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Abstract: This study seeks to elucidate the intricate relationship between various air pollutants
and the incidence of rhinitis in Seoul, South Korea, wherein it leveraged a vast repository of data
and machine learning techniques. The dataset comprised more than 93 million hospital visits
(n = 93,530,064) by rhinitis patients between 2013 and 2017. Daily atmospheric measurements were
captured for six major pollutants: PM10, PM2.5, O3, NO2, CO, and SO2. We employed traditional
correlation analyses alongside machine learning models, including the least absolute shrinkage
and selection operator (LASSO), random forest (RF), and gradient boosting machine (GBM), to
dissect the effects of these pollutants and the potential time lag in their symptom manifestation.
Our analyses revealed that CO showed the strongest positive correlation with hospital visits across
all three categories, with a notable significance in the 4-day lag analysis. NO2 also exhibited a
substantial positive association, particularly with outpatient visits and hospital admissions and
especially in the 4-day lag analysis. Interestingly, O3 demonstrated mixed results. Both PM10 and
PM2.5 showed significant correlations with the different types of hospital visits, thus underlining their
potential to exacerbate rhinitis symptoms. This study thus underscores the deleterious impacts of air
pollution on respiratory health, thereby highlighting the importance of reducing pollutant levels and
developing strategies to minimize rhinitis-related hospital visits. Further research considering other
environmental factors and individual patient characteristics will enhance our understanding of these
intricate dynamics.

Keywords: rhinitis; air pollution; machine learning; hospital visits; carbon monoxide; nitrogen
dioxide; ozone; particulate matter; time lag effect; respiratory health

1. Introduction

Within the intricate tapestry of environmental and health sciences, the interplay of
various external and internal factors is paramount [1–3]. A case in point is the condition of
rhinitis, which is a prevalent yet often overlooked disorder that acts as a crucial intersection
for this interdisciplinary exploration. Rhinitis, which is manifested by clinical features
such as nasal congestion, sneezing, and sinus pressure, holds substantial global prevalence,
wherein it impacts a substantial portion of the human populace [4–6]. Its complex etiology,
from allergenic to irritant triggers, genetic susceptibility, and environmental pollution,
merits concentrated scrutiny.

Air pollution, which is a pervasive and escalating global issue, has significant ram-
ifications for public health [7–9]. Being composed of an array of constituents, including
particulate matter, ground-level ozone (O3), carbon monoxide (CO), sulfur dioxide (SO2),
and nitrogen dioxide (NO2), it poses a multifarious hazard [10–15]. This unseen adversary
often goes unnoticed until its deleterious effects become manifest, especially in urban
settings where industrialization and urbanization amplify these pollutant concentrations
and their associated impacts.
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The intricate relationship between rhinitis and air pollution presents a captivating
frontier for research. While it is known that rhinitis patients exhibit heightened sensitivity
to environmental precipitants [16–18], the nuanced contributions of specific types of air
pollutants in the exacerbation of rhinitis symptoms has yet to be exhaustively investigated.
Furthermore, the temporal association between the exposure to pollutants and the onset
or amplification of symptoms, colloquially known as the time-lag effect, remains a largely
uncharted domain.

Our research aims to mitigate these knowledge deficiencies by leveraging the capa-
bilities of machine learning, which is a methodological approach that has been celebrated
for its aptitude in dealing with high-dimensional and intricate data. We seek to delineate
the relationships between diverse air pollutants and rhinitis, as well as to unmask the
potential time lag effect. We utilized an extensive dataset, comprising daily atmospheric
measurements coupled with hospital visits by rhinitis patients, which amounted to a total
exceeding 93 million hospital visits due to rhinitis across the span of 2013 to 2017 from
Seoul, South Korea.

In recent years, the advent and ascension of machine learning techniques have cat-
alyzed a revolution in the analysis of biomedical big data [19–22]. The ability to process
and derive meaningful insights from large-scale, complex data has paved the way for a
more nuanced understanding of disease patterns, genetic underpinnings, and the impacts
of environmental factors on health [23–26]. In the context of our study, machine learning
offers a novel approach to understanding the intricate dynamics between air pollution and
rhinitis, thus aiding in the extraction of valuable insights from the vast amount of data we
have amassed.

