth and (b) gt

Sens.

Table 3. Simulation results of the accuracy and number of fired spikes for the conventional and
proposed methods.

Accuracy Number of Fired Spikes

Conventional method 80.52% 446,722

Proposed method 83.56% 242,904

The voltage charging model of the RC circuit allows us to simulate the potential
movement of neurons, so the resulting changes in the potential of neurons due to stimuli
outside the network can be shown in Figure 7. The potential change over time can be
expressed as follows:

V = V0

(
1 − e−

t
τ

)
+ Vo f f set, (16)
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where τ, V0, and Vo f f set are the time constant of the neuron, the voltage made by input
spikes, and the voltage offsetting the potential of the neuron, respectively. Then, (16) is
converted to the following expression to calculate the time it takes V to reach Vth from
Vrest

E . For reference, V is expressed as Vdynm
th to emphasize that it is a dynamically changing

variable.

t = −τ ln

1 −
Vdynm

th − Vo f f set

V0

. (17)

If the potential of a neuron is greater than or equal to Vdynam
th , the potential drops to

Vrest
E and then follows (16). That is, if a constant intensity spike stimulates the neuron, the

neuron will be fired at regular intervals. Therefore, it is possible to infer how many spikes
are generated in the network, and the total number is described as follows.

Sprod = − Stotal

τ ln
(

1 − Vdynm
th −Vo f f set

V0

) , (18)

where Sprod and Stotal are the number of fired spikes and input spikes, respectively. More-
over, in a spike train in which spikes are injected per unit time, Stotal can be regarded as
simulation time. Therefore, we can derive (17) from (18), and based on this expression, we
can proceed with an analysis of why power reduction occurs when Vth or gt

Sens changes.

Figure 7. The potential graph of the neuron when the neuron with input and output is stimulated for
350 ms.

We differentiate (18) to find out the variation of Sprod per Vdynam
th , which is a decrease

in the slope of the number of the fired spikes, to find out why increasing Vth reduces the
total firing spikes. The derived expression is as follows:

dSprod

dVdynm
th

=

Stotal/ ln2
(

1 − Vdynm
th −Voffset

V0

)
τ ·
(

Vdynm
th − Voffset − V0

) (19)

Vdynm
th ranges from Vrest

E to steady state voltage, and the inclination is always minus in

this range. In addition, in this range, if Vdynm
th increases, the inclination is increased, which

means that the absolute value of the inclination becomes reduced. Hence, as the decline of
the inclination of total firing spikes equals the absolute value, the total firing spikes in the
SNN with Vth variation-based adaptation must be consistently decreased if Vth is increased.
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Meanwhile, in Figure 6a, it can be observed that the total number of fired spikes
remains from about 171,000 to 189,000 at the moment of reaching a certain level of Vth. This
is due to an increase in the interval of the neural network. In other words, as Vth increases,
the total spike decreases and the number of spikes is smaller than the minimum spike for
inference, so the neural network proceeds with the inference by increasing the interval. This
soon leads to a decrease in the number of total fired spikes. Therefore, the number of output
spikes fired according to the change of the interval becomes a steady-state fluctuation.

Next, in the case of the proposed sensory adaptation, as shown in Figure 6b, the
decrease in the number of spikes generated by the neural network increases as gt

Sens is
decreased. To analyze this, we can express (16) as follows.

V = αV0

(
1 − e−

t
βτ

)
+ Vo f f set, (20)

where α and β are values dependent on gt
Sens and are proportional to gt

Sens. In the RC circuit
model, the change in gt

Sens affects the spike supplied to the neuron and the conductance of
the neuron, which affects V0 and τ in (16), so we introduce α and β. We then express the
time required for neurons to reach Vth from Vrest

E to Vth in order to determine the reason
for the increasing size of the number of spikes created by neural networks with sensory
adaptation:

t = −βτ ln
(

1 −
Vth − Vo f f set

αV0

)
. (21)

Similar to the one that induced (18), we can derive Sprod from (21) and it is described
as follows:

Sprod = − Stotal

βτ ln
(

1 − Vdynm
th −Vo f f set

αV0

) . (22)

In this equation, α and β are proportional to the change in gt
Sens, so we replace them

with l · gt
Sens and k · gt

Sens, respectively. Subsequently, the result of obtaining the slope of
Sprod is as follows:

dSprod

dVdynm
th

=
Stotal

kτ ln
(

1 − Vth−Voffset
V0lgt

Sens

)
g2t

Sens

+

(Vth − Voffset)Stotal

V0klτ ln2
(

1 − Vth−Voffset
V0lgt

Sens

)(
1 − Vth−Voffset

V0lgt
Sens

)
g3t

Sens

(23)

