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ABSTRACT
Tensor algebra operations such as contractions in computational chemistry consume a significant fraction of the computing time on large-
scale computing platforms. The widespread use of tensor contractions between large multi-dimensional tensors in describing electronic
structure theory has motivated the development of multiple tensor algebra frameworks targeting heterogeneous computing platforms. In this
paper, we present Tensor Algebra for Many-body Methods (TAMM), a framework for productive and performance-portable development of
scalable computational chemistry methods. TAMM decouples the specification of the computation from the execution of these operations on
available high-performance computing systems. With this design choice, the scientific application developers (domain scientists) can focus
on the algorithmic requirements using the tensor algebra interface provided by TAMM, whereas high-performance computing developers
can direct their attention to various optimizations on the underlying constructs, such as efficient data distribution, optimized scheduling
algorithms, and efficient use of intra-node resources (e.g., graphics processing units). The modular structure of TAMM allows it to support
different hardware architectures and incorporate new algorithmic advances. We describe the TAMM framework and our approach to the
sustainable development of scalable ground- and excited-state electronic structure methods. We present case studies highlighting the ease of
use, including the performance and productivity gains compared to other frameworks.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0142433

I. INTRODUCTION

Enabling highly-scalable computational environments that
abstract and automate the development of complex tensor algebra
operations is critical in order to advance computational chem-
istry toward more complex and accurate formulations capable of
taking advantage of emerging exascale computing architectures

and also serve as a foundation for a sustainable and portable
electronic structure software stack. In particular, tensor con-
tractions (TCs) are a universal language used in many areas
of quantum mechanics to encode equations describing collec-
tive phenomena in many-body quantum systems encountered
in quantum field theory, nuclear structure theory, material sci-
ences, and quantum chemistry. Typically, contractions between
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multi-dimensional tensors stem from the discretization procedures
used to represent the Schrödinger equation in a finite-dimensional
algebraic form. An important area where tensor contractions
play a crucial role is electronic structure theory, where tensors
describe basic interactions and parameters defining wave function
expansions.

One of the most critical applications of TCs is the coupled-
cluster (CC) formalism.1–8 In the CC theory, the form of the complex
TCs used to represent non-linear equations describing the corre-
lated behavior of electrons in molecular systems also reflects the
fundamental feature of the CC formalism referred to as the size-
extensivity or proper scaling of the energy with the number of
particles. For this reason, the CC formalism is one of the most
accurate computational models used these days in computational
chemistry.

The CC theory has assumed a central role in high-accuracy
computational chemistry and still attracts much attention in theo-
retical developments and numerical implementations. In this effort,
high-performance computing (HPC) and the possibility of per-
forming TCs in parallel play an essential role in addressing steep
polynomial scaling as a function of system size and extending CC
formalism to realistic chemical problems described by thousands of
basis set functions. To understand the scale of the problem, canon-
ical CC formulations such as the ubiquitous CCSD(T) approach9

(CC with iterative single and double excitations with non-iterative
corrections due to triple excitations) involve contractions between
four-dimensional tensors where ranges of thousands of entries can
define each dimension. In order to alleviate efficient CC calculations
on parallel platforms, several specialized tensor libraries have been
developed over the last decade.

In the last few decades, significant effort has been expended
toward enabling CC simulations for very large chemical systems
to extend the applicability of the CC formalism further. In the
reduced-scaling formulations, commonly referred to as the local CC
methods,10–18 one takes advantage of the local character of corre-
lation effects to effectively reduce the number of parameters and
the overall cost of CC iterations, allowing for calculations of sys-
tems described by 10 000–40 000 basis set functions. This paper
discusses a new tensor library, Tensor Algebra for Many-body Meth-
ods (TAMMs), which provides a flexible environment for expressing
and implementing TCs for canonical and local CC approxima-
tions. The development of TAMM functionalities for the ground-
state formulations [canonical CCSD and CCSD(T) methods and
local CC formulations] is supported by the NWChemEx project,19

whereas excited-state formulations [CC Green’s function (CCGF),
Equation-of-Motion (EOM) CC, and time-dependent CC (TDCC)]
are supported by the SPEC project.20

As HPC systems continue to evolve to include different types
of accelerators, diverse memory hierarchy configurations, and vary-
ing intra- and inter-node topologies, there is a need to decouple
the development of electronic structure methods from their opti-
mizations for various platforms. TAMM enables the compact speci-
fication of various electronic structure methods that heavily rely on
tensor operations while allowing independent yet incremental devel-
opment of optimization strategies to map these methods to current
and emerging heterogeneous platforms.

The rest of the paper is organized as follows. Section II briefly
discusses other tensor algebra frameworks used for developing

computational chemistry applications. Section III describes the
details of our tensor algebra interface and the underlying con-
structs that are used to efficiently distribute tensor data and schedule
and execute tensor operations on modern HPC platforms. Later in
Sec. III C, we provide a feature comparison with other distributed
tensor algebra frameworks. Section IV showcases multiple CC meth-
ods implemented using TAMM and performance results obtained
using the OLCF Summit Supercomputer.21 Section V demonstrates
the performance of TAMM in comparison to other distributed
tensor algebra frameworks.

II. REVIEW OF EXISTING INFRASTRUCTURE
Tensor-based scientific applications have been widely used

in different domains, from scientific simulation to more recent
machine learning (ML)-based scientific applications. Over the years,
program synthesis and code generation have become the go-to solu-
tions for such applications. The Tensor Contraction Engine (TCE),22

which is used in the NWChem computational chemistry software
package,23 has been one such successful solution for automati-
cally generating parallel code for various molecular orbital (MO)
basis CC methods in Fortran 77. In later work, the TCE project24

added support for optimizations on tensor expression factorization,
optimized code generation for various hardware, and space-time
trade-offs in order to improve and also implement more complex
CC methods.

In a separate effort, the FLAME project25 provided formal
description support for describing linear algebra operations over
matrices with support for the optimized implementation of these
kernels for distributed memory systems. Later, various studies over-
optimizing tensor algebra26–28 have been proposed using the FLAME
framework.

The Cyclops Tensor Framework (CTF)29 was developed,
aiming for a more efficient kernel implementation for tensor
operations using concurrency. The framework focused on reduc-
ing the required communication in parallel executions of CC-
based methods by using a dense triangular tensor representation.
Solomonik and Hoefler extended CTF for general sparse computa-
tions.30 Manzer et al. demonstrated the benefits of exploiting block
sparsity in electronic structure calculations.31 Neither approach
includes notational support for the general block-structured nature
of the sparsity that naturally occurs in electronic structure
methods.

Epifanovsky et al.32 developed an object-oriented C++ library
called libtensor for efficient execution of post-Hartree–Fock elec-
tronic structure methods using a blocked representation of large-size
dense tensors. In later work,33 they optimized various operations
using efficient memory management techniques that are thread-
friendly and NUMA-aware. Unlike TAMM, libtensor does not offer
a distributed infrastructure for tensor algebra operations and is
restricted to shared memory systems.

Orca is a general quantum chemistry program involving imple-
mentations of reduced-scaling methods. In order to achieve the
speedup, various approximations are employed, for example, den-
sity fitting, RIJ-COSX, or a local approach for NEVPT2 or CC
methods. The C++ code employs message passing interface (MPI)-
based parallelization schemes, and recently, in a pilot study, they
implemented a scheme for generating 3- and 4-index integrals via
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accelerators.34 Orca provides a wide range of computational chem-
istry methods, whereas TAMM provides a general distributed tensor
algebra framework to enable the productive development of scalable
computational chemistry applications.

The ExaTensor35 library uses a domain-specific virtual pro-
cessor concept to allow performance portable programming and
execution of tensor operations on modern graphics processing unit
(GPU) architectures. While the library is mostly focused on gen-
eral GPU computation and the portability of such operations to
different systems, they demonstrated its effectiveness on numerical
tensor algebra workloads that mainly focus on quantum many-
body computations on HPC platforms. The main focus of the
ExaTensor library is to utilize GPUs for efficient tensor contrac-
tions. TAMM, on the other hand, provides a large set of supported
tensor operations and utility routines. TAMM also provides special
constructs allowing users to add new operations on tensors that are
needed for the development of complete computational chemistry
applications.

The TiledArray framework36 is actively being developed for
scalable tensor operations that support various computational
chemistry methods.37 It makes use of the Multiresolution Adaptive
Numerical Environment for Scientific Simulation (MADNESS) par-
allel runtime,38 which employs a high-level software environment
for increasing both programmer productivity and code scalability in
massively parallel systems. TiledArray employs a hierarchical view
of sparsity coupled with explicit user-written loop nests to perform
specialized operations over sparse tensors. TiledArray has several
similarities with TAMM while also differing in several key aspects,
which are explained later in Sec. III C.

DISTAL39 is another recently developed distributed tensor
algebra compiler that allows expressing computation on tensors as
tensor algebra expressions. DISTAL lets users describe how the data
and computation of a tensor algebra expression map onto a target
machine, allowing separation of the specifications of data distribu-
tion and computation distributions. DISTAL lets users specialize
computation to the way that data are already laid out or easily
transform data between distributed layouts to match the computa-
tion. TAMM, on the other hand, offers generality by decomposing
tensor algebra expressions into a series of distributed matrix mul-
tiplication and transposition operations. In a more recent work,
the authors also introduced SpDISTAL,40 which adds support for
sparse data structures and allows users to define generic sparse ten-
sors. SpDISTAL then generates code for executing operations over
these tensors. Both DISTAL and TAMM have several similarities
in the aspects of storage, computation, and scheduling. However,
they also differ in certain key aspects, which are further elaborated
in Sec. III C.