By forging a comprehensive comprehension of these associations, we aim to bolster
preventive strategies, augment public health guidelines, and ultimately facilitate the im-
proved management and treatment of rhinitis. Consequently, this investigation is not
merely an academic endeavor, but is also an integral step towards ameliorating global
respiratory health amid the rising tide of environmental challenges.

2. Materials and Methods
2.1. The Comprehensive Rhinitis Patient Visit Database in Seoul

Located in the heartland of South Korea, Seoul is a thriving metropolis, which is home
to around 10 million individuals. The investigation presented in this paper capitalizes
on an extensive database that captures hospital visitations by rhinitis patients within this
populous city.

In South Korea, national health insurance is not optional but a requirement for every
citizen. As a result, the National Health Insurance Service (NHIS) of South Korea finds itself
in the unique position of holding comprehensive medical records for every individual in the
nation. In addition, South Korea boasts of a robust healthcare system that is characterized
by top-tier accessibility. This conducive environment frequently prompts patients with
even mild rhinitis to seek medical attention at hospitals.

To facilitate research similar to that in the current study, the NHIS has meticulously
curated a specific database catering to rhinitis patients. This repository incorporates a
multitude of variables, such as daily counts of outpatient visits, the number of hospital
admissions, and emergency department visits.

Examining the particulars of the data available within the timeframe of five years,
spanning from 2013 to 2017, the incidence of hospital visits made by rhinitis patients
in Seoul reached an astonishing tally of nearly 112 million cases. For the purpose of our
analysis, we made the decision to exclude weekend data, as the observed patterns markedly
deviated from those during weekdays, which could primarily be attributed to the routine
shutdown of numerous hospitals over the weekend. Following similar reasoning, we also
omitted data corresponding to the 63 public holidays observed in South Korea between
2013 and 2017.
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In the wake of these exclusions, our final dataset for analysis encompassed 93,235,779
outpatient visits, 230,699 hospital admissions, and 63,616 emergency department visits
spread across a total of 1241 days. To prepare this massive dataset for statistical processing,
we applied a log normalization technique to convert the originally skewed data distribu-
tions into a more tractable Gaussian distribution. The entirety of the database curation
process is encapsulated visually in Figure 1, thus offering an overview for reference.

Figure 1. Diagram illustrating the data curation process, from raw hospital visitation data to the final
dataset utilized in the analysis, after excluding weekends and holidays data.

2.2. Database of Daily Atmospheric Environmental Details

The backbone of our research is a comprehensive database that documents daily
environmental atmospheric variables from 2013 to 2017 across 25 distinct locales within
Seoul. The database captures daily average values for key air pollutants, namely, PM10,
PM2.5, O3, NO2, CO, and SO2, at each of the specified locations. For congruity with the
hospital visit database, we excluded data corresponding to weekends and national holidays.

2.3. Analytical Approach: Combining Traditional Statistics and Machine Learning

To investigate the relationships inherent in our data, we deployed a multifaceted
analytical approach. Firstly, correlation analyses were performed using Pearson and Spear-
man correlation coefficients. Alongside this traditional statistical approach, we employed
machine learning techniques, specifically the least absolute shrinkage and selection opera-
tor (LASSO) [27], random forest (RF) [28] and gradient boosting machine (GBM) [29], to
analyze the effects of air pollutants and the time lag in hospital visits by rhinitis patients.

2.3.1. Pearson and Spearman Correlations

In assessing the relationships between our variables, we employed both Pearson and
Spearman correlations. The Pearson correlation coefficient measures the linear relationship
between two datasets and is defined by the following formula:

ρXY =
Cov(X, Y)

σXσY
(1)

Here, Cov(X, Y) is the covariance of variables X and Y, while σX and σY are their
respective standard deviations. The Pearson coefficient ranges between −1 and 1, with
1 signifying a perfect positive linear relationship, −1 indicating a perfect negative linear
relationship, and 0 indicating no linear correlation.