In this equation,
dSprod

dVdynm
th

can have a positive value when the neuron’s steady state

voltage is higher than Vth, so
dSprod

dVdynm
th

is declined when gt
Sens increases. From this, we are

able to infer that when gt
Sens decreases,

dSprod

dVdynm
th

increases, so the inclination value of the total

spikes also increases, as shown in Figure 6b. In other words, according to gt
Sens goes from 1

to 0, the inclination value increases, as described with the blue line in Figure 6b, which is
steeper than the gray line that shows the inclination when gt

Sens is changed from 1 to 0.95.
Therefore, the number of spikes fired is reduced depending on the decline of gt

Sens.
In addition, we can identify this phenomenon in the change of the neuron’s steady

state voltage due to gt
Sens change. In Figure 8, the neuron’s steady state voltage is more

changed depending on the decline of gt
Sens, similar to the blue line in Figure 6b. Since the

steady state voltage depends on V0 change, the inclination of the change of the steady state
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voltage affects τ in (20), which is the inclination. Therefore, the steady state voltage can
also explain why the total spikes reduction happens.

Figure 8. The change in steady-state voltage with the change in gt
Sens. The gray line indicates that

gt
Sens represents the slope from 1 to 0.95.

Finally, in Figure 6b, the SNN with Sensory Adaptation generates the terminal total
spikes from about 100,000 to 120,000, where gt

Sens is lower than 0.2. This phenomenon hap-
pens because of the same reason for Vth variation. We can find out that Sensory Adaptation
is more significant to reduce power consumption compared with two total spikes made by
Sensory Adaptation and Vth variation. Therefore, we can also re-identify the cause of the
increase in the reduction in the amount of fired spikes, which was derived with (21)–(23)
via Figure 8.

6. Discussion

We propose the sensory adaptation that is closer to the biological adaptation mech-
anism and develop a more biologically meaningful SNN that applies it. We develop a
software simulator to verify the effectiveness of the corresponding SNN, which proves that
the developed SNN can maintain the same accuracy while generating fewer firing spikes.
This means that when SNN is implemented as a semiconductor chip, the chip operates with
low power. More specifically, in a chip operating at a nominal voltage, the dynamic power
is the dominant of the total power consumption [33–35]. In an SNN chip, the dynamic
power is directly proportional to the number of fired spikes. Therefore, as the number of
fired spikes decreases, the SNN chip operates with less power consumption.

However, this paper does not place the scope on implementing the developed SNN
in hardware. Therefore, we do not consider the design and implementation overhead that
results when the proposed technique is implemented in real hardware. For future work, we
plan to design a SNN with proposed method as analog circuits and fabricate it into a chip,
and in this process, we will be able to achieve the development of optimization design
techniques and demonstrate the effectiveness of the proposed SNN with the silicon-proven
SNN chip.

7. Conclusions

Motivated by the expectation that there may be a strong relationship between SNN
biological significance and low-power driving, this paper aimed to focus on spike-frequency
adaptation, which deviates significantly from existing biological meaningfulness, and to
develop a new spike-frequency adaptation with more biological characteristics. To this end,
we proposed a sensory adaptation method focusing on the mechanism by which human
sensory organs reduce sensitivity to stimuli, and studied the network architecture and
neuron model to apply it. Subsequently, we developed a dedicated SNN simulator that can
selectively apply the existing Vth-based adaptation and the proposed sensory adaptation,
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and conducted functional verification and effectiveness evaluation of the proposed method
using this simulator. We intensively performed simulation, revealing that the proposed
more biologically meaningful adaptation can achieve similar performance as before, firing
only a significantly reduced number of spikes to 32.66% and 45.63% in training and testing,
respectively. From the viewpoint of implementing SNN as a semiconductor chip, based on
the fact that the largest power consumption of an SNN chip is determined by how many
spikes are fired, the results of the lower number of fired spikes in the developed SNN
confirms that the proposed method can achieve a low-power SNN chip. Furthermore, we
conducted an in-depth analysis of how this benefit is obtained, and ultimately contributed
to SNN research by providing an example and analysis results that incorporate biological
meanings into SNN and may be closely related to the low-power driving characteristics
of SNN.
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