III. TAMM FRAMEWORK
This section provides a detailed explanation of our tensor

algebra framework. Figure 1 shows the conceptual overview of
our framework. TAMM provides a tensor algebra interface that
allows users to describe tensor operations in a familiar mathemat-
ical notation, while underneath it employs efficient data distribu-
tion/management schemes as well as efficient operation execution
on both central processing unit (CPU)-based and GPU-based hard-
ware. Our framework leverages efficient libraries such as HPTT41

FIG. 1. Overview of tensor algebra for many-body methods (TAMM) framework.

for tensor index permutations on CPUs, LibreTT42 for tensor
index permutations on GPUs, and Global Arrays,43 a partitioned
global address space (PGAS) programming model for efficient data
distribution.

A. Tensor algebra operations in TAMM
TAMM provides a flexible infrastructure for describing tensor

objects using the general notion of an index space (simply an index
range) that is used to describe the size of each dimension. TAMM
also employs tiling capabilities, where users can define arbitrary or
fixed size tiling over index spaces to construct tiled index spaces
to represent a blocked representation of a tensor. This allows ten-
sors to be constructed as a set of smaller blocks of data indexed
by the Cartesian product of the number of tiles on each dimen-
sion. This notion of tiling enables efficient data distribution and
efficient tensor operations (such as tensor contractions) that can bet-
ter leverage the underlying hardware by utilizing the available cache
system as well as the execution modules (i.e., GPUs and CPUs).
TAMM’s flexible tiling capabilities provide crucial support for load
balancing and making effective trade-offs over data communication
and efficient computation. These optimizations will be detailed in
Subsection III B, where we describe the data communication and
execution of tensor operations.

Figure 2 shows an example of index space, tiled index space,
and tensor construction in the TAMM framework. Lines 2–4 show
the construction of IndexSpace objects that represent a range of
indices using a range constructor. Our framework also allows users
to describe application-specific annotations over the subsections of
these spaces. Lines 4–7 show an example of string-based annota-
tion over subsections of the construction range. This allows users to
easily access different portions of an index space, thereby enabling
access to slices of a tensor and constructing new tensors using slices
of the original index space. Similarly, users can encode spin infor-
mation related to each dimension over the input tensors, allowing
our run-time to allocate these tensors using a block-sparse repre-
sentation. For the time being, we only support spin symmetry for
representing the block sparsity where the zero-blocks are not stored.
Users can define their own non-zero check functionality to be used
during allocation and tensor operation execution for storage and
computational benefits. Additional capabilities, such as restricted

J. Chem. Phys. 159, 024801 (2023); doi: 10.1063/5.0142433 159, 024801-3

© Author(s) 2023

 17 August 2023 00:38:49

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

FIG. 2. Source code example for IndexSpace, TiledIndexSpace, and
Tensor construction using TAMM.

summations or point group and permutational symmetries, are not
supported in the tensor specification. Point group symmetry is less
concerning since TAMM targets large systems that often do not have
such symmetry. However, developers can explicitly code these fea-
tures using TAMM to construct the desired tensors. This is the case
for methods such as CCSD(T), discussed in Sec. IV A 2. TAMM
also supports specialized tensor construction, called lambda tensor,
where the user can provide a C++ lambda expression that speci-
fies how a block of the tensor is computed, as shown in Line 19.
This construct can be used to dynamically generate blocks of a ten-
sor as needed. Note that these tensors are not stored in memory;
they are read-only objects computed on the fly to be consumed
in various tensor operations described later in this section. Simi-
larly, TAMM also provides a special construct called view tensor
to describe access to an existing tensor using C++ lambda expres-
sions. The main use of view tensors is to define tensors of different
shapes that can be used as a reference tensor for any operation
as well as apply possible sparsity mapping/constraints on a dense
tensor. Similar to lambda tensors, a view tensor does not allocate
any additional storage but rather provides specialized access to the
data available in the referenced tensor. We provide details of a use
case for view tensors when discussing the DLPNO-CCSD method
in Sec. IV B 2.

Lines 10–12 show the construction of TiledIndexSpace
objects that represent a sliced index space that is used in tensor
construction to have a blocked structure. Tiling can be applied as
a fixed size (i.e., line 10) or as arbitrary tile sizes with full coverage
of the index space (i.e., line 11). Finally, lines 15–17 in Fig. 2 show
the construction of Tensor objects using tiled index spaces. Each
TiledIndexSpace object used in the tensor constructor represents
a dimension in the constructed tensors. In this example, tensor A is
a 30 × 20 matrix with eight blocks, as denoted by tM, which consists
of two tiles of sizes 10 and 20, while tK consists of four tiles that are

FIG. 3. Source code example for constructing index labels.

size 5. While these lines construct a tensor object, the tensor is col-
lectively allocated by all participating compute nodes in a subsequent
operation using a scheduler.

Another important concept in constructing tensor operations
is index labels, which allow specifying tensor operations in familiar
mathematical notations and provide slicing capabilities over ten-
sors by using the string-based subsections of the full index space.
Labels are associated with tiled index spaces and used in the ten-
sor operation syntax to describe the computation. Depending on the
index spaces that the tensors are constructed on, users can spec-
ify string-based sub-spaces to define operations on different slices
of the underlying allocated tensor object. Figure 3 shows exam-
ples of TiledIndexLabel construction using TiledIndexSpace
objects. While lines 1–6 construct the labels over the full spaces, line
8 shows the label creation for the first portion of the tK index space
(see construction on Fig. 2, line 4). These sub-spaces can then be
used for specifying operations over sliced portions of the full ten-
sor, as long as the index labels are from a subset of the original
index space.

TAMM supports several tensor operations: tensor set, tensor
addition, subtraction, scale, trace, transpose, general tensor contrac-
tions, inner and outer products, and reduction. TAMM supports
different tensor data types and several mathematically valid opera-
tions between tensors of different data types (e.g., tensor contraction
between a complex and real tensor). Figure 4 gives the grammar
for allowed tensor operations’ syntax in the TAMM framework.
Each tensor operation syntax rule (⟨tensor − op⟩) is composed of
a left-hand side (lhs, ⟨op − lhs⟩) and a right-hand side (rhs, ⟨rhs⟩)
operation. While lhs can only be a labeled tensor construct (⟨label −
tensor⟩), rhs can be of different types that result in different tensor
operations, as follows:

● alpha value [A(i,l) = alpha], which corresponds to a
tensor set operation that assigns the corresponding alpha
value to all elements of the tensor.

● labeled tensors [A(i,l) += alpha ∗ D(l,i)] corre-
spond to a tensor addition operation (with respect to the
label permutation on tensor D) in Eq. (7) in Fig. 4.

● contraction of two labeled tensors [C(i,a) += alpha
∗ A(i,l) ∗ B(l,a)] updates the lhs with the tensor
contraction results in Eq. (8) in Fig. 4.

Several additional operations on tensors are provided as utility
routines in TAMM. Element-wise operations such as square, log,
inverse, etc. are provided. Additional useful operations on tensors
such as min, max, norm, etc. are also provided, including high-level
routines to read from and write tensors to disk using parallel file I/O.
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FIG. 4. Tensor operations grammar in extended Backus–Naur form.

All these operations are defined using a parallel block_for construct
provided by TAMM, allowing users to easily define custom element-
and block-wise operations on a tensor. The block_for construct
allows user-defined operations (using C++ lambda expressions) that
are executed in parallel on distributed tensors.

Similar to tensor allocation, all other tensor operations that use
and modify the distributed tensor data have to be performed via a
scheduler that has the necessary information about the execution
context of the operation. Execution context includes required infor-
mation about the distribution scheme of the tensor data and the
execution medium for the operations through distribution, memory
manager, and process group constructs. Note that the tensor oper-
ations that are provided as utility routines do not use the scheduler
but still require the execution context to perform the corresponding
operation. TAMM employs a modular construction of these con-
cepts to allow users to implement various distribution schemes as
well as different distributed memory frameworks. Figure 5 shows
the construction of a Scheduler object using the execution con-
text and the execution of defined tensor operations. After creating a
scheduler, users can directly queue tensor operations such as tensor
allocation (line 12), tensor set and add operations (lines 13 and 14),
and tensor contractions (line 15). Finally, all queued operations are
executed using the execution context on a distributed system. The
tensor operations, as well as the operations over the index spaces, are
formally described in our previous work.44 The syntax for expressing
operations shown in lines 13–15 also indicates the productivity ben-
efits that can be obtained by using TAMM. The operations expressed
in these three lines are executed in parallel on CPUs, GPUs, or
both on any distributed computing platform. Manually writing par-
allel code for these operations would lead to a significant increase
in the number of source lines of code (SLOC). Extending such
manual development of parallel code to a real application with a
large number of such operations would only lead to a significant
increase (orders of magnitude) in the SLOC count and develop-
ment time, which would also make future improvements to such
code infeasible.

This section summarizes the tensor algebra interface as an
embedded domain-specific language (eDSL) in the TAMM frame-
work. By implementing an eDSL, we were able to separate concerns
for developing scientific applications. While the high-level tensor

FIG. 5. Source code example for executing the tensor operations using TAMM.

abstractions allowed domain scientists to implement their algo-
rithms using a representation close to mathematical formulation,
it also allowed framework developers to test various different opti-
mization schemes on the underlying constructs (i.e., different data
distribution schemes, operation execution on accelerators, use of
different PGAS systems, etc.), which we will detail in the coming
section.