The Spearman correlation, on the other hand, measures the monotonic relationship
between two datasets, which is not limited to linear relationships. It ranks the data points
and uses these ranks to calculate correlation. High values (close to 1) suggest a strong, posi-
tive monotonic relationship, low values (close to −1) suggest a strong, negative monotonic
relationship, and values close to zero suggest a weak or nonmonotonic relationship.
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2.3.2. Least Absolute Shrinkage and Selection Operator (LASSO)

LASSO is a regularization technique that induces model parsimony by shrinking
certain regression coefficients towards zero, thereby effectively performing feature selection.
It works by adding a penalty that is equivalent to the absolute value of the magnitude of
coefficients to the loss function, as is illustrated by the following formula:

argmin
β

{
n

∑
i=1

(
yi −∑

j
xijβ j

)2

} subject to
p

∑
j=1
|β j| ≤ s (2)

In the above equation, β is the coefficient vector, and s is a predefined parameter
controlling the level of regularization. Large absolute values of β signify the contribution
of the corresponding variable to the prediction. Conversely, as s grows larger, estimates of
β shrink towards zero, thereby signifying less contribution from the associated variable.

2.3.3. Random Forest (RF)

Random forest is a tree-based ensemble model that can be used for both classification
and regression tasks. It operates by generating a multitude of decision trees, with each
branching being based on a given criterion until a termination condition is met. A key
feature of the RF model is its ability to provide a measure of the feature importance, thus
quantifying the contribution of each variable to the model.

The importance of the ith feature (I( fi)) is calculated as follows:

I( fi) =
∑j wj · G(Cj)− wjle f t · G(Cjle f t)− wjright · G(Cjright)

∑k I(Ck)
(3)

Here, Cj refers to the importance of node Cj, while w is the weight of node Cj, which
is represented as the ratio of the number of samples at node Cj to the total sample size.
The denominator ∑k I(Ck) is the total importance of all nodes. The importance I( fi) in RF
corresponds to the average of all I( fi) values across each individual tree, thus offering a
measure of variable importance.

2.3.4. Gradient Boosting Machine (GBM)

The gradient boosting machine, or GBM, is a powerful ensemble machine learning
algorithm that constructs models in a stage-wise fashion, thus optimizing an arbitrary dif-
ferentiable loss function. Similar to RF, GBM can provide a measure of feature importance.

The importance of each variable in GBM is determined by the number of times a
variable is selected for splitting, which is weighted by the squared improvement to the
model as a result of each split and averaged over all trees. High values of feature importance
imply a more significant role of the corresponding feature in the model, whereas low values
suggest a lesser contribution.

2.3.5. Interpreting Coefficients and Importance Measures

While interpreting the values in the models, it is critical to remember that these
values do not imply causation, but merely association. Regarding LASSO, high absolute
coefficient values indicate features that significantly contribute to predicting the target
variable. However, coefficients shrunk to zero are not necessarily irrelevant to the prediction.
Their exclusion from the LASSO model only implies that their contribution is not significant
when considering the penalty term.

In the case of RF and GBM, high feature importance signifies that a variable signifi-
cantly contributes to the prediction of the target variable across the trees in the forest or the
iterations of boosting. Conversely, a low importance measure suggests that the feature does
not significantly contribute to the prediction in the context of the other features. For all
these models, the target variable of our machine learning models is the number of rhinitis
patients, with air pollutants serving as inputs.
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3. Results
3.1. Exploratory Data Analysis
3.1.1. Air Pollutants Correlations

Our initial exploration of the data began by investigating the correlation matrix of
the various types of pollutants. The correlation matrix, which is shown in Figure 2, clearly
illustrates the relationships among different pollutants.

Figure 2. Correlation matrix showcasing relationships between the hospital visit types and relation-
ships among different air pollutants measured in the study. (A) Correlation matrix between the
hospital visit types. (B) Correlation matrix among different air pollutants.

Specifically, the Pearson correlation between PM10 and PM2.5 was found to be 0.6119,
thus indicating a moderate positive correlation. Both pollutants also demonstrated a
positive correlation with NO2, carbon monoxide, and SO2, albeit to a varying degree.

Interestingly, the correlation between ozone and other pollutants mostly trended in
the opposite direction. The ozone displayed a weak positive correlation with PM10 and
PM2.5 and had a moderate negative correlation with NO2, CO, and SO2.

3.1.2. Hospital Visit Correlations

We next examined the correlation matrix between different types of hospital visits,
including outpatient visits, inpatient admissions, and emergency department visits. As
expected, a relatively strong positive correlation was found between the different types of
visits, thereby suggesting that days with high outpatient visits also tended to have high
inpatient admissions and emergency department visits.