B. Tensor distribution and operation
execution in TAMM

TAMM leverages various state-of-the-art frameworks and
libraries to achieve a scalable performance–portable implemen-
tation of tensor algebra operations on exascale supercomputing
platforms through efficient data distribution and intra-node execu-
tion of tensor operation kernels on CPUs and GPUs. The default
memory manager for tensor data distribution in TAMM is based
on the Global Arrays framework, a Partitioned Global Address
Space (PGAS) programming model that provides a shared memory-
like programming model on distributed memory platforms. Global
Arrays provides performance, scalability, and user productivity in
TAMM by managing the inter-node memory and communica-
tion for tensors. A TAMM tensor is essentially a global array with
a certain distribution scheme. We have implemented three ten-
sor distribution schemes in TAMM. The first scheme computes
an effective processor grid for a given number of processes. A
dense tensor is then mapped onto the processor grid. The sec-
ond scheme is a simple round-robin distribution that allocates
equal-sized blocks in a round-robin fashion, where the block size
is determined by the size of the largest block in the tensor. This
distribution over-allocates memory and ignores sparsity. The third
scheme allocates the tensor blocks in a round-robin fashion while
taking block sparsity into account. By only allocating non-zero
blocks in the tensor, it minimizes the memory footprint of overall
computation, allowing bigger-sized problems to be mapped to the
available resources.

TAMM uses the “Single Program Multiple Data (SPMD)”
model for distributed computation. In this programming abstrac-
tion, each node has its own portion of tensors available locally
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as well as access to the remote portions via communication over
the network. As a result, operations on whole tensors can result
in access to remote portions of the tensor, with implied commu-
nication. More importantly, many operations (i.e., tensor contrac-
tions, addition, etc.) are implied to be collective as they involve
the distributed tensors as a whole. While the tensor algebra inter-
face follows a sequential ordering of tensor operations, we also
tried to conceal the burden of thinking in a distributed manner
while writing a scientific application. To avoid possible issues with
operations on distributed tensors, TAMM is designed to repre-
sent tensors in terms of handles and requires tensor operations
to be declared explicitly and executed using a scheduler. Hence,
any assignment performed on tensor objects will be a shallow
copy as opposed to a deep copy, as a deep copy implies com-
munication (message passing between nodes to perform the copy
operation).

The computational chemistry methods are implemented as
a sequence of operations over distributed tensors. Through this
design, we were able to separate the specification of the operations
from their implementations, allowing method developers to mainly
focus on the computational chemistry algorithms while kernel devel-
opers can focus on the optimization of individual tensor operations.
The execution of all tensor operations is managed by a scheduler.
The TAMM scheduler employs a data flow analysis over the queued
tensor operations to find the dependencies between each opera-
tion in order to load balance the computation and communication
requirements of the overall execution. Using a levelized execution
scheme, the scheduler is able to limit the global synchronizations
to achieve load-balanced and communication-efficient schedules
for the execution of all tensor operations. The dependency anal-
ysis over the high-level operations is based on a macro-operation
graph. When two or more operations share the same tensor object
and one of these operations updates the shared object, the opera-
tions are marked as conflicting operations that cannot be executed
in parallel. This operation graph is used to construct a batch of
operations that can be executed in parallel, minimizing the total
number of global synchronizations required by the computation.
The operations in these batches are then executed in an SPMD fash-
ion. For instance, the canonical CCSD implementation in TAMM
has 10 levels of operation batches that sum to over 125 tensor
operations.

While TAMM hides the burden of choosing the best-
performing schedule from the users through load-balanced sched-
uler execution, it allows users to control various aspects of the
computation, such as data distribution, parallelization strategies,
operation ordering, and execution medium (i.e., CPUs, GPUs). To
achieve this, TAMM uses a modular structure to describe constraints
imposed by the users to automate the construction of an execution
plan for efficient execution of the computation. This allows users to
incrementally optimize their code with minimal programming effort
while keeping it readable, as opposed to a code generator-based
solution. With these controls over the execution and distribution
of the tensor data, users can choose from different optimizations
at different granularities. For example, the user can increase the
data locality by replicating frequently used small tensors on each
distributed node or choosing from different distribution schemes
for efficient tensor operation execution on various node topologies.
Such an optimization can be implemented as a new data distribution

scheme (i.e., SUMMA45) by extending the Distribution class. By
simply using this distribution, users can enforce a specific distribu-
tion on tensors, which can optimize required data communication
for specific operations. Another abstraction for optimization is the
actual computation of the tensor operations. Users can define new
operations by extending the Op class, which can then be sched-
uled to be executed. While TAMM supports the most common
operations defined on tensors (i.e., addition and contraction), it
also implements a Scan and Map operation that can be used to
define various element/block-wise operations using lambda func-
tions. Additionally, as a lower-level abstraction, users can also decide
to describe new executions specific to a new architecture/accelerator
on the kernel level (i.e., Double Precision General Matrix Mul-
tiply (DGEMM), GPU abstraction). While TAMM supports the
main GPUs (i.e., Nvidia, AMD, and Intel) that will be available in
upcoming HPC systems, users can also choose to implement new
kernel-level abstractions for different hardware stacks [i.e., Field
Programmable Gate Arrays (FPGAs) and Machine Learning/Deep
Learning (ML/DL) accelerators].

To achieve highly optimized execution of tensor operations
on a given platform, TAMM is designed to allow the use of mul-
tiple external libraries that provide optimized kernels for various
operations. In addition to leveraging vendor-provided linear algebra
libraries that are highly tuned for both CPUs and GPUs, TAMM also
uses the following libraries: the HPTT41 library for optimized tensor
index permutations on CPUs; LibreTT42 for enabling efficient index
permutation on Nvidia, AMD, and Intel GPUs; the BLIS46 library for
efficient BLAS implementation in CPU; and finally, TensorGen47 for
generating optimized tensor contraction GPU kernels specialized for
CC methods in computational chemistry.

While TAMM tries to hide the execution details from the end-
user by employing high-level tensor algebra expressions, users can
specify the medium on which they want the operations to be exe-
cuted. Users can specify a particular operation to be executed on the
CPU or GPU. All other execution-specific details like parallelization,
CPU-to-GPU communication, and execution mechanisms are han-
dled automatically by the TAMM infrastructure. While TAMM does
not explicitly rely on OpenMP, it can leverage OpenMP for impor-
tant operations like tensor transposition and GEMM via highly
optimized external libraries such as HPTT and vendor BLAS. Setting
the OMP_NUM_THREADS variable before running any TAMM-based
application would enable OpenMP parallelization.

C. Comparison with other tensor algebra frameworks
In this section, we compare the functionality provided by

TAMM with that provided by other distributed tensor algebra
frameworks: TiledArray, CTF, DISTAL, and ExaTensor. Table I pro-
vides the key features and differences between these frameworks.
While all these frameworks provide similar features in how tensors
and tensor operations can be represented, TAMM is designed to
be an extendable framework and hence differs from the remaining
frameworks in the following key aspects discussed below:

● Indexing and slicing: Indexing and slicing capabilities in
any tensor algebra framework are crucial to defining tensor
operations. Indexing plays a key role in constructing ten-
sor operations (see Fig. 5). Slicing is predominantly used
in computational chemistry methods, allowing operations
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on isolated parts of tensors. Users can choose to write the
tensor operations over slices of the tensors instead of hav-
ing to copy the required portions first for such operations.
While the tensor algebra frameworks being compared pro-
vide an indexing mechanism, they lack support for using
slicing in the tensor operations. TA and CTF use a string-
based solution for indexing but lack the capability to support
sliced indexing. On the other hand, DISTAL and ExaTen-
sor use object-based constructs to create and use labels in
the computation. While DISTAL does not allow any slic-
ing, ExaTensor lets users to use pre-defined sub-ranges for
slicing. TAMM provides generic indexing and slicing capa-
bilities through various index space operations, allowing
users to define a subset of indices to create object-based
labels (see Fig. 3) as well as string-based labels to construct
tensor operations. Users can make use of slicing capabilities
by using object-based labels over sub-ranges or by creat-
ing new slices on-the-fly or string-based labels to define
operations over full tensors.

● Sparsity: Sparsity is widely used in several computational
chemistry applications. All of the tensor algebra frame-
works discussed in this section support some notion of
sparsity for both data and computation. While DISTAL
does not have direct support for sparsity, later work by
the same authors, namely, SpDISTAL, incorporates dif-
ferent sparse data structures as well as specifications to
describe the storage and computation of sparse tensors.
SpDISTAL supports a generic specification for describing
the dense/compressed format for each individual mode as
well as pre-defined sparse data representations (i.e., CSR,
CSC, etc.) for describing such tensors. Operations over these
tensors are executed by generating custom kernels. To con-
trast, more application-oriented tensor libraries, such as
TA, CTF, and ExaTensor, allow block-level sparsity. TA
allows users to define non-zero and zero tiles that construct
the tensors, whereas CTF uses pre-defined symmetry-based
sparsity over the tensors. TAMM, on the other hand, incor-
porates sparsity by providing attributes over the tiled index
spaces. By default, TAMM implements spin symmetry-
related attributes to allocate block sparse tensors depending
on the values of corresponding attributes on the tiles of the
index space. Internally, TAMM analyzes the tensor blocks
to determine if the corresponding block is non-zero to
optimize storage and computation on block sparse tensors.

● GPU Support: It is crucial to effectively leverage the avail-
able resources on modern heterogeneous HPC platforms.

TAMM currently enables tensor algebra operations (mainly
tensor contractions) on multiple GPU architectures (AMD,
Nvidia, and Intel). At the time of this writing, the remaining
frameworks are limited to Nvidia GPUs (except ExaTensor,
which has AMD GPU support). The unified GPU infras-
tructure design allows TAMM to be easily extended to
add support for a new hardware accelerator. Support for
the upcoming GPU architectures with performance porta-
bility was also explored using SYCL, a domain-specific,
heterogeneous programming language. Using SYCL and
oneAPI Math Kernel Library (oneMKL) interfaces,48 pertur-
bative triples contribution from the CCSD(T) formalism was
demonstrated with large-scale simulations on different GPU
architectures.49

● Extendable backends: TAMM currently uses Global Arrays
(GAs), which is built on top of MPI, for managing all
aspects of data distribution and communication. TAMM
also has an experimental UPC++50 backend that can alter-
natively be used instead of GA. TiledArray (TA) uses the
MADNESS38 parallel runtime as the backend; DISTAL uses
the Legion51 programming model and runtime system for
distributing the data and computing; CTF and ExaTensor
use MPI as the underlying parallel programming model.
TAMM is designed to be easily extendable by implement-
ing the methods in the process group and memory manager
classes to support other parallel programming models. To
the best of our knowledge, the remaining frameworks are
not easily extendable to add support for additional parallel
programming models.

● Distribution: A TAMM tensor is allocated with a distri-
bution type specified via the execution context. The distri-
bution choices that are supported can be extended via the
distribution class. DISTAL allows the specification of ten-
sor distributions using a notation that allows the user to
specify a process grid that the dimensions of a tensor can
be mapped onto. Tensor distributions in TA and CTF are
based on several parallel matrix multiplication algorithms
(SUMMA, 2.5D, and 3D).26 TA additionally gives users the
option of specifying a process map onto which tiles are dis-
tributed. However, CTF cannot be easily extended to allow
other distributions.

● Scheduling and Execution: DISTAL allows users to spe-
cialize computation to the way that data are already laid
out or easily transform data between distributed layouts to
match the computation, allowing fully customizable execu-
tion strategies for each operation. Several parallel matrix

TABLE I. Feature comparison with other distributed tensor algebra frameworks.

Frameworks Indexing Slicing GPU support Programming model

TAMM Object- and string-based Generic slicing AMD, Intel, Nvidia GA (extendable)
TA String-based No support Nvidia MADNESS
DISTAL Object-based No support Nvidia Legion
CTF String-based No support Nvidia MPI
ExaTensor Object-based Sub-range slicing AMD, Nvidia MPI
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multiplication algorithms from the literature26 are express-
ible as schedules in DISTAL, which is currently not pos-
sible with any other framework in comparison. TA and
CTF automatically execute tensor operations by dynami-
cally redistributing data across operations if needed, but do
not provide any way to customize the operation scheduling
process. TAMM allows deferring execution for a collec-
tion of tensor operations. When the user explicitly calls the
execute function, the TAMM scheduler analyzes the depen-
dencies between the various operations and schedules them
appropriately in order to load balance the computation and
communication requirements of the overall execution across
the collection of operations. However, TAMM does not pro-
vide any further customizations to the scheduling process.
The trade-off between these frameworks is that TAMM,
TA, and CTF fully automate the distribution process, while
users must explicitly provide a schedule to distribute their
computations with DISTAL.

In this section, we have provided a detailed explanation of
the TAMM framework. TAMM leverages a modular infrastruc-
ture to enable the implementation of various optimizations on
different levels of computation, from data distribution to execution
schemes on different hardware. This design allowed us to implement
different memory managers, distribution schemes, and work dis-
tribution over different process groups without any major changes
to the user-facing tensor algebra interface. Finally, we provided a
feature-based comparison between TAMM and other distributed
tensor algebra frameworks, namely, TiledArray, CTF, DISTAL, and
ExaTensor.

IV. CC TAMM IMPLEMENTATIONS
In this section, we present case studies where TAMM was

used to implement various scalable coupled-cluster (CC) meth-
ods for the latest HPC systems. While important, TAMM’s
primary contributions are not just the faster performing versions
of these methods but also the ability to productively develop
and explore new algorithms and apply those improvements to
all existing and new applications implemented using TAMM.
This includes improvements in intra-node execution (single core,
OpenMP multicore, GPUs, etc.), data distribution strategies (e.g.,
replication, process group-based distribution), and parallel execu-
tion (compute partitioning and communication scheduling algo-
rithms). It also allows the concurrent development of optimized
equations, parallel algorithms, and optimized intra-node kernels
by different teams through clearly defined interfaces. The vari-
ety of methods presented and their performance are evidence
that this approach accelerates the development and exploration of
CC methods.

A. Canonical methods
The canonical formulations of the Coupled-Cluster (CC)

formalisms1–6,8 are based on the exponential parametrization of the
correlated ground-state wave function ∣Ψ⟩,

∣Ψ⟩ = eT ∣Φ⟩, (11)

where T is the cluster operator and the reference function ∣Φ⟩
in single-reference formulations is assumed to be represented by
the Hartree–Fock Slater determinant. In practical realizations, it is
assumed that ∣Φ⟩ provides a good approximation to the correlated
ground state, ∣Ψ⟩. The cluster operator T can be partitioned into its
many body components, Tk,

T =
N

∑
k=1

Tk, (12)

defined as

Tk =
1
(k!)2 ∑

i1 ,...,ik ;a1 ,...,ak

ti1...ik
a1...ak a†

a1 . . . a†
ak aik . . . ai1 , (13)

where a†
p (ap) are the creation (annihilation) operators for an elec-

tron in the p-th state and indices i1, i2, . . . (a1, a2, . . .) refer to
occupied (unoccupied) spin orbitals in the reference function ∣Φ⟩.
The operators Tk, defined by the cluster amplitudes ti1...ik

a1...ak , produce
k-tuple excitations when acting on the reference function.

To define the equations needed for determining cluster
amplitudes, we introduce wave-function expansion (11) into the
Schrödinger equation by pre-multiplying both sides by e−T . This
procedure leads to an explicitly connected form of the energy-
independent equations for amplitudes and energy, i.e.,

⟨Φa1...ak
i1...ik

∣e−THeT ∣Φ⟩ = 0, ∀k,∀i1, . . . , ik, ∀a1, . . . , ak, (14)

E = ⟨Φ∣e−THeT ∣Φ⟩, (15)

where the electronic Hamiltonian H is defined as

H =∑
pq

hp
qa†

qap +
1
4 ∑p,q,r,s

vpq
rs a†

r a†
s aqap, (16)

where hp
q and vpq

rs are tensors representing interactions in the
quantum system, and excited Slater determinants ∣Φa1...ak

i1...ik
⟩ are

defined as

∣Φa1...ak
i1...ik

⟩ = Ea1...ak
i1...ik

∣Φ⟩. (17)

In all CC formulations discussed here, to form Eq. (14) for clus-
ter amplitudes, one needs to (1) find an efficient way for dis-
tributing and compressing tensors hp

q, vpq
rs , and ti1...ik

a1...ak across all
nodes, (2) define efficient algorithms for partitioning TCs of multi-
dimensional tensors across the parallel system, and (3) optimize
communication between nodes to minimize the effect of the latency.
To illustrate the scale of the problems, in brute force simulations,
we have to store four-dimensional tensors ti1i2

a1a2 and vpq
rs that require

storage proportional to n2
on2

u and (no + nu)4, respectively, where no
and nu refer to the number of occupied and unoccupied orbitals in
the reference function ∣Φ⟩. For CC simulations of the molecular sys-
tems defined by no = 200 and nu = 2800, one needs to distribute data
of the order of 150 TB. Therefore, to make these simulations possi-
ble, the support of sophisticated HPC algorithms and applied math
is indispensable.
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1. Coupled cluster singles doubles (CCSD)
The CCSD formalism (CC with single and double excitations)4

is one of the most popular CC approximations and is used in routine
computational chemistry calculations as a necessary intermediate
step toward more accurate CC models, such as the perturbative
CCSD(T) formalism discussed in Sec. IV A 2, or excited-state
or linear-response CC extensions in Sec. IV B 1. In the CCSD
formalism, the cluster operator T is approximated as

T ≃ T1 + T2, (18)

and the equations for cluster amplitudes are represented as

ra
i = ⟨Φa

i ∣e−(T1+T2)HeT1+T2 ∣Φ⟩, (19)

rab
i j = ⟨Φab

i j ∣e−(T1+T2)HeT1+T2 ∣Φ⟩, (20)

where the tensors ra
i and rab

i j are commonly referred to as the resid-
ual vectors. Due to the large number of terms corresponding to
complicated contractions between hp

q/vpq
rs and ti

a/ti j
ab, optimization of

the expressions plays a crucial role. This is achieved by proper fac-
torization by introducing the so-called recursive intermediates. For
example,

1
4

vef
mnti j

ef tmn
ab , (21)

term, which contributes to rab
i j in the naive approach, is characterized

by n4
on4

u numerical overhead. However, by introducing the inter-
mediate tensor Ii j

mn, defined as (we assumed Einstein summation
convention over repeated indices)

Ii j
mn = vef

mnti j
ef , (22)

the term (21) can be given by the equation

1
4

Ii j
mntmn

ab , (23)

at the total numerical cost proportional to n4
on2

u.
Equation (23) can be expressed using the TAMM interface as

follows:

(I(m, n, i, j) = v(m, n, e, f )∗ t(e, f , i, j)),
(r(a, b, i, j)+ = 0.25∗ I(m, n, i, j)∗ t(a, b, m, n)).

(24)

The TAMM code in (24) encapsulates the distributed execution of
the tensor contractions on CPUs and GPUs, as well as the choice
of the parallel programming model used by TAMM for managing
distributed tensor data. Similarly, all other CCSD equations can be
represented as tensor operations using the TAMM interface. As indi-
cated in (24), the total number of lines of code is greatly reduced
in comparison to hand-coded implementations, where one needs
to explicitly manage data distribution using a particular program-
ming model and also aspects of execution on various heterogeneous
architectures. On the other hand, the TAMM representation of such
equations makes it easy to develop and maintain scalable electronic

structure methods (such as CCSD) that can be run on a variety of
HPC platforms.

Another important technique that is useful in reducing the
memory footprint of the CCSD approach is the Cholesky decom-
position (CD) of the vpq

rs tensor, i.e.,

vpq
rs ≃ (pr∣L)(L∣qs) − (ps∣L)(L∣qr), (25)

where L is an auxiliary index. The total memory required to store
Cholesky vectors (pq∣L) needed to reproduce vpq

rs with high accuracy
is usually proportional to (no + nu)3.