3.1.3. Pollutants and Patient Visits

We calculated the average daily patient visits for the outpatient, inpatient, and emer-
gency departments. Our results showed an average of around 75,000 outpatient visits,
180 inpatient admissions, and 50 emergency department visits per day. Detailed date-wise
trends for these averages are depicted in Figure 3. Finally, we investigated the relation-
ships between each type of pollutant and each type of hospital visit. Scatter plots of these
relationships were generated and are shown in Figure 4.
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Figure 3. Graphical representation of the daily patient visits to outpatient, inpatient, and emergency
departments over the study period.

3.2. Analysis of Hospital Visits and Air Pollutants Using Statistical Analysis
3.2.1. Pearson Correlation Analysis

The Pearson correlation coefficients, depicted in Figure 5, provide a numerical measure
of the linear relationships between the levels of various air pollutants and the number of
hospital visits for rhinitis, which consider time lags from 0 to 4 days.

For outpatient hospital visits, CO showed the highest correlation coefficient (r = 0.356) at a
4-day lag, thus indicating a significant positive linear relationship. This was followed closely by
NO2 (r = 0.333), which was also at a 4-day lag. These findings suggest that the impact of these
pollutants on outpatient visits might be more pronounced after a few days from exposure.

In terms of hospital admissions, CO again stood out with the highest correlation
(r = 0.354) at a 4-day lag. PM2.5 demonstrated the second highest positive correlation
(r = 0.272), which was also at a 4-day lag. This could hint towards a possible delay in
the manifestation of symptoms that are severe enough to require hospital admission after
exposure to these pollutants.

Interestingly, in the context of emergency department visits, PM2.5 (r = 0.247) and CO
(r = 0.257), both measured at a 4-day lag, showed the highest correlation coefficients. This
finding further emphasizes the impact of these pollutants on severe symptoms that require
immediate medical attention.
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Figure 4. Scatter plots depicting the relationships between each type of pollutant and each type of
hospital visit (outpatient visits, inpatient admissions, and emergency department visits).
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Figure 5. Bar graph representing the Pearson correlation coefficients between the levels of various
air pollutants and the number of hospital visits for rhinitis considering time lags from 0 to 4 days.
(A) Outpatient visits. (B) Inpatient admissions. (C) Emergency department visits.

3.2.2. Spearman Correlation Analysis

Spearman correlation coefficients, as shown in Figure 6, were also calculated to measure
the monotonic relationships between the pollutant levels and the number of hospital visits.

In the case of the outpatient hospital visits, CO once again had the highest correla-
tion (r = 0.381) at a 4-day lag, followed by PM10 (r = 0.208). This reinforces our finding
from the Pearson correlation analysis regarding the delayed impact of these pollutants on
outpatient visits.

Hospital admissions exhibited the highest Spearman correlation with CO (r = 0.410) at
a 4-day lag and PM10 (r = 0.245) at a 4-day lag as well. This observation aligns with the
Pearson analysis, thus underscoring the possible delayed impact of these pollutants on
severe rhinitis symptoms that necessitate hospital admission.

Lastly, emergency department visits were most strongly correlated with PM10 (r = 0.284)
at a 4-day lag and CO (r = 0.321) at the same lag. These findings further emphasize the
role of these pollutants in causing severe symptoms requiring emergency care and again
emphasize the significant delayed effect.
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Figure 6. Bar graph illustrating the Spearman correlation coefficients between pollutant levels and
the number of hospital visits, thus measuring the monotonic relationships. (A) Outpatient visits.
(B) Inpatient admissions. (C) Emergency department visits.

3.3. Analysis of Hospital Visits and Air Pollutants Using Machine Learning Analysis

In the present study, we utilized several machine learning techniques, namely, LASSO, RF,
and GBM, to further investigate the effects of air pollutants on rhinitis-related hospital visits.

3.3.1. LASSO Analysis

LASSO regression, which is an advantageous regularization and variable selection
method, was deployed to provide a comprehensive and quantitative analysis of the poten-
tial relationships (Figure 7). Notably, for outpatient hospital visits, at a 4-day lag, PM2.5
demonstrated the highest positive coefficient (0.027), thus hinting towards a potential link
between this pollutant and an increase in outpatient visits. Interestingly, ozone (O3) was
the only pollutant to show a negative coefficient (−0.049), thereby indicating a possible
inverse relationship. At the 1-day lag, NO2 and CO showed the most significant positive
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coefficients (0.024 and 0.028, respectively), thus suggesting that these pollutants might have
a more immediate impact on outpatient visits.

Figure 7. Results of the LASSO regression analysis highlighting the potential relationships between
air pollutants and hospital visits at various time lags. (A) Outpatient visits. (B) Inpatient admissions.
(C) Emergency department visits.

In terms of hospital admissions, at a 4-day lag, CO and PM2.5 indicated the highest
positive coefficients (0.033 and 0.032, respectively), thus reinforcing the results observed
from the correlation analysis. At a 1-day lag, CO showed a remarkably high coefficient
of 0.064, which potentially signifies a more immediate role of this pollutant in severe
symptom manifestation.

For emergency department visits, the 4-day lag showed the highest positive coeffi-
cients for PM2.5 (0.037) and PM10 (0.021). This could reflect the role of these pollutants in
exacerbating severe symptoms, thereby necessitating immediate medical intervention.
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3.3.2. Random Forest Analysis

RF, which is a powerful ensemble learning method, was utilized to determine the
feature importance of various pollutants in predicting hospital visits (Figure 8). In relation
to outpatient visits, CO at a 3-day lag was the most influential variable (importance: 10.437),
followed by O3 at a 4-day lag (importance: 7.111). This suggests the significant role of these
pollutants, specifically CO, in increasing outpatient visits for rhinitis.

Figure 8. Results of the random forest analysis depicting the feature importance of various pollu-
tants in predicting hospital visits. (A) Outpatient visits. (B) Inpatient admissions. (C) Emergency
department visits.

When considering hospital admissions, CO showed the highest importance again, but
interestingly at a 4-day lag (importance: 10.078), thus indicating a delayed effect of this
pollutant. PM2.5 at a 2-day lag was also identified as an important feature (importance:
4.108), thus demonstrating its potential impact on hospital admissions.

For emergency department visits, CO was the most critical feature again at a 3-day
lag (importance: 8.090), followed by PM10 at a 4-day lag (importance: 4.386). This un-
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derscores the role of these pollutants in causing severe symptoms that require immediate
emergency care.

3.3.3. Gradient Boosting Machine Analysis

The GBM, which is an advanced machine learning algorithm that combines weak pre-
diction models to build a strong predictive model, was used for further analysis (Figure 9).

Figure 9. Results of the gradient boosting machine analysis depicting the feature importance of
various pollutants in predicting hospital visits. (A) Outpatient visits. (B) Inpatient admissions.
(C) Emergency department visits.

With regard to outpatient hospital visits, at a 4-day lag, CO demonstrated the highest
importance (12.525), followed by O3 (10.697). Interestingly, at a 3-day lag, CO exhibited an
even higher importance (19.838), thus suggesting its significant and possibly immediate
influence on outpatient visits.
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When focusing on hospital admissions, CO stood out at a 4-day lag (importance:
28.441), which was substantially higher than other variables, thereby illustrating its possible
delay in impacting the severe symptoms that necessitate admission.

In terms of emergency department visits, CO once again exhibited the highest impor-
tance at a 4-day lag (importance: 16.444), followed by O3 at a 2-day lag (importance: 2.170).
This finding further emphasizes the role of these pollutants, especially CO, in causing
severe symptoms that require urgent attention.

4. Discussion

This investigation utilized a combination of statistical analyses and machine learning
algorithms to scrutinize the relationship between various types of air pollutants and
the frequency of hospital visits by rhinitis patients. The analysis demonstrated a clear
association between elevated levels of certain pollutants and an increase in different types
of hospital visits. These findings align with previous studies demonstrating the harmful
health impacts of air pollution, especially with respect to respiratory conditions such
as rhinitis. This analysis provides a broader understanding of these relationships by
considering multiple pollutants simultaneously and incorporating the effect of delayed
symptom manifestation following exposure to these pollutants.

Among the pollutants examined, CO consistently emerged as the most significant in
terms of its association with hospital visits. This was demonstrated across multiple types of
visits, outpatient visits, hospital admissions, and emergency department visits. Notably, CO
was especially prominent in the 4-day lag analysis, thereby implying a delayed response
to this pollutant. CO, as a common air pollutant, is known to interfere with the oxygen
carrying capacity of the blood, thus potentially causing hypoxia, which can exacerbate
respiratory symptoms. The findings underscore the importance of continued efforts to
monitor and reduce CO levels in the environment to prevent adverse health impacts.