We developed both open-shell and closed-shell implementa-
tions of the CCSD equations using TAMM. The use of TAMM index
spaces for alpha and beta-occupied and virtual orbitals allowed us
to represent the same theory optimized for specific problems easily.
An example equation that is a contribution to the intermediate I in
Eq. (24) may appear like the following:

(I(m _a, n _a, i _a, j _a)
= v(m _a, n _a, e _b, f _b)∗ t(e _b, f _b, i _a, j _a)), (26)

where the added _a and _b notations respectfully refer to the cor-
responding indices for the alpha and beta sub-spaces. While the
equations for the closed- vs open-shell implementations are differ-
ent, the ease of writing them is the same due to the slicing capabilities
on sub-spaces provided by TAMM.

As benchmark systems for testing the performance of TAMM
implementations of the Cholesky-based CCSD,52 we used two
molecular systems previously used in studying the efficiency of the
TCE implementations of the CC methods in NWChem.53,54 The
first benchmark system is the model of Bacteriochlorophyll (BChl)
MgC36N4O6H38,55,56 which plays an important role in understand-
ing the mechanism of photosynthesis. In this process, the light is har-
vested by antenna systems and further funneled to BChl molecules,
which initiate primary charge separation. The second benchmark
system considered here is the β-carotene molecule, whose doubly
excited states and triplet electronic states have recently been inten-
sively studied in the context of singlet fission processes in carotenoid
aggregates.57–59 The β-carotene molecule consists of 96 atoms, while
the BChl model contains 85 atoms, including a central magnesium
atom. We use the cc-pVDZ basis for both systems and evaluate their
performance on OLCF Summit.21 Each Summit node contains two
IBM POWER9 processors, each consisting of 22 cores and 512 GB
of CPU memory. Each node is also equipped with six Nvidia Volta
GPUs, each with 16 GB of memory, for a total of 96 GB of GPU
memory per node.

Table II shows the CCSD performance compared to NWChem
on 200 nodes of OLCF Summit. We measure the performance
of the TAMM implementations against the TCE implementations
in NWChem. The time per CCSD iteration is given in seconds.
NWChem has a CPU-only implementation and uses 42 CPU cores
on each node of Summit. TAMM-based Cholesky-CCSD uses only
six MPI ranks per node, where each MPI rank is mapped to a single
GPU. For these two molecular systems, we observe a 9–15× speedup
with the TAMM-based Cholesky-CCSD implementation compared
to the TCE CCSD method in NWChem. The CPU implementa-
tion of the CCSD tensor operations in NWChem comprises 11 314
source lines of code, whereas the Cholesky-CCSD implementation
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TABLE II. TAMM performance compared to NWChem on 200 nodes of OLCF
Summit. Time per CCSD iteration is given.

Time (s)

Molecule
No. of
atoms

No. of
occupied
Orbitals

No. of
basis

Functions NWChem60 TAMM

BChl 85 171 852 1202 81
β-carotene 96 148 840 801 65

expressed using the TAMM framework is only 236 source lines of
code. Since these 236 lines represent computation at a high level,
they express both CPU and GPU computation. On the other hand,
adding GPU capabilities to the NWChem CCSD code will only sig-
nificantly increase the SLOC count and development time, which
is why a GPU implementation for CCSD has not been attempted
to date in NWChem. This clearly demonstrates the productivity
benefits of expressing such computations in TAMM. Our imple-
mentation of the CCSD equations52 is expressed similarly to the
example in Fig. 5. CCSD is an example of how TAMM can be used
to productively create an effective and efficient implementation of
certain classes of computational chemistry methods. The remaining
computational chemistry methods discussed in this paper are also
implemented along similar lines.

2. Coupled cluster triples
The CCSD(T) formalism9,61 is capable in many cases of pro-

viding the so-called chemical level of accuracy required in stud-
ies of chemical reactivity and thermochemistry. In the CCSD(T)
approach, the perturbative correction due to triple excitations [E(T)]
is added to the CCSD energy,

ECCSD(T) = ECCSD + E(T), (27)

where

E(T) = ∑
i< j<k
a<b<c

⟨Φ∣(T+2 VN)∣Φabc
ijk ⟩⟨Φabc

ijk ∣VN T2∣Φ⟩
εi + ε j + εk − εa − εb − εc

+ ∑
i< j<k
a<b<c

⟨Φ∣T+1 VN ∣Φabc
ijk ⟩⟨Φabc

ijk ∣VN T2∣Φ⟩
εi + ε j + εk − εa − εb − εc

, (28)

where VN is the two-body part of the electronic Hamiltonian in
a normal product form, and ∣Φabc

ijk ⟩ = a†
aa†

ba†
c aka jai∣Φ⟩. The most

expensive part of the CCSD(T) calculation, characterized by the
n4

on3
u + n3

on4
u scaling, is associated with calculating the ⟨Φabc

ijk ∣VN T2∣Φ⟩
term, which is defined as

⟨Φabc
ijk ∣VN T2∣Φ⟩ = vi j

matmk
bc − vi j

mbtmk
ac + vi j

mct
mk
ab − vik

matm j
bc + vik

mbtm j
ac

+ vik
mct

m j
ab + v jk

matmi
bc − v jk

mbtmi
ac + v jk

mct
mi
ab − vei

abt jk
ec

+ vei
act

jk
eb − vei

bct
jk

ea + ve j
abtik

ec − ve j
actik

eb + ve j
bctik

ea

− vek
abti j

ec + vek
act

i j
eb − vek

bcti j
ea, (i < j < k, a < b < c).

(29)

Equation (29) can be separated into terms Aabc
ijk and Babc

ijk , defined by
contractions over occupied indices [Aabc

ijk ; the first nine terms on the
right hand side (rhs) of Eq. (29)] and terms corresponding to con-
tractions over unoccupied indices [Babc

ijk ; remaining nine terms on the
rhs of Eq. (29)], i.e.,

⟨Φabc
ijk ∣VN T2∣Φ⟩ = Aabc

ijk + Babc
ijk . (30)

Analogously, the ⟨Φabc
ijk ∣VN T1∣Φ⟩ term takes the form

⟨Φabc
ijk ∣VN T1∣Φ⟩ = +vi j

abtk
c − vi j

act
k
b + vi j

bct
k
a − vik

abt j
c + vik

act
j

b − vik
bct

j
a

+ v jk
abti

c − v jk
ac ti

b + v jk
bc ti

a(i < j < k, a < b < c). (31)

While Eqs. (29) and (31) can be easily implemented with the ten-
sor operations mentioned in Sec. IV A 1, the performance of the
(T) correction, in terms of both speed and memory, is improved
by encoding key symmetries by hand while still using the dis-
tributed tensor data structure provided by TAMM. This includes
restricted index summation and permutational symmetries, which
are not routine features in the current version of TAMM. In addi-
tion, the contractions in (T) are all fused so that the resulting
output is a scalar instead of a six-dimensional intermediate ten-
sor. Currently, TAMM does not support fusion across contractions
writing to the same output tensor, but this capability is consid-
ered for the near future. Furthermore, the hand-coded kernels for
(T) for various GPU architectures are required for the best perfor-
mance. In addition to fusion, we are also considering incorporating
optimized GPU kernels in TAMM for specific contractions such
as the ones in (T). The scheduler can then detect such contrac-
tions and choose the corresponding optimized kernels for execution
rather than executing the contractions through the current default
pipeline.

Table III shows the TAMM-based NWChemEx triples correc-
tion (T) calculation52 performance compared to NWChem on 512
nodes of the OLCF Summit. The time is given in seconds. NWChem
has a GPU implementation of the triples correction and uses all 6
GPUs and 42 CPU cores on each node. The TAMM-based triples
correction uses only six MPI ranks per node, where each MPI rank is
mapped to a single GPU. For the BChl and β-carotene molecules, we
observe a speedup of ∼6–18× for the TAMM implementation com-
pared to the TCE implementation in NWChem. The finer details of
the TAMM-based triples correction implementation are detailed in
Ref. 62.

TABLE III. NWChemEx-TAMM performance compared to NWChem for the perturba-
tive correction in the CCSD(T) method on 512 nodes of the OLCF Summit.

Time (s)

Molecule
No. of
atoms

No. of
occupied
Orbitals

No. of
basis

Functions NWChem60 TAMM

BChl 85 171 852 18 285 1791
β-carotene 96 148 840 6 646 1164
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B. New methods
1. Equation-of-motion coupled cluster formalism

The equation-of-motion (EOM) methods63–67 and closely
related linear response (LR) CC formulations68–70 can be viewed as
excited-state extensions of the single-reference CC theory. In the
exact EOMCC formalism, the wave function for the K-th excited
state, ∣ΨK⟩, is represented as

∣ΨK⟩ = RKeT ∣Φ⟩, (32)

where RK is the excitation operator, which produces the K-th excited
state when acting on the correlated ground-state in CC represen-
tations. The energy of the K-th state and the amplitudes defining
the RK operator can be calculated by solving the non-Hermitian
eigenvalue problem

H̄RK∣Φ⟩ = EKRK∣Φ⟩, (33)

where the similarity transformed Hamiltonian H̄ is defined as

H̄ = e−THeT. (34)

In the rudimentary EOMCCSD approximation (EOMCC
with singles and doubles), the RK and T operators are
approximated as

RK ≃ RK,0 + RK,1 + RK,2, (35)

T ≃ T1 + T2. (36)

Similar to the CCSD method, the numerical scaling of the
EOM-CCSD approach is dominated by n2

on4
u terms, where no repre-

sents the number of occupied orbitals and nu represents the number
of unoccupied orbitals. The major computational complexity in the
EOMCC method arises from tensor contractions involving various
operators. The method involves two types of excitation operators:
the CC operator T and the EOM operator R, besides the one-
body and two-body components of the Hamiltonian operator. The
EOMCCSD approach is a non-Hermitian eigenvalue problem, and
because of the dimensionality of the problems, they are solved
iteratively using a multi-root solver. Therefore, there is an addi-
tional cost for constructing and working with the iterative subspace.
In terms of implementation, however, the same TAMM format
used for writing various tensor contraction equations, as demon-
strated while discussing Eq. (23), was followed for the EOMCC
method.