NO2 also demonstrated a considerable correlation with outpatient visits and hospital
admissions, particularly in the 4-day lag analysis. It is imperative to clarify that NO2 is not
directly emitted by traffic or burning fossil fuels. Rather, emissions primarily contain NO,
which is subsequently oxidized to NO2 by the ozone and other peroxides after emissions,
which is a process that may exhibit time lags (NO → NO2). NO2 is known to cause inflam-
mation and damage to the airways, thus potentially worsening rhinitis symptoms. The
findings underscore the importance of understanding these chemical dynamics and suggest
the necessity to mitigate NO emissions, along with establishing more stringent air quality
guidelines to protect individuals, particularly those with existing respiratory conditions.

Contrastingly, O3 showed mixed results, with a negative correlation observed in the
LASSO analysis for outpatient visits. O3 is a primary constituent of smog, and high levels
can trigger a variety of health problems, including chest pain, coughing, throat irritation,
and airway inflammation [30–32]. However, the negative correlation might suggest that
other pollutants have a stronger immediate impact on rhinitis symptoms, or there may
potentially be mitigating factors related to O3 exposure that were not accounted for in
this study.

In considering the unexpected negative correlation with O3 observed in our study,
it is essential to recognize that this particular pollutant is predominantly present during
the middle of the day, which is a time typically marked by a decrease in other pollutant
concentrations. This daily fluctuation of O3 may be perceived as having a potential bearing
on the correlation; however, our analysis incorporated the average concentration per day,
thereby effectively negating the midday spike’s impact on the results.

It is noteworthy that the middle of the day represents a period of heightened outdoor
activity, thus possibly amplifying the effects of O3 exposure. In a scenario where O3 has a
detrimental effect on rhinitis, one might anticipate a distorted correlation between patient
visits and the O3 concentration, which would be possibly skewed in a higher direction
compared to other substances. Nevertheless, our findings revealed the opposite, thereby
contributing to the complexity of interpreting the O3 relationship.
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Upon reflection, it may be posited that ozone’s distinct behavior is modulated by
seasonal factors. Ozone is heavily influenced by solar radiation, which exhibits variability
across seasons. A potential correlation may exist between the rise in rhinitis during the
winter months and the concurrent decrease in solar radiation, thus leading to a reduction
in O3 concentration. This seasonal modulation of O3 may have manifested in our results as
a negative correlation.

The aforementioned observations regarding O3 call attention to the intricate and
multifaceted nature of environmental health interactions. While the negative correlation
with O3 appears incongruent with conventional understanding, it emphasizes the necessity
for a more nuanced examination of pollutant dynamics. The present study’s findings
pertaining to O3 should be interpreted with caution, thereby recognizing that they introduce
new complexities rather than definitive conclusions. Further research that is inclusive of
seasonal analyses and possibly considers diurnal variations will be indispensable to unravel
the underlying mechanisms governing this perplexing association.

The analysis also revealed a significant role of PM2.5 and PM10 in association with
different types of hospital visits. Fine particulate matter, particularly PM2.5, is capable of
penetrating deep into the respiratory tract, thereby causing or exacerbating respiratory
diseases [33–35]. Given their broad sources of emission, ranging from industrial processes
to natural phenomena, controlling and monitoring these pollutants present a substantial
challenge. However, considering their potential to trigger severe rhinitis symptoms that
require immediate medical attention, efforts should be heightened to address this.

A pertinent aspect that merits attention in analyzing the impact of air pollutants on
rhinitis-related hospital visits is the potential correlation with traffic density and compo-
sition. Traffic emissions are known to be a major source of various pollutants, including
PM2.5 and CO, that were central to this study’s findings. Particularly in emerging African
countries, there has been evidence of the characterization of ambient aerosols and the as-
sessment of cytotoxicity near high- and low-density traffic sites. A study by Sadiq et al. [36]
in Kano State, Nigeria, showed that 51.7% of particles were classified as PM2.5, with sig-
nificant concentrations at mixed sites comprising both urban and industrial areas. These
particulates, which are mainly composed of elements such as Si, Al, Ca, Ce, Ti, Fe, Cl, Pb,
and Mn, have been shown to have a direct impact on health, as the proximity to traffic sites
led to observed worsening health conditions in the region.