The EOMCCSD method is usually employed in studies of
excited states dominated by single excitations. It is also worth
mentioning that LR-CC methods with singles and doubles lead
to the same values of excited-state energies. However, in contrast
to the EOMCCSD formalism, the LR-CCSD excitations are iden-
tified with the poles of frequency-dependent linear-response CC
amplitudes.

Table IV shows the TAMM EOMCCSD calculation perfor-
mance compared to NWChem on 200 nodes of the OLCF Summit.
The time per EOMCCSD iteration is given in seconds. NWChem
has a CPU-only implementation and uses 42 CPU cores on each
of the 200 nodes of Summit. Just as with the previous calculations,

TABLE IV. TAMM performance compared to NWChem on 200 nodes of the OLCF
Summit. Time per EOMCCSD iteration is given.

Time (s)

Molecule
No. of
atoms

No. of
occupied
Orbitals

No. of
basis

Functions NWChem60 TAMM

BChl 85 171 852 2030 715
β-carotene 96 148 840 1170 540

the TAMM-based EOMCCSD uses six MPI ranks per node, where
each MPI rank is mapped to a single GPU. The current TAMM
implementation of the EOMCCSD approach has not been optimized
at the same equation level as the CD-CCSD implementation. For
example, in contrast to the CD-CCSD formalism, the EOMCCSD
implementation fully represents two-electron integrals and uses a
non-spin-explicit representation of the operators in the equations.
While we plan to return to this implementation and incorporate
the optimized (spin-explicit) equations, we already observe a signif-
icant speed-up over NWChem with this primitive implementation.
CD-CCSD and EOMCCSD calculations are different algorithms for
solving the corresponding problem, and the timing for an itera-
tion of EOMCCSD is a sum of all of the steps in an interaction,
which tends to be more computationally demanding than the Jacobi
step in CD-CCSD. Nonetheless, one can see from Table IV that the
TAMM EOMCCSD code is 2–3 times faster for β-carotene and BChl
molecules.

2. DLPNO CCSD(T)
The development of reduced-scaling quantum chemical meth-

ods became a significant part of the recent research effort. In partic-
ular, for coupled cluster approaches, local domain-based methods
have been introduced and successfully applied to large systems.
Using even small computational clusters, the (DLPNO-CC)14–18,71

formalism can be used for systems described by 10 000–40 000 basis
set functions. The limit for system size can be further extended
by utilizing parallel exascale architectures. However, to achieve
this goal, several computational challenges associated with the data
representation, distribution, and optimization of the DLPNO-CC
equations (characterized by a large number of contractions and ten-
sors involved in the underlying equations) have to be appropriately
addressed. Our implementation is inspired by the work cited in Ref.
16. The basic idea is to carefully take advantage of the local character
of correlational effects. The total CCSD energy can be seen as a sum
of ij-pair specific contributions εij,

ECCSD =∑
i j

εi j. (37)

In order to significantly reduce scaling, we are considering the
following tasks for the NWChemEx DLPNO CCSD(T) implemen-
tation using TAMM:

1. Differentiate pairs with respect to their energy contributions
εij by sequential pre-screenings. Identify ij-pairs that (a) are
negligible and immediately dropped, (b) can be evaluated at a
lower-level model (MP2 level), and (c) can be evaluated at CC
level.
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2. Find an optimal representation of the virtual space for each
ij-pair in which the derived tensors (amplitudes, residuals, or
integrals) are dense.

3. Find the optimal factorization of terms in amplitude
equations.

4. Perform only those tensor contractions that lead to non-
zero results (including integral transformation and amplitude
equation evaluation).

In the local pair natural orbital CCSD method, the occu-
pied orbitals are localized (for example, by the Pipek–Mezey or
Foster–Boys algorithms72,73), and the virtual space is constructed
specifically for a given occupied orbital pair. First, the virtual orbitals
are transformed to a local basis of projected atomic orbitals (PAOs)
∣μ̃⟩ as ∣μ̃⟩ = (1 −∑i ∣i⟩⟨i∣)∣μ⟩,10,72,73 which are a priori local and
can be easily used to form domains corresponding to local occu-
pied orbitals. In the next step, pair natural orbitals (PNOs) are
constructed.15,16,77–80 Therefore, in Eqs. (19) and (20), instead of vir-
tual index a, b, . . . we will get pair-specific PNOs ãi j , b̃i j , . . . where
we assume that the size of PNO space N(PNO(ij))≪ N(MOvirt).
The PNO spaces are obtained from pair density matrices Dij,

Di j = T̃ i jTi j† + T̃ i j†Ti j , (38)

where Tij are MP2 amplitudes in PAO basis

Ti j
μν =

(iμ̃∣ jν̃)
εμ̃ + εν̃ − fii − f jj

, (39)

where fii and fjj are occupied orbital energies, and εμ̃ or εν̃ are
PAO orbital energies obtained by diagonalization of the Fock matrix
transformed to PAO space. The transformation matrices dij trans-
forming orbitals from PAO space to PNO space, and occupation
numbers nij correspond to eigenvectors and eigenvalues of the
diagonalized matrix Dij,

Di jdi j = ni jdi j. (40)

The introduction of ij-specific PNO spaces, which are mutually non-
orthogonal, leads to more complicated expressions in the amplitude
equations because we also need to involve overlap matrices between
different PNO spaces. The matrix transforming ij-PNO space to kl-
PNO space Si j;kl

ãi j b̃kl
is defined as

Si j;kl = di j†SPAOdkl, (41)

where SPAO is the PAO overlap matrix. Therefore, when considering
the PNO space, the term in Eq. (21) can take the form

1
4

vẽmn f̃ mn
mn ti j

ẽi j f̃ i j
tmn
ãmn b̃mn

Smn;i j
ãmn ãi j

Smn;i j
b̃mn b̃i j

Smn;i j
ẽmn ẽi j

Smn;i j
f̃ mn f̃ i j

. (42)

However, it is also possible to transform the e, f indices from ij- to
mn-PNO space first and then perform the contraction of the inte-
gral with the first amplitude. The complex structure of these terms
significantly expands the possibilities of how they can be factorized.
The cost is also affected by the integral evaluation, which depends

on the available memory. We can pre-compute not only vẽi j f̃ i j
i j type

integrals but also some mixed PNO space integrals (only those that
will be needed).

In our work, we assume that we will utilize a larger num-
ber of nodes, so we will have more memory and computing effort
available. In that case, we can afford tighter thresholds, leading to
larger domains and PNO spaces, which means higher precision in
the recovery of the correlation energy. For the implementation of
DLPNO formulations in TAMM, we employed a code generator
implemented in Python that transforms the canonical equations by
the transformation rules for various spaces (i.e., PNO, PAO, etc.).
Using a code generator allowed us to systematically convert equa-
tions while automatically applying an operation cost minimization
algorithm for single-term optimization. We anticipate that these
kinds of code generators on the high-level equations will enable try-
ing different transformations and automatically choosing the best
performing one. While this implementation is in the early stages, we
were able to validate the correctness of the generated code using our
infrastructure to directly compare the results with their canonical
counterparts.

The perturbative correction (T) described in Sec. IV A 2 is
in the local version evaluated using the same equations with some
differences.81 While converged T1 and T2 amplitudes are obtained
in their PNO space, the virtual indices in terms Aabc

ijk or Babc
ijk are

represented in triple natural orbitals (TNOs), which are computed
from triplet density matrices obtained from three pair density matri-
ces, Dijk = 1/3(Dij +Dik +D jk). In order to perform contractions
of integrals and amplitudes in Eqs. (29) and (31), we need to
involve transformation matrices between PNO and TNO spaces,
Sij;klm, which are computed the same way as in Eq. (41) where dkl

is replaced by dklm, transforming PAO orbitals to TNO space. Simi-
lar to the DLPNO CCSD implementation, we leveraged the TAMM
framework’s dense tensor infrastructure to represent the pertur-
bation correction implementation with block-sparse computation.
Using the PNO representation of the amplitudes from the CCSD
implementation, we implemented the DLPNO formulation of the
canonical equations.

For the development of DLPNO-based methods in
NWChemEx, we utilized specialized view tensor construction
to avoid redundant storage of the transformation tensors, especially
for the transformation required for the occupied pair indices.
Figure 6 shows an example use case specific to DLPNO CCSD
equations. In this example, we are using a view tensor over the large
Sijkl transformation tensors. Depending on the pair indices used
within the equations, various kinds of transformations are required.
In this example, the constructed Sijki tensor (line 17) has values
from Sijkl if the first index of the first pair matches the second
index of the second pair. If not, the corresponding indices are set
to zero. In this case, there was no need to translate the blocks or
update the tensor since the tensor was used as read-only. However,
users can provide special constraints on both the translation of the
blocks and access to these blocks. By using this feature, we were
able to reduce the memory footprint of DLPNO methods and add
additional constraints to leverage sparsity within the computation.
Since the TAMM allows mixed usage of specialized tensors with
other tensor types in all supported operations, the representation
and execution patterns of the DLPNO CCSD equations in the
TAMM did not have to change in such scenarios.
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FIG. 6. View the tensor construction for Sijkl transformation tensors in DLPNO
CCSD equations.

3. Time-dependent coupled-cluster method
In addition to the stationary and frequency-dependent for-

mulations of CC theory, one could witness significant progress on
our end in developing a time-dependent CC method for simulating
real-time dynamics.

The TDCC method has been studied in the context of
the CC linear-response theory,68,69,82,83 x-ray spectroscopy and
Green’s function theory,85–89 nuclear physics,90–92 condensed mat-
ter physics,93 and quantum dynamics of molecular systems in
external fields.94–99 These studies have also initiated an intensive
effort toward understanding many aspects of the TDCC formal-
ism, including addressing fundamental problems such as the form
of the action functional, the form of the time-dependent molec-
ular orbital basis, the physical interpretation of time-dependent
orbitals, various-rank approximations of the cluster operator, and
the numerical stability of time integration algorithms. One of the
milestone achievements in developing a time-dependent CC formal-
ism was Arponen’s action functional for the bi-variational coupled
cluster formalism93 and the following analysis by Kvaal considering
time-varying orbitals.95

The time-dependent Schödinger equation (TDSE),

i∂τ ∣Ψ(τ)⟩ = H∣Ψ(τ)⟩, (43)

is an initial value problem, which has a formal solution ∣Ψ(τ)⟩
= e−iHτ ∣Ψ⟩, with the initial condition, ∣Ψ(0)⟩ = ∣Ψ⟩. An efficient way
of finding approximate solutions of the TDSE for many-electron sys-
tems is associated with the utilization of the time-dependent CC
(TD-CC) Ansatz,

∣Ψ(τ)⟩ = eT(τ)∣Φ⟩. (44)

Upon plugging TD-CC Ansatz into Eq. (43) and projecting onto the
excited determinants, one obtains

i∂τ⟨Φa1...ak
i1...ik

∣T(τ)∣Φ⟩ = ⟨Φa1...ak
i1...ik

∣H(τ)∣Φ⟩, (45)

where T(τ) is a time-dependent cluster operator, ∣Φ⟩ is a time-
independent reference wave function in our consideration, and
H(τ) = e−T(τ)HeT(τ) is the similarity transformed time-dependent
Hamiltonian, which is the generator for the time evolution.

The similarity transformed CC Hamiltonian is non-Hermitian.
Therefore, the computation of observables in this framework
requires a bi-variational approach,65,93 i.e., both the bra and ket
states must be varied independently. The expectation value of any
observable in the TDCC framework is defined as

⟨O⟩ = ⟨Φ∣(1 +Λ(τ))O(τ)∣Φ⟩, (46)

where Λ is a de-excitation operator. For obtaining equations for the
Λ, we write down the TDSE, −i∂τ⟨Ψ′(τ)∣ = ⟨Ψ′(τ)∣H, for the bra
vector, with H = H†,

− i∂τ⟨Φ∣(1 +Λ(τ))e−T(τ) = ⟨Φ∣(1 +Λ(τ))e−T(τ)H. (47)

Multiplying by eT(τ) from the right and right projecting to the excited
determinants obtains

− i∂τ⟨Φ∣Λ(τ)∣Φi1...ik
a1...ak⟩ = ⟨Φ∣(1 +Λ(τ))H(τ)∣Φi1...ik

a1...ak⟩. (48)

The right-hand side of Eq. (45) is the same as the station-
ary CC amplitude equations and hence implemented using TAMM,
similar to how it is implemented for the stationary theory, as
shown in Sec. IV A 1. However, the time-dependent CC ampli-
tudes are naturally complex since the underlying equation we are
solving is the TDSE. Furthermore, one-body and two-body Hamil-
tonian matrix elements are real-valued quantities. TAMM support
for mixed complex-real tensor operations helps avoid the explicit
handling of the real and imaginary data separately. For example, a
tensor contraction for the TDCC method,

(R(a, b, i, j)+ = 0.5∗ v(a, b, c, d )∗ t(c, d, i, j)), (49)

can be expressed exactly the same way as in the stationary CC theory,
as shown in Eq. (24). However, in this case, R and t are complex-
valued, while v is a real-valued quantity.

We have propagated the time-dependent CC amplitudes using
a first-order Adams–Moulton method, which is an implicit time-
propagator. This algorithm requires copying and swapping of the
real and complex parts of time-dependent amplitudes in each micro-
iteration. TAMM does not directly support swapping the real and
imaginary parts of each element of a complex tensor. However, in
this case, we used the block_ for construct of TAMM to perform the
swap in parallel. A specialized C++ lambda expression, as shown in
Fig. 7, is provided to the block_ for, which simply specifies that the
real and imaginary parts of each element in a given block need to be
swapped and copied to (or updated) the corresponding element in
the destination tensor block.

The TDCC method performs time propagation for a suffi-
ciently long duration to obtain well-resolved spectra. However,
obtaining computing time for such an extended period in a single
run is unlikely when using shared computing resources. In addition,
it is highly beneficial to track simulations to adjust and optimize
various parameters in between different runs of the same simula-
tion. The ability to checkpoint and restart simulations, hence, plays
a significant role in the efficient utilization of computing resources.
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FIG. 7. Parallel element-wise swap and copy operation between complex tensors.

FIG. 8. Parallel file I/O operations in TAMM.

The TAMM library provides parallel file I/O operations on tensors,
which helps with checkpointing and restarting the TDCC calcula-
tions. We simply use the TAMM interface to write and read tensor
data to and from the disk, as shown in Fig. 8. The underlying
TAMM infrastructure handles the parallelization aspects of these
I/O operations.

The TAMM infrastructure has been utilized to implement the
time evolution of the T(τ) operator. We have considered singles (S)
and doubles (D) excitation approximations in our implementation.
Our implementation uses Cholesky-decomposed two-body electron
repulsion matrix elements,100,101 and we exploit spin-explicit formal-
ism to evaluate tensor contractions of matrix elements of various
operators.

4. Coupled cluster Green’s function
The correlated formulations of Green’s function methods are

indispensable elements of the computational infrastructure needed
not only to calculate ionization potentials, electron affinities, and
excitation energies but also as quantum solvers for various embed-
ding formulations. The CC formalism provides a natural platform
for the development of the one-body Green’s function and the
introduction of high-rank correlation effects.102–105 Without loss of
generality, here we will focus only on the retarded part of Green’s
function (the advanced part can be developed in an analogous way),
defined by matrix elements GR

pq(ω),

GR
pq(ω) = ⟨Ψg ∣a†

q(ω + (H − E0) − iη)−1ap∣Ψg⟩, (50)

where E0 is the corresponding ground-state energy for the N-
electron system, η is a broadening factor, and ∣Ψg⟩ represents the

ground-state of the N-electron system. In CC, we are using dif-
ferent parametrizations for the bra (⟨Ψg ∣) and ket (∣Ψg⟩) wave
functions,65,93 i.e.,

⟨Ψg ∣ = ⟨Φ∣(1 +Λ)e−T , (51)

∣Ψg⟩ = eT ∣Φ⟩, (52)

which leads to the following form of retarded part of the CC Green’s
function (CCGF):102–107

GR
pq(ω) = ⟨Φ∣(1 +Λ)a†

q(ω + H̄ N − iη)−1ap∣Φ⟩. (53)

The similarity transformed operators here, A (A = H, ap, a†
q), are

defined as A = e−TA eT (the HN stands for a normal product form of
H). The numerically feasible algorithms for calculating (53) employ
ω-dependent auxiliary operators Xp(ω),

Xp(ω) = Xp,1(ω) + Xp,2(ω) + ⋅ ⋅ ⋅
=∑

i
xi(ω)pai +∑

i< j,a
xi j

a (ω)pa†
aa jai + ⋅ ⋅ ⋅ , ∀p, (54)

that satisfy equations

(ω +HN − iη)Xp(ω)∣Φ⟩ = ap∣Φ⟩. (55)

Using these operators, matrix elements can be expressed in a simple
form

GR
pq(ω) = ⟨Φg ∣(1 +Λ)a†

qXp(ω)∣Φg⟩. (56)

In our implementation of CCGF formalism, we approximate Λ
operator by T†. The main numerical effort associated with con-
structing a retarded CC Green’s function is associated with the need
to solve a large number of independent linear equations, which
in turn can contribute to efficient parallel schemes utilizing multi-
ple levels of parallelism. Our CCGF algorithm consists of an outer
loop that checks for the convergence of the entire calculation. We
refer to iterations of this loop as levels. Each level mainly con-
sists of two loops, which are the most computationally intensive
part of the entire calculation. The first loop goes over the fre-
quencies (ω′s) sampled using the adaptive midpoint refinement
strategy.108 The second loop goes over all the orbitals (p′s), and
the CCGF singles and doubles equations are solved for all (ω, p)
pairs for a given level in this loop. Since the bulk of the computa-
tion here is associated with high-dimensional tensor contractions,
we express the tensor operations similar to the cases in Fig. 5 and
Eq. (24), even though the tensor operations in CCGF involve a mix
of complex and real data types. This demonstrates the uniform oper-
ation representation provided by TAMM for operations on mixed
data types.

We refer to the list of all (ω, p) pairs in a given level as
CCGF tasks, each of which can be executed independently. Each
task solves the CCGF singles and doubles equations until conver-
gence for a given (ω, p) pair. All the p orbitals for a given ω are
divided across process groups that are set up at the beginning of
each level. Currently, the user is responsible for explicitly creat-
ing MPI process groups and using them to construct the TAMM
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process group and execution context objects, which are, in turn,
used for executing each task. Each TAMM process group now con-
tains a subset of the resources (processes) provided to the CCGF
calculation. In our CCGF implementation, the size of a process
group for computing each task is determined automatically for a
given problem size (i.e., number of occupied and virtual orbitals)
and the resources (total number of nodes, processes, and GPUs
per node) provided for that run. All process groups are created to
be the same size. We are actively working on providing abstrac-
tions in TAMM for expressing computation to be divided across
process groups without the user having to create them manually
using MPI. Once the execution context objects representing differ-
ent process groups are created, all CCGF tasks are distributed across
the available process groups and executed using different execution
contexts.