Moreover, traffic density and composition are not only restricted to emerging nations.
Even the control measures during the COVID-19 outbreak in China led to reduced traffic,
thus resulting in significant decreases in the concentrations of pollutants such as NO2, SO2,
and CO [37]. These reductions were particularly pronounced in highly populated areas
with intensive anthropogenic activities. Ground-based observations also supported these
findings, thereby demonstrating a significant decrease in the concentrations of NO2, SO2,
CO, PM2.5, and PM10 during the containment period. However, the effect varied across
different regions, thus emphasizing the importance of considering the spatial variations in
traffic density and composition.

In the context of our study, these insights imply that traffic density and composition can
be vital contributors to the observed associations between pollutants and rhinitis-related
hospital visits. They also underline the importance of urban planning and emissions
control to manage the levels of these pollutants. The spatial distribution of traffic and
the corresponding emission characteristics may provide a deeper layer of complexity to
the intricate relationship between air quality and respiratory health. Thus, integrating
traffic-related data into future analyses may present a more nuanced understanding of
the underlying mechanisms driving the observed correlations. This could lead to more
effective strategies for reducing pollutant levels and to ultimately minimizing rhinitis-
related hospital visits, thereby considering the broader socioeconomic and infrastructural
aspects of urban development and transportation.

The observed trends of the time lags between pollutant exposure and hospital visits
suggest that the impact of these pollutants may not be immediate. This could be attributed
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to the delayed inflammatory response to pollutant exposure or the progressive nature
of symptom aggravation that eventually leads to the necessity of medical care. This
highlights the importance of considering such lags in future research and potentially in the
development of warning systems for individuals with respiratory conditions.

However, this study is not without limitations. The analysis was reliant on hospital
visit data, which might not fully reflect the severity of the symptoms experienced by
patients. Additionally, while a range of pollutants was included in the analysis, other
environmental factors such as temperature and humidity were not considered. These
factors could potentially influence both the levels of pollutants and the frequency of rhinitis
symptoms. Further research could expand on this study by considering these factors and
conducting subgroup analyses based on demographic and clinical characteristics to provide
a more nuanced understanding of these relationships.

Additionally, the scope of this study could be broadened by employing a more exten-
sive range of machine learning algorithms, thereby potentially enhancing the confidence in
the accuracy of the findings. The utilization of a maximum amount of ML algorithms has
been proven effective in similar contexts, such as the study conducted by Mirri et al. [38],
where a broad array of ML algorithms was employed to investigate the potential correla-
tion between particulate pollution and the spread of COVID-19 in Emilia-Romagna, Italy.
This approach achieved a promising 90% accuracy value in predicting the virus’s possible
resurgence based on the presence of particulate pollutants such as PM2.5, PM10, and NO2.
Considering the similar biochemical components examined in our study, the implementa-
tion of a more diverse set of ML algorithms, as outlined in the aforementioned work, may
further strengthen our understanding of the impact of air pollutants on rhinitis-related
hospital visits. This warrants consideration in future research endeavors and underscores
the potential to expand the experimental design to attain a more comprehensive and
robust analysis.

5. Conclusions

This study has made substantial strides in illuminating the complex dynamics between
various types of air pollutants and the frequency of hospital visits by rhinitis patients. Our
findings have revealed several noteworthy associations. Specifically, elevated levels of CO
and NO2 were consistently linked with an increase in outpatient visits, hospital admissions,
and emergency department visits. The associations were particularly prominent in the
4-day lag analysis, thereby suggesting a time lag effect in the symptom manifestation
following exposure to these pollutants.

Particulate matters, PM2.5 and PM10, also presented a significant correlation with the
frequency of hospital visits. Given their ability to penetrate deep into the respiratory tract
and aggravate respiratory symptoms, this finding underscores the need for meticulous
monitoring and stringent control measures to limit their emission. In contrast, the role of O3
was found to be more nuanced, which showed a negative correlation in the LASSO analysis
for outpatient visits. Further research could help to shed light on the factors underlying
this observation.

While our study has provided valuable insights into the relationships between air pol-
lutants and rhinitis-related hospital visits, it is important to note that several environmental
factors such as temperature and humidity were not considered in our analysis. Future
studies could aim to incorporate these variables to gain a more holistic understanding of
the phenomena.
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