The resulting tensors from each task are stored on disk using
the parallel file I/O routines provided by TAMM for writing and
reading distributed tensors to and from disk, as shown in Fig. 8.
This enables restarting the CCGF calculation at any point in the
calculation. If the set of tasks in a given level is not completed,
the subsequent CCGF run upon restart will create process groups
only for the remaining tasks and execute them. Another feature
provided by TAMM used in CCGF is batched parallel file I/O oper-
ations. Several tensors for each task are written to disk as part of the
CCGF calculation. The number of tensors written to disk grows with
increasing CCGF problem size and the number of frequencies (ω) to
be solved. Even though each tensor is read/written using parallel file
I/O, the operation uses a small subset of available nodes/processes to
perform the read/write operation for a single tensor. This is because
the entire set of available resources used for the CCGF calculation is
not required to read/write even large tensors from/to disk. This leads
to resource under-utilization since most of the resources are idle
while a subset of them are performing the parallel file I/O operation
on one distributed tensor at a time. To address this issue, TAMM
provides high-level batched tensor I/O routines that can read several
hundred tensors from disk concurrently by automatically dividing
the total available resources into smaller process groups. Since all
tensors that need to be read/written are not necessarily of the same
size, variable-sized process groups are dynamically created based on
the sizes of each tensor in a given list of tensors. Each of these process
groups reads/writes a tensor using parallel file I/O within the group.
Several tensors are read/written concurrently by different process
groups, leading to significantly better resource utilization and an
overall improvement in the total time spent in file IO. The user
would express such an operation in TAMM, as shown in Fig. 9. The
operation is expressed exactly the same way as one would express
it for reading or writing a single tensor (e.g., Fig. 8), with the only
obvious difference being that a list of tensor handles and corre-
sponding filenames needs to be provided in this case. Reference
109 describes the highly scalable CCGF implementation developed
using TAMM in detail, along with the performance and scalability
analysis at the OLCF Summit. The implementation is also publicly
available.110

This section provides an overview of some important CC
methods and discusses key aspects of their implementations using
TAMM. While frameworks such as TiledArray, CTF, DISTAL, and
ExaTensor provide similar features in how tensor operations in CC
methods can be represented, TAMM differs from them, as explained

FIG. 9. Batched parallel file I/O operations in TAMM.

in Sec. III C. To the best of our knowledge, these are the first
complete scalable distributed implementations of the discussed CC
methods that can be run on different GPU architectures while also
using different parallel programming models.

V. PERFORMANCE COMPARISON WITH OTHER
TENSOR ALGEBRA FRAMEWORKS

We have provided feature comparisons with other distributed
tensor algebra frameworks in Sec. III C, where key library fea-
tures such as tensor-construction and tensor-operation specifica-
tion, hardware support, and the underlying parallel programming
model backends (for distributed data management) are compared.
This section details the performance comparison results with other
distributed tensor algebra frameworks, namely, TiledArray (TA)
and Cyclops Tensor framework (CTF). We did not consider com-
parisons with ExaTensor since the development page111 states that
the library has pending performance issues as well as numerous
problems with existing MPI-3 implementations at the time of this
writing.

All our experiments were performed on the National Energy
Research Scientific Computing Center (NERSC) Perlmutter super-
computer. The GPU partition was used for all the experiments. Each
node in this partition has a 64-core AMD EPYC 7763 CPU, 256 GB
of DDR4 DRAM, and 4 Nvidia A100 GPUs, each with 40 GB of
HBM2e RAM. Each GPU node is connected to four NICs, and the
GPU nodes are connected using the Slingshot 11 interconnect. The
TAMM experiments were configured to run with four MPI ranks per
node and one MPI rank per GPU. The TiledArray experiments were
configured with four MPI ranks per node (one MPI rank per GPU)
and two threads per rank since that is the TiledArray developer’s
recommended configuration for Perlmutter. The CTF implementa-
tion provided the best performance when using either 8 or 12 MPI
ranks per node (2 or 3 MPI ranks per GPU), depending on the prob-
lem size and the number of nodes used in the experiment. For a
given dimension size (N) and node count, we ran CTF using both
8 and 12 MPI ranks per node and chose the best timing out of
the two. All codes were compiled with GCC 11.2, CUDA 11.7, and
cray-mpich 8.1.

We compared the performance of a tensor contraction shown
in Eq. (57), which is one of the most expensive operations in many
CC calculations. For benchmarking purposes, each dimension of the
4D tensors in Eq. (57) is chosen to be of the same size (N), resulting
in a total size of (N4) double-precision floating-point elements for
each tensor. The input tensors are filled with random data in each
case. We used the readily available TA and CTF codes29,36 for bench-
marking Eq. (57) and ensured that the ordering of the indices used in
the contraction is consistent across the different benchmark codes.
The TA benchmark allows specifying the number of blocks for each
dimension. For a given dimension size (N) and node count, we ran
the TA benchmark several times using a varying number of blocks
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FIG. 10. Scaling of 4D tensor contraction with TAMM and comparison with two
other implementations.

along each dimension in each run and chose the timings for the best
performing case for comparing against TAMM,

C(a, b, c, d)+ = A(a, b, m, n)∗B(m, n, c, d). (57)

The performance results for TAMM, TiledArray, and CTF
implementations of Eq. (57) are shown in Fig. 10. Plots for N = 400,
500, 600, and 800 are also shown on different Perlmutter node
counts. With an increasing number of nodes in order to strong

scale for a given problem size (N), TAMM demonstrated consis-
tent performance improvements. In contrast, TA and CTF exhibited
some oscillating behavior. The TAMM implementation strong scales
consistently for a given problem size (N) and provides competitive
performance compared to TA and CTF, especially for large problem
sizes and node counts.

Table V shows the minimum number of nodes required on
Perlmutter to run each of the three implementations for the ten-
sor contraction shown in (57) for large problem sizes (N = 600 and
N = 800). As N increased, the required minimum number for run-
ning the benchmark in the cases of TA and CTF was much higher
than expected in comparison to TAMM. At the time of this writing,
CTF crashed due to segmentation faults on node counts less than
100 for N = 600 and node counts less than 270 for N = 800. Simi-
larly, TA also required a minimum of 40 nodes for N = 600 and 200
nodes for N = 800, whereas TAMM required only 25 and 80 nodes,
respectively, for those cases.

We also compare the performance of the contraction in
Eq. (57) with COSMA112 by representing the contraction as a dis-
tributed matrix-multiply operation. COSMA is a state-of-the-art
distributed matrix-multiply library that is capable of running on
GPUs. Equation (58) shows the equivalent of Eq. (57), represented
as a distributed matrix-multiply operation in COSMA,

C(i, j)+ = A(i, k)∗B(k, j). (58)

We use the COSMA provided distributed matrix-multiply
miniapp.113 The size of each dimension for the COSMA benchmark
was chosen as N2 in order to match the overall sizes for each tensor
[i.e., (N4)] in Eq. (57). Table VI shows the values for N considered in
the comparison. At the time of this writing, we observe that COSMA,
like the TiledArray and CTF implementations, also requires a cer-
tain minimum number of nodes, which is significantly higher than
what is required by the corresponding TAMM implementation for a
given problem size (N). We observe that the TAMM performance
is nearly identical to COSMA for N = 400 and about 10% better
than COSMA for N = 500. For larger problem sizes, N = 600 and
N = 800, the COSMA implementation ran out of memory on 300
and 400 nodes, respectively. The DISTAL39 work also provides a per-
formance comparison with COSMA. The DISTAL authors mention
that COSMA generally achieved about 10% higher performance in
comparison to DISTAL, using up to 256 nodes of the Lassen super-
computer. Since the code for DISTAL is not in the public domain
at the time of this writing, a direct performance comparison with
DISTAL is currently not possible.

TABLE V. Minimum number of Perlmutter nodes required to run the dense 4D tensor
contraction shown in Eq. (57).

Dim size (N)

Number of nodes

TAMM TA CTF

600 25 40 100
800 80 200 270
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TABLE VI. Performance comparison with COSMA.

Dim size (N) Node count TAMM COSMA

300 50 6 5
400 100 9 9
500 100 28 OOMa

500 200 17 19
600 300 33 OOMa

600 400 28 OOMa

aDid not run to completion due to out-of-memory errors.

CCSD benchmark: We implemented our Cholesky-CCSD
equations as tensor expressions in TA and CTF to further inves-
tigate the performance on a real application. We ran calculations
of Ubiquitin-DGRTL74,84 molecule with the aug-cc-pVDZ basis
(O = 146, V = 1096, 7810 Cholesky vectors) on up to 350 nodes
of Perlmutter using the best performance parameters for TA and
CTF. With TAMM, for a single CCSD iteration on 240 nodes, we
observed 80% speedup over CTF while TA ran out of memory. On
350 nodes, we observed nearly identical timing with CTF and 2.5x
speed-up over TA.

VI. CONCLUSION
We have introduced and discussed the Tensor Algebra

for Many-body Methods framework that enables scalable and
performance-portable implementations of important computational
chemistry methods on modern large-scale heterogeneous high-
performance computing systems. We described the TAMM frame-
work in detail by introducing a tensor algebra interface that pro-
vides a high-level representation of the tensor algebra operations
as an embedded domain-specific language. This interface enables
the separation of concerns between scientific application develop-
ment and high-performance computing development efforts. The
domain scientist or scientific application developer can focus on
the method development instead of the performance optimization
details, whereas the HPC developers focus on the underlying algo-
rithms and optimizations. Later, we presented our modular infras-
tructure that allows the implementation of different optimizations
on tensor data distribution, execution, and scheduling of tensor
operations for efficient execution on modern heterogeneous HPC
platforms. We also compared the features of TAMM against several
other distributed tensor algebra frameworks. Through various case
studies, we showcased the performance and productivity benefits of
using the TAMM framework for implementing complete ground-
and excited-state electronic structure methods that are expressed
as operations on tensors. Finally, we evaluated the performance of
TAMM against other distributed tensor algebra frameworks and
demonstrated its competitiveness and scalability on large problem
sizes and node counts on NERSC Perlmutter.